
Research Article
An Analytical Development of the Hyperbolic Behaviour of
Micro Thermoelectric Coolers

Giulia De Aloysio,1 Giampaolo D’Alessandro,2 and Filippo de Monte2

1Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila,
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The transient behaviour of a micro thermoelectric cooler is described in the present paper through the theory of the thermal
wave, involving the relaxation time. The internal heat generation due to the sudden application of the electric current is taken
into account by means of the Heaviside function. The governing equations of both the semiconductors are solved by a modified
Separation of Variables Method that allows us to have a better description of the device which can be obtained at early times. As
regards the performances, the cooling load shows discontinuities due to the contributions of the travelling wave fronts of both the
semiconductors. The results show that the coefficient of performance (COP) of the device obtained with the hyperbolic model is
lower than that provided by the parabolic model at early times.

1. Introduction

In the literature many models related to the transient
behaviour of thermoelectric devices have been presented [1–
9]. These systems have large application as coolers [9–12],
thanks to the possibility of maintaining the junction tem-
perature as low as required. Most of the models make use of
the parabolic thermal diffusion equation: three-dimensional
numerical coupled models have been proposed recently, in
which the coupling of the thermal and the electric field is
considered, [4, 10]. In particular, the coupling of both the
fields is analyzed under unsteady and steady states for coolers
in [4, 10].

However, the parabolic modelling is inadequate for
devices with small dimensions, in particular in the analysis
of their transient behaviour, during the start-up phase and
the shut-down phase and when changing the operational
parameters. In all of these cases it is more adequate to use
the hyperbolic heat conduction model, which considers the
relaxation time of thematerial [6–8].This is a crucial parame-
ter in the heat conduction theory because it takes into account

the finite speed of the heat propagation. The relaxation time
is absent in the classical theory of heat diffusion based on the
Fourier law, whose intrinsic underlying assumption is that
heat propagates in the material with an infinite speed.

Unlike the previously proposed model, in the present
paper we describe the sudden application of the electric
current by means of the Heaviside function. Following Haji-
Sheikh and Beck’s approach [13], the thermal field in both
the semiconductors is obtained analytically by means of a
modified Separation of Variables (SoV, for short) Method
for time-independent boundary conditions of the first kind.
According to this method, the solution of the hyperbolic
problem is obtained by modifying the solution of the cor-
responding parabolic problem through an appropriate time-
dependent function. This function is due to the presence
of the relaxation time and may be derived by imposing the
modified solutionwhichwill be the solution of the hyperbolic
problem. Then MATLAB ambient is used to implement the
solution. Once the temperature distributions are known,
the performances of the device, cooling load, and COP are
evaluated. The results of the analysis show that the COP
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Figure 1: 1D schema of a thermoelectric cooler.

obtained by means of the hyperbolic model is lower than that
provided by the parabolic model at early times.

2. Analytical Formulation

Theelementary unit of a thermoelectric cooler (TEC)module
consists of two semiconductors, P and N, connected electri-
cally in series, as shown in Figure 1. Because of the Peltier
effect, by applying an electric current, heat is absorbed at the
cold junction, whose temperature is denoted by𝑇

𝑐
, and heat is

released at the hot junction,whose temperature is𝑇
ℎ
.Theheat

absorption at the cold junction is counteracted by Joule and
Fourier’s effects. It is worth noting that the Thomson effect
is neglected in this analysis. The following assumptions are
made to perform the analytical transient modelling of the
device:

(a) The thermal conductivity and the electric resistivity
are considered temperature-independent and com-
puted at an average temperature 𝑇avg = (𝑇

ℎ
+ 𝑇
𝑐
)/2,

by using (23) (see ahead).This assumption is valid for
low electric applied currents, as shown in [10].

(b) Adiabatic side surfaces of the TEC are taken into
account.

(c) Semiconductors are employed in the analysis, which
have the same geometrical characteristics, the cross-
sectional areas 𝐴

1
and 𝐴

2
, and the lengths of the

thermoelements, 𝐿
1
and 𝐿

2
. We assume that 𝐿

1
=

𝐿
2
= 𝐿.

(d) At the instant 𝑡 = 0 both the semiconductors have
an ambient uniform temperature 𝑇

0
and a sudden

constant uniform current is applied to the system.

2.1. Governing Equations for the Semiconductors. The energy
equations for both the semiconductors are derived as sug-
gested in [6]. However, in the present paper the energy equa-
tion is modified, as instantaneous internal heat generation
has been considered by means of the Heaviside function in
the hyperbolicmodel.Therefore, the energy balance equation
valid for each semiconductor may be written as

𝜌𝑐
𝜕𝑇

𝜕𝑡
+

𝜕𝑞
∗

𝜕𝑥
+ 𝑒𝐽

𝜕Φ

𝜕𝑥
𝐻 (𝑡) = 0. (1)

𝐻(𝑡) represents the Heaviside function. In particular it is

𝐻(𝑡) =
{

{

{

0 if 𝑡 < 0

1 if 𝑡 > 0.

(2)

The thermal flux at time 𝑡 + 𝜏 is defined as in (3a) as follows:

𝑞
∗

(𝑥, 𝑡 + 𝜏) = −𝑘
𝜕𝑇

𝜕𝑥
∓ 𝑇𝑆𝑒𝐽𝐻 (𝑡) , (3a)

where 𝜏 is the relaxation time and the minus sign stands
for semiconductor N, whereas the plus sign stands for
semiconductor P.

By applying Taylor expansion to (3a) and by neglecting
the higher order terms, (3a) may be written as

𝑞
∗

(𝑥, 𝑡) + 𝜏
𝜕𝑞
∗

𝜕𝑡
= −𝑘

𝜕𝑇

𝜕𝑥
∓ 𝑇𝑆𝑒𝐽𝐻 (𝑡) . (3b)

By combining (1) and (3b) and by performing some other
calculations, as suggested in [6], the governing equation that
allows us to determine the temperature distribution under
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the hyperbolic heat conduction model for both the pellets is
given by (4a), (4b), and (4c). Consider

𝑘𝐴
𝜕
2

𝑇

𝜕𝑥
2

+
𝑅𝐼
2

𝐿
𝐻 (𝑡) − 𝜌𝐴𝑐

𝜕𝑇

𝜕𝑡
− 𝜏𝜌𝐴𝑐

𝜕
2

𝑇

𝜕𝑡
2

+ 𝜏
𝜕

𝜕𝑡
(

𝑅𝐼
2

𝐿
𝐻 (𝑡) ∓ 𝑆𝐼

𝜕𝑇

𝜕𝑥
𝐻 (𝑡)) = 0.

(4a)

Performing the derivative of the last term in (4a), a mixed
derivative term should be generated. This term is neglected
because its contribution is significantly lower than the one
due to the other terms in (4a), if the length scale of the pellet
is of the order of millimeters, as suggested in [8]. In order to
solve (4a), initial and boundary conditions are provided in

𝑇 (𝑥, 0) = 𝑇
0
,

𝜕𝑇

𝜕𝑡
(𝑥, 0) = 0,

(4b)

𝑇 (0, 𝑡) = 𝑇
𝑐
,

𝑇 (𝐿, 𝑡) = 𝑇
ℎ
.

(4c)

Before solving the problem, it is convenient to write
it in dimensionless form as in [6], by introducing some
dimensionless parameters, listed in theNomenclature.There-
fore, the dimensionless governing equation for both the
semiconductors and the initial and the boundary conditions
may be expressed by (5a), (5b) and (5c). Consider

𝐹
𝑖

𝜕
2

𝜗
𝑖

𝜕𝜉2
+ 𝐷
𝑖
−

𝜕𝜗
𝑖

𝜕𝜂
− 𝜏
𝑖

𝜕
2

𝜗
𝑖

𝜕𝜂2
+ 𝜏
𝑖
𝐷
𝑖
𝛿 (𝜂) = 0, (5a)

𝜗
𝑖
(𝜉, 0) = 0,

𝜕𝜗
𝑖

𝜕𝜂
(𝜉, 0) = 0,

(5b)

𝜗
𝑖
(0, 𝜂) = 1,

𝜗
𝑖
(1, 𝜂) =

𝑇
ℎ
− 𝑇
0

𝑇
𝑐
− 𝑇
0

= ℎ.

(5c)

The subscript 𝑖 indicates the type of the semiconductor;
in fact 𝑖 = 1 is used for semiconductor N, whereas 𝑖 = 2 is
used for semiconductor P. The dimensionless groups 𝐷

𝑖
and

𝐹
𝑖
are defined as

𝐷
1
=

𝐿𝑅
1
𝐼
2

𝐴
1
𝑘
1
(𝑇
𝑐
− 𝑇
0
)
,

𝐷
2
=

𝐿
2

𝑅
2
𝐼
2

𝐶
𝑅
𝐴
2
𝑘
1
𝐿
2
(𝑇
𝑐
− 𝑇
0
)
,

(6a)

𝐹
1
= 1,

𝐹
2
= 𝛼
𝑅
.

(6b)

The parabolic heat diffusion equations are easily obtained
by considering that for the classical heat diffusion equation

the relaxation time disappears in (5a); that is, 𝜏
𝑖

= 0 and
only one initial condition on the temperature is needed to
determine the temperature distribution inside the pellets.

3. Thermal Field: Solution Method

The analytical solution of (5a) may be obtained by using the
SoV technique as in [13].

The hyperbolic temperature field for both the pellets is
provided by (7a) and (8a). It is expressed as the sumof a steady
state part 𝜗ss,𝑖(𝜉) and of a complementary part:

𝜗
1
(𝜉, 𝜂) = 𝜗ss,1 (𝜉)

+ exp(−
𝜂

2𝜏
1

)

∞

∑

𝑛=1

𝐴
𝑛,1

sin (𝜆
𝑛
𝜉)Ψ
𝑛,1

(𝜂)

+ exp(−
𝜂

2𝜏
1

)

∞

∑

𝑛=1

𝐶
𝑛
𝐷
1
sin (𝜆

𝑛
𝜉) 𝜁
𝑛,1

(𝜂) ,

(7a)

𝜗ss,1 (𝜉) = −
𝐷
1

2
𝜉
2

+ (ℎ +
𝐷
1

2
− 1) 𝜉 + 1, (7b)

𝜁
𝑛,1

(𝜂) =

sinh (√𝛽
2

𝑛,1
− 𝜆4
𝑛
𝜂)

√𝛽
2

𝑛,1
− 𝜆4
𝑛

, (7c)

𝜗
2
(𝜉, 𝜂) = 𝜗ss,2 (𝜉)

+ exp(−
𝜂

2𝜏
2

)

∞

∑

𝑛=1

𝐴
𝑛,2

sin (𝜆
𝑛
𝜉)Ψ
𝑛,2

(𝜂)

+ exp(−
𝜂

2𝜏
2

)

∞

∑

𝑛=1

𝐶
𝑛
𝐷
2
sin (𝜆

𝑛
𝜉) 𝜁
𝑛,2

(𝜂) ,

(8a)

𝜗ss,2 (𝜉) = −
𝐷
2

2𝛼
𝑅

𝜉
2

+ (ℎ +
𝐷
2

2𝛼
𝑅

− 1) 𝜉 + 1, (8b)

𝜁
𝑛,2

(𝜂) =

sinh (√𝛽
2

𝑛,2
− 𝜆4
𝑛
𝛼
2

𝑅
𝜂)

√𝛽
2

𝑛,1
− 𝜆4
𝑛
𝛼
2

𝑅

. (8c)

The eigenvalues 𝜆
𝑛

= 𝑛𝜋 are the same for both the
semiconductors. Moreover,

𝛽
𝑛,𝑖

= 𝜆
2

𝑛
𝐹
𝑖
−

1

2𝜏
𝑖

, (9a)

Ψ
𝑛,𝑖

(𝜂) = cosh (√𝛽
2

𝑛,𝑖
− 𝜆4
𝑛
𝐹
2

𝑖
𝜂) +

𝜁
𝑛,𝑖

2𝜏
𝑖

, (9b)

𝐴
𝑛,𝑖

=
2

𝜆
𝑛

[(−1)
𝑛

ℎ +
𝐷
𝑖
[(−1)
𝑛

− 1]

𝜆2
𝑛
𝐹
𝑖

− 1] , (9c)

𝐶
𝑛
=

2 [1 − (−1)
𝑛

]

𝜆
𝑛

. (9d)
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The parabolic solution for both the semiconductors may
be obtained as suggested in [14] and is expressed by

𝜗
1
(𝜉, 𝜂) = 𝜗ss,1 (𝜉) +

∞

∑

𝑛=1

𝐴
𝑛,1

sin (𝜆
𝑛
𝜉) exp (−𝜆

𝑛

2

𝜂) ,

(10a)

𝜗
2
(𝜉, 𝜂) = 𝜗ss,2 (𝜉)

+

∞

∑

𝑛=1

𝐴
𝑛,2

sin (𝜆
𝑛
𝜉) exp (−𝛼

𝑅
𝜆
𝑛

2

𝜂) .

(10b)

The subscript 𝑖 always refers to the kind of semiconductor:
𝑖 = 1 for semiconductor N and 𝑖 = 2 for the P one.

4. Heat Fluxes: Solution Method

In order to complete the thermal analysis of the transient
behaviour of the device, after obtaining the thermal fields, it
is necessary to determine the conductive heat fluxes of each
semiconductor. As regards the hyperbolic model, the thermal
fluxes are given according to the non-Fourier heat equation,
as in [15]. In fact the conductive heat flux for each pellet may
be expressed as in

𝑞
𝑖
(𝑥, 𝑡) + 𝜏

𝑖

𝜕𝑞
𝑖
(𝑥, 𝑡)

𝜕𝑡
= −𝑘
𝑖
𝐴
𝑖

𝜕𝑇
𝑖
(𝑥, 𝑡)

𝜕𝑥
(11a)

with the initial condition

𝑞
𝑖
(𝑥, 0) = 0. (11b)

By means of the dimensionless variables, listed in the
Nomenclature, (11a) and (11b) may be rewritten as (12a) and
(12b). Consider

𝑄
𝑖
(𝜉, 𝜂) + 𝜏

𝑖

𝜕𝑄
𝑖
(𝜉, 𝜂)

𝜕𝜂
= −V
𝑖

𝜕𝜗
𝑖
(𝜉, 𝜂)

𝜕𝜉
, (12a)

𝑄
𝑖
(𝜉, 0) = 0, (12b)

where V
1

= 1 for semiconductor N and V
2

= 𝑘
𝑅
𝐴
𝑅

for semiconductor P. By integrating (12a) and by applying
the initial condition, the hyperbolic thermal fluxes for each
semiconductor are provided by

𝑄
𝑖
(𝜉, 𝜂)

= −
V
𝑖

𝜏
𝑖

exp(−
𝜂

𝜏
𝑖

)∫

𝜂

0

𝜕𝜗
𝑖
(𝜉, 𝜔)

𝜕𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉

exp(
𝜔

𝜏
𝑖

)𝑑𝜔.

(13)

As regards the parabolic heat fluxes, the relaxation time
disappears in (11a) and each dimensionless conductive con-
tribution may be expressed as in

𝑄
𝑖
(𝜉, 𝜂) = −V

𝑖

𝜕𝜗
𝑖
(𝜉, 𝜂)

𝜕𝜉
. (14)

After evaluating the temperature gradient, according to
(7a), it is substituted in (13). By integrating it and after some

other calculations, the dimensionless hyperbolic conductive
heat flux for each semiconductor is provided by (15) and (16).
Consider

𝑄
1
(𝜉, 𝜂) = [ℎ + 𝐷

1
(
1

2
− 𝜉) − 1](exp(−

𝜂

𝜏
1

) − 1)

−
exp (−𝜂/2𝜏

1
)

𝜏
1

∞

∑

𝑛=1

𝐵
𝑛,1

cos (𝜆
𝑛
𝜉) 𝜁
𝑛,1

(𝜂) +

∞

∑

𝑛=1

𝐸
𝑛,1

,

(15)

𝑄
2
(𝜉, 𝜂) = V

2
[ℎ +

𝐷
2

𝛼
𝑅

(
1

2
− 𝜉) − 1]

⋅ (exp(−
𝜂

𝜏
2

) − 1) − V
2

exp (−𝜂/2𝜏
2
)

𝜏
2

∞

∑

𝑛=1

𝐵
𝑛,2

⋅ cos (𝜆
𝑛
𝜉) 𝜁
𝑛,2

(𝜂) + V
2

∞

∑

𝑛=1

𝐸
𝑛,2

,

(16)

𝐵
𝑛,𝑖

= 𝐴
𝑛,𝑖

𝜆
𝑛
+ 𝐶
𝑛

𝐷
𝑖

2𝜆
𝑛
𝐹
𝑖

, (17)

𝐸
𝑛,𝑖

=
𝐶
𝑛
𝐷
𝑖
cos (𝜆

𝑛
𝜉)

𝜆
𝑛
𝐹
𝑖

exp(−
𝜂

2𝜏
𝑖

)

⋅ cosh (√𝛽
2

𝑛,𝑖
− 𝜆4
𝑛
𝐹
2

𝑖
𝜂) −

𝐶
𝑛
𝐷
𝑖
cos (𝜆

𝑛
𝜉)

𝜆
𝑛
𝐹
𝑖

⋅ exp(−
𝜂

𝜏
𝑖

) .

(18)

5. Performances of the Microcooler

The cooling and the heating load effects are expressed by the
thermal fluxes 𝑄

𝑐
and 𝑄

ℎ
, respectively. They may be written

in dimensionless terms by considering an energy balance for
the hot and the cold junctions, as suggested by

𝑄
𝑐
= 𝐺 + 𝑄

1,𝑐
(0, 𝜂) + 𝑄

2,𝑐
(0, 𝜂) , (19)

𝑄
ℎ
= 𝑀 + 𝑄

1,ℎ
(1, 𝜂) + 𝑄

2,ℎ
(1, 𝜂) . (20)

The dimensionless terms 𝑄
𝑖,𝑗

represent the conductive
heat fluxes for semiconductors N and P, provided, in the
hyperbolic case, by (15) and (16) and evaluated at the cold and
the hot ends, 𝜉 = 0 and 𝜉 = 1, respectively.𝐺 and𝑀 represent
the dimensionless contributions due to the Peltier effect and
they are defined in the Nomenclature. In particular, 𝐺 is the
thermal power absorbed at the cold junction and 𝑀 is the
thermal power released at the hot junction.

In the parabolic model (21a) and (21b) has to be consid-
ered as follows:

𝑄
𝑐
= 𝐺 −

𝜕𝜗
1
(0, 𝜂)

𝜕𝜉
− 𝑘
𝑅
𝐴
𝑅

𝜕𝜗
2
(0, 𝜂)

𝜕𝜉
, (21a)

𝑄
ℎ
= 𝑀 −

𝜕𝜗
1
(1, 𝜂)

𝜕𝜉
− 𝑘
𝑅
𝐴
𝑅

𝜕𝜗
2
(𝐿
𝑅
, 𝜂)

𝜕𝜉
. (21b)

It can be seen that the cooling load and the thermal power
released at the hot junction, provided by (19)–(21b), are valid
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Figure 2: Temperature profiles for semiconductor N for early time values (a). Enlargement of the wave front (b). Relaxation time = 20ms.

for a single thermoelectric pair. In the case of 𝑛-pairs, it is
sufficient to multiply the above mentioned equations for the
number of pairs.The performances of a thermoelectric cooler
are evaluated by means of the coefficient of performance,
COP, defined in

COP =
𝑄
𝑐

𝑄
ℎ
− 𝑄
𝑐

. (22)

6. Results and Discussion

A miniature thermoelectric cooler as in [4, 10] has been
considered for the simulations. The geometrical character-
istics and some properties of both the semiconductors are
listed in Table 1. As regards the thermoelectric materials,
Bi
2
(Te
0.94

Se
0.06

)
3
and (Bi

0.25
Sb
0.75

)Te
3
are selected for the N-

and P-type semiconductors, respectively, as in [4, 10]. The
temperature 𝑇

𝑐
of the cold end of the semiconductors is set

at 27∘C, whereas the hot ends temperature is set at 𝑇
ℎ
= 67
∘C

as in [10], where the temperatures are given in Kelvin. The
working current is assumed to be 1 A.The initial temperature
is set at 20∘C as in [10].

In order to consider the thermal conductivity, the Seebeck
coefficient, and the electrical resistivity of the above men-
tioned materials, a quadratic relationship, described by (23),
is employed. Consider

𝑝
𝑗
= 𝑝
𝑗
(𝑇ref) [1 + 𝑎

𝑗
(𝑇 − 𝑇ref) + 𝑏

𝑗
(𝑇 − 𝑇ref)

2

] , (23)

where 𝑝
𝑗
indicates the generic property, that is, 𝑘, 𝑆, and

𝜌
𝑒
, which is evaluated, in the present paper at an average

temperature 𝑇avg = (𝑇
ℎ
+ 𝑇
𝑐
)/2. 𝑇ref is provided in [10] and

the coefficients 𝑎
𝑗
and 𝑏
𝑗
are listed in [4, 10]. The subscript

𝑗 = 1 is used for the thermal conductivity, 𝑗 = 2 is
used for the Seebeck coefficient, and 𝑗 = 3 is used for the
electrical resistivity. The relaxation time value considered for
the simulations of the hyperbolic thermal behaviour is 20ms.

Figures 2 and 3 show the temperature profiles in semicon-
ductor N for different time values. The wave fronts travel in
the material at a speed of √𝛼/𝜏.

During their motion, these wave fronts give constructive
interference and then they are reflected by the opposite end
of the semiconductor.

Table 1: Geometrical sizes and properties of the semiconductors.

Parameter N-type P-type Reference
𝐿 (m) 1 × 10−3 1 × 10−3 [4, 10]
𝐴 (m2) 0.25 × 10−6 0.25 × 10−6 [4, 10]
𝜌 (kg/m3) 10 922.08 10 922.08 [3]
𝑐 (J/kgK) 160 190 [3]

By the observation of the plotted temperature profiles, it
is evident that for early time values the temperature profiles
have oscillations at the wave fronts.

This phenomenon is due to the numerical instability
caused by the impossibility of representing the infinite terms
in the series in (7a) and (8a). To remove this numerical
instability, the Separation of Variables Method, which has
been used here for solving the hyperbolic equation and
coming from [13], should be replaced by a different approach.
For example, we might use a finite series solution at early
times coming from the combination of Laplace transformand
methodof images (e.g., sources and sinks) as given in [16]. But
this is a subject for future research.

It is worth noting that the above mentioned oscillations
are more evident in semiconductor P, Figures 4 and 5, due to
the different diffusivity of this pellet, more precisely, because
of the presence of the thermal diffusivity ratio in (8a).

For time values higher than 230ms, the hyperbolic
temperature field becomes similar to the parabolic one and
the oscillations are not so marked as in the early times as
depicted in Figures 3 and 5.

Figure 6 shows the influence of the relaxation time on the
temperature profiles for semiconductorN. It is clear that if the
relaxation time decreases, the temperature profile becomes
similar to the parabolic one, as the speed of the thermal wave
in the semiconductor increases. Moreover, at the thermal
wave regions, a larger relaxation time value affects the term
𝜏
𝑖
𝐷
𝑖
𝛿(𝜂) significantly in (5a). The conductive heat flux in

semiconductor N, provided by (15) and evaluated at the cold
end 𝜉 = 0, is represented in Figure 7(a). Some discontinuity
points are evident in the plot of the hyperbolic contribution
whose enlargement is given by Figure 7(b).
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Figure 3: Temperature profiles for semiconductor N (high time values). Relaxation time = 20ms.
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Figure 4: Temperature profiles for semiconductor P (early time values). Relaxation time = 20ms.

This phenomenon takes place because each reflection of
the wave front produces discontinuities in the heat flux. For
early time values, the parabolic model does not allow the
heat flux at the cold end to be properly represented. In fact,
it goes to infinity when the time approaches zero. For time
values higher than 500ms the hyperbolic and the parabolic
heat fluxes tend to overlap.

In Figure 8 the conductive heat flux at the hot end of
semiconductor N has been depicted.

Figure 9 shows the cooling load profile, whose analytical
expression is provided by (19). In comparison with Figure 7,
the cooling load shows further discontinuities due to the con-
tributions of thewave fronts due to the second semiconductor
(the P one).

This occurs because the two wave fronts travel at different
speeds, due to the different thermal diffusivities. It has to be
observed that the value of the cooling load at 𝑡 = 0 is not zero,
because of the contribution of the Peltier effect.

As regards the COP, it is plotted for time values higher
than 200ms. In fact, for earlier time values, the employed

model, based on imposed time-independent boundary tem-
peratures, does not allow us to describe accurately the real
thermal behaviour of the device: the thermal power released
at the hot junction and the cooling load cross as depicted in
Figure 10, providing a zero denominator in (22).

As the time increases, the hyperbolic COP is similar to
the parabolic one, reaching the value of about 0.72 as shown
in Figure 11.

Figure 12 shows the COP profile as a function of the time
for different values of the parameter 𝐹

2
(thermal diffusivity

ratio). By increasing this ratio, it can be observed that the
COP increases at large time values. In Figure 13 the COP
behaviour as a function of the time is plotted for different
values of the parameter 𝐷

1
. This parameter expresses the

dimensionless internal heat generation due to the Joule effect.
By increasing 𝐷

1
, the volumetric effects, due to the heat

dissipation, become more and more relevant, if compared
with the Peltier heat, which is a superficial effect. This
phenomenon causes a sensible reduction of the cooling load,
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Figure 5: Temperature profiles for semiconductor P (high time
values). Relaxation time = 20ms.

0 0.2 0.4 0.6 0.8 1
Length (mm)

Te
m

pe
ra

tu
re

 (∘
C)

20

25

30

35

40

45

50

55

60

65

70

Relaxation time = 2ms
Relaxation time = 20ms
Relaxation time = 200ms

Figure 6: Influence of the relaxation time on the temperature profile
for semiconductor N when 𝑡 = 60ms.

which affects the COP. The parameter 𝐷
2
has the same

influence on the COP, as the one depicted in Figure 13.
Moreover, as regards the COP, the values deriving from

the present analysis under steady state conditions are in
agreement with those presented in the numerical parabolic
coupled model available in the literature [10], as shown in
Table 2. However, by applying an electric current of 1.5 A,
it can be observed that the COP value under steady state
condition is noticeably higher than the value presented in

Table 2: Comparison of the COP values under steady state condi-
tions.

𝐼 (A) Present Reference [10] Reference [4]
0.6 1 0.98 —
0.9 0.80 0.80 —
1.2 0.56 0.60 —
1.5 0.45 0.43 0.22

the numerical dynamic parabolic coupled model [4]. This is
due to the more realistic time-dependent boundary condi-
tions employed in the simulations.

It is worth noting that in the coupled numerical parabolic
model [4] the steady state is reached after about 600 s due
to the higher thermal inertia of the system. Therefore, the
future commitment is focussed on the hyperbolic modelling
developed by means of the more realistic time-dependent
boundary conditions of the first kind. This is done by
considering the presence of the heat sink at the hot end of
the system.

7. Conclusion

An analytical development of the hyperbolic behaviour of
a micro thermoelectric cooler has been presented in which
the sudden application of the electric current is considered
by means of the Heaviside function. The thermal fields,
obtained by means of the Separation of Variables technique
with imposed boundary conditions of the first kind, show
oscillations by the wave fronts for very early times, which are
more marked for semiconductor P.The reflection of the wave
fronts of both the semiconductors yields discontinuities in
the cooling load profiles.

Moreover, the not realistic imposed time-independent
boundary conditions of the first kind allow us to represent
the COP profile only for time values higher than 0.2 s, as the
intersection of the thermal power released at the hot junction
and the cooling load occurs.

The future commitment is focussed on the hyperbolic
modelling developed by means of the more realistic time-
dependent boundary conditions of the first kind.This is done
by considering the presence of the heat sink at the hot end of
the system.

Nomenclature (Symbol, Quantity, and SI Unit)

𝐴: Cross-sectional area, m2
𝐴
𝑅
: Cross-sectional area ratio 𝐴

𝑅
= 𝐴
2
/𝐴
1
, —

𝑐: Specific heat capacity, J/kg K
𝐶
𝑅
: Heat capacity ratio, 𝐶

𝑅
= 󰜚
2
𝑐
2
/(󰜚
1
𝑐
1
), —

𝑒: Electronic charge, C
𝐺: Coefficient

𝐺 = [(𝑆
2
− 𝑆
1
)/(𝑇
𝑐
− 𝑇
0
)𝑘
1
𝐴
1
]𝑇
𝑐
𝐿𝐼, —

ℎ: Temperature ratio, ℎ = (𝑇
ℎ
− 𝑇
0
)/(𝑇
𝑐
− 𝑇
0
), —

𝐻( ): Heaviside function, —
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Figure 7: Conductive heat flux at the cold end of semiconductor N (a). Enlargement of the discontinuities (b).
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Figure 8: Conductive heat flux at the hot end of semiconductor N (a). Enlargement of the discontinuities (b).
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Figure 9: Cooling load (a). Enlargement of the discontinuities (b).

𝐼: Electric current, A
𝐽: Electric current density, A/m2
𝑘: Thermal conductivity, W/mK
𝑘
𝑅
: Thermal conductivity ratio, 𝑘

𝑅
= 𝑘
2
/𝑘
1
, —

𝐿: Length of the components, m
𝑀: Coefficient 𝑀 = [(𝑆

2
− 𝑆
1
)/(𝑇
𝑐

−

𝑇
0
)𝑘
1
𝐴
1
]𝑇
ℎ
𝐿𝐼, —

𝑞: Heat flux, W
𝑞
∗: Specific heat flux, W/m2

𝑞
𝑐
: Cooling load effect, W

𝑞
ℎ
: Thermal power released at the hot junction,W

𝑄
𝑐
: Dimensionless cooling effect,𝑄

𝑐
= 𝑞
𝑐
𝐿/[𝑘
1
𝐴
1
(𝑇
𝑐
−

𝑇
0
)], —

𝑄
ℎ
: Dimensionless thermal power released at the hot

junction, 𝑄
ℎ
= 𝑞
ℎ
𝐿/[𝑘
1
𝐴
1
(𝑇
𝑐
− 𝑇
0
)], —

𝑅: Electrical resistance, 𝑅 = 󰜚
𝑒
𝐿/𝐴, Ω

𝑆: Seebeck coefficient, V/K
𝑡: Time, s
𝑇: Temperature, ∘C
𝑇avg: Average temperature 𝑇avg = (𝑇

ℎ
+ 𝑇
𝑐
)/2, ∘C

𝑇
𝑐
: Cold junction temperature, ∘C

𝑇
ℎ
: Hot junction temperature, ∘C
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Figure 11: COP as a function of time.

𝑇ref : Reference temperature, ∘C
𝑇
0
: Initial temperature, ∘C

𝑥: Spatial coordinate, —
𝛼: Thermal diffusivity, m2/s
𝛼
𝑅
: Thermal diffusivity ratio, 𝛼

𝑅
= 𝛼
2
/𝛼
1
, —

𝛿( ): Dirac’s Delta function, —
𝜂: Dimensionless time, 𝜂 = 𝛼𝑡/𝐿

2, —
𝜗: Dimensionless temperature, 𝜗 = (𝑇 −

𝑇
0
)/(𝑇
𝑐
− 𝑇
0
), —

]
𝑖
: Coefficient, ]

𝑖
= 𝑘
𝑖
𝐴
𝑖
/(𝑘
1
𝐴
1
)
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𝜉: 𝜉 = 𝑥/𝐿, dimensionless space, —
𝜌: Material density, kg/m3
𝜌
𝑒
: Electrical resistivity, Ωm

𝜏: Relaxation time, s
𝜏: Dimensionless relaxation time, 𝜏 = 𝛼𝜏/𝐿

2,
—

Φ: Electrostatic potential, V.

Subscripts
𝑖: 𝑖th semiconductor (1 or 2).
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