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Abstract

Two three-dimensional localization algorithms for a
swarm of underwater vehicles are presented. The first is
grounded on an extended Kalman filter (EKF) scheme used
to fuse some proprioceptive data such as the vessel’s speed
and some exteroceptive measurements such as the time of
flight (TOF) sonar distance of the companion vessels. The
second is a Monte Carlo particle filter localization process‐
ing the same sensory data suite. The results of several
simulations using the two approaches are presented, with
comparison. The case of a supporting surface vessel is also
considered. An analysis of the robustness of the two
approaches against some system parameters is given.

Keywords Distributed Control Systems, Mobile Robots
and Intelligent Autonomous Systems, Underwater Robots,
Sensor Fusion, Swarm Localization

1. Introduction

The exploration of the oceans, both for scientific and
economic purposes, is becoming increasingly important.
Several application fields can here considered here as
examples of the importance of sea study: the search for
underwater energy sources or raw materials; oil pipe or

underwater cable monitoring; scientific missions collecting
biological, physical and chemical data; and sea monitoring
against different pollution sources (see e.g., [1]). Because of
the limitations of our biological characteristics, underwater
robotics have gained an essential role in the study and
exploitation of the seas. One of its more promising branches
is that of autonomous underwater vehicles (AUV), i.e.,
those vehicles that are capable of performing the required
tasks without human supervision, coping with missions
unknown.

In recent years, research on AUVs has broadened towards
the simultaneous use of more vessels, i.e., the implemen‐
tation of multi-robot configurations all the way to full
swarms of underwater vehicles, see e.g. [2, 3].

Whether one or more AUVs are considered, one of the focal
points of autonomy is the reliable knowledge of the vessel
pose. This knowledge is not easily gained, especially when
considering several vessels at the same time. Unfortunately
an underwater system suffers the limiting characteristics of
its environment. Water, especially saltwater, blocks
electromagnetic waves, inhibiting the use of positioning
systems such as GPS. At the same time this implies difficult
communication between the AUVs of a swarm or with a
remote operator. The available means to localize a single
AUV are thus the exploitation of inertial sensors, velocity
sensors, and/or gyroscopes combined in dead reckoning.
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However, in the framework of an underwater swarm, the
localization of a single vehicle can profit from the existence
of the other vessels, gathering information from fellow
AUVs. The key issue for all swarm localization methods is
the best possible combination of proprioceptive measures
(dead reckoning) and exteroceptive sensor readings, the
main difference being the employed estimator.

The localization of swarms of robots has been extensively
studied for packs of terrestrial surface robots. The problems
linked to communication of information in this environ‐
ment are less demanding with respect to the underwater
robots. The possibility of exploiting a GPS localization
system, naturally considering all related problems (tall
buildings, overcast sky), greatly helps in the task of
correctly localizing the robots.

In this work two different approaches for robot localization
in a swarm of underwater vehicles are compared: one based
on Kalman filtering and the second on a Monte Carlo
scheme. The focus is toward the localization of members of
a not-too-diluted swarm. Since the means of communica‐
tion in the swarm is represented by ultrasound links, the
swarm’s typical dimension should allow the successful
transmission of data. Therefore, the overall dimension of
the robot group should not grow too large. The typical
diameter of the considered swarm is less than 750 m, i.e.
within 0.25 s of flight time for an acoustic ping.

The exteroceptive measure considered here is the distance
among the vessels, as measured by the time of flight (TOF)
of the ultrasound transmission. An initial synchronization
of the vessel clocks is assumed, e.g. with NTP (network time
protocol) [4], performed just before the mission at swarm
deployment. Each robot, whenever communicating with
another (or broadcasting to all), transmits its own location
and time, acting as a localization beacon for the listener or
listeners.

The main drawback of a Kalman approach in underwater
swarm localization is represented by the large quantity of
data that must be circulated among the vessels: all the
relevant matrices of the algorithm, which, in addition, grow
non-linearly with the number of considered robots. Since
ultrasound links are generally very limited in bandwidth
(a few tens of kbps) this can become a very limiting feature.
The Monte Carlo localization (MCL) paradigm allows a
drastic reduction in the data traffic among the vessels. In
MCL it is sufficient for the robots to communicate only their
estimated position and time of transmission.

A comparison of the bandwidth needs of the two ap‐
proaches is provided in section 5, where the dependency
among bandwidth, update frequencies and transmission
speed is described under the assumption of the use of a
transmission protocol such as the Slotted Aloha one [5]. A
further aspect of an ultrasound-based localization system
is related to the speed of the communication in the water.
The limitedness of this velocity affects the two approaches
in different ways that are described in section 6.

Some experimental simulations are presented in order to
compare the two methods; an analysis of their robustness
and their dependence on some algorithm parameters is also
presented.

In the simulations a simple kinematic model of the single
AUV is considered, capable of measuring its own velocity
and attitude and of communicating over an ultrasonic
acoustic link with the other vessels. Through the measure‐
ment of the time of flight (TOF) of the ultrasound trans‐
mission the AUVs can measure their relative distance. All
the available information, proprioceptive and exterocep‐
tive, is then combined with either of the two above-
mentioned methods in order to compute all vessel poses.

Since the initial poses of all the swarm elements are known
with a given initial pose error, it is possible to substitute the
term localization with pose tracking throughout the paper.

Considering that an operative swarm of underwater robots
will be deployed from some kind of surface vessel, the case
of a swarm-supporting boat able to measure its own
position via GPS, and able to furnish this data to the swarm,
is described and simulated.

In the second section of the paper the related work is
presented. In section 3 the multi-robot Kalman-based
algorithm is revised. In the fourth section the principles of
Monte Carlo localization are presented. In the fifth section
data throughput considerations are given, while in the
sixth section the influence of non-instantaneous communi‐
cation on the two approaches is described. In sections 7
three experimental cases are described and simulated, and
results given: linear, circular and sinusoidal cases are
considered. In section 8 an analysis of the dependence of
the approaches on some algorithm parameters is presented.
Finally, in the last section conclusions and future work are
discussed.

2. Related Work

Localization in the underwater realm is mainly based on
ultrasound waves. Classical methods of underwater
positioning are Long Baseline (LBL) and Short Baseline
(SBL) systems [6]. These exploit a given number of floating
buoys with known positions, see also [7], but this means to
structure in some way the environment, an option that may
be impossible in some operative scenarios.

The localization of a swarm of terrestrial robots has been
extensively studied. An approach is based on the subdivi‐
sion of the swarm in subgroups one of which, in turn, is
kept at a fixed position and acts as a set of landmarks for
moving others [8, 9, 10]. In [11] and [12] belief functions
combined with a Monte Carlo approach and particle
filtering optimization have been successfully employed;
[13] and [14] employ a Kalman filter where the proprio‐
ceptive measures are used to estimate the future state of the
system and the exteroceptive ones are used to correct and
update the estimate. In [15] this approach is extended by
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considering the most generic relative observations between
two robots. More recently the work of Olfati-Saber, see e.g.
[16], has addressed the problem of decentralized Kalman
filtering in sensor networks through consensus algorithms
for swarm controlling strategies. In [17] the consistency of
EKF-based cooperative localization considering observa‐
bility has been investigated. The typical operative environ‐
ment considered in these works is a two-dimensional
terrestrial one. The MCL ([18]) has been employed in
several robotic applications, see e.g. [19], and also in
underwater environments for the localization of mobile
sensors [20]. It basically behaves by creating a cloud of
particles, each representing a possible state of the variable
under measurement and a weighting process to measure
the fitness of each particle to the actual measure.

3. Kalman Localization

The key point, in the Kalman approach, for cooperative
localization in a swarm of robots is viewing the group as a
single entity that can access the information of a large
number of proprioceptive and exteroceptive sensors.

In the following, all the vessels are described by the same
motion equations, and each robot possesses proprioceptive
sensors for the motion estimate. Each AUV also encom‐
passes an ultrasound communication link, which can
collect the information from the other vehicles in the
swarm.

It is important to stress that each time there exists commu‐
nication between two swarm members, there is also an
exteroceptive distance measure. The broadcasted message
contains the timestamp relative to its emission, and any
receiving robot can therefore compute its distance from the
emitting robot position.

Let us consider the global dynamical state X of the whole
swarm, it will be a vector composed of Mx6 items where M
is the number of robots and 6 is the number of variables
describing the single vehicle (x, y, z, roll, pitch, yaw), i.e., a
vector composed of the poses x→ i of all the robots.

( )1 2, ,..., MX x x x=
r r r r

(1)

The vessel coordinate system is based in the centre of
gravity of the vehicle, and its x-axis is longitudinally
directed from stern to bow; the y-axis is towards starboard
and the z-axis is downward.

The kinematic model of the single robot uses a linear
velocity parallel to the x-axis (thrust) and the possibility of
changing all three Euler angles through appropriate
angular velocities.

Let us describe first the Kalman approach for a single vessel
of the swarm. The mathematical model describing the time
evolution of the single swarm robot is:

( ) ( ) ( ) ( )( )1 1 1 1i i i ix t f x t , u t , w t   i ,...,M= - - - =
r r r r

(2)

where f is generally a non-linear function of the state
x→ i(t −1), of the input u→ i(t −1) and of the noise w→ i(t −1) at the
preceding time step t-1. Each vessel can also measure all the
other ones, and this can be described by:

( ) ( ), ( ), ( ) 1 ;    i i j it x t x t n t i ,...,M j iz h æ ö
ç ÷
è ø

= ¹=
r r

(3)

here h is the measurement function linking the state of the
i-th robot with the state of the measured one (the j-th) and
the measure noise ni(t) at time t.

Kalman filtering is a well-known strategy that yields an
estimate of a dynamical process using feedback control. It
foresees the process state at a given time and employs a
measurement feedback to update the state through a better
estimate. It is an iterative process that loops through two
different phases: on one side it predicts the state of the
system and the error covariance; on the other it computes
the so-called Kalman gain to correct both the state estimate
and the error covariance on the grounds of some kind of
available measure. Since the time evolution function
(equation 2) may be not linear, an extended version of the
filter has been employed. The EKF basically behaves as the
standard procedure, but uses a local linearization of the
functions. A very interesting characteristic of this filter is
its iterative aspect. The result of an iteration of the filter is
used as input for the successive step; in this way the filter
retains the memory of the history of the system.

Let us consider the whole swarm and examine in detail the
two phases of prediction and update.

3.1 Prediction

Each robot, at any given time step, estimates its state at the
successive time step on the grounds of the kinematic model
and the available proprioceptive measures (linear and
angular velocities) and their null average Gaussian noise.
The time evolution of the cross-correlation matrix is also
computed:

( ) ( ) ( ) ( )( )ˆ ˆ1 , ,i i i ix t f x t u t w t- ++ = (4)

( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ1 T T
ii i ii i i i iP t t P t t G t W t G t- ++ = F F + (5)

( ) ( ) ( ) ( )ˆ ˆ1 T
ij i ij jP t t P t t- ++ = F F (6)

here equation (4) is the state time evolution (as in equation
(2)) and equations (5) and (6) describe the time evolution of
the covariance matrix P in the diagonal (equation (5)) and
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off diagonal cross-correlation terms (equation (6)); Φ is the
system propagation matrix, G is the system noise input
matrix and W is the noise input covariance. The minus sign
stands for a-priori, and the plus sign for a-posteriori. In other
words, the state is predicted on the basis of the kinematic
model and the input velocity and the new a-priori cova‐
riance matrix is computed with the system proprioceptive
measures for the diagonal terms (the 6N system variables),
and with the system propagation matrix for the off diagonal
terms.

In order to perform a distributed EKF it is convenient to
process the a-posteriori estimated cross-correlation matrix
(equation 6) through a singular value decomposition
(SVD). Operating in such a way, each robot can compute
its own contribution multiplying the SVD term by its
dynamical matrix, see e.g. [15].

3.2 Update

Every time a robot measures something, an update can be
performed. In order to describe the procedure the availa‐
bility of the heading (compass) and depth (pressure gauge),
roll and pitch angles (inclinometers) of the measuring
vessel, and the acoustic TOF distance of another vessel are
here considered. The non-linear measuring function h is
that shown in equation (3) and the noise is considered as a
null average Gaussian one. It is now possible to compute
the a-posteriori state estimate (i.e., after the measurement):

1

ˆ ˆ ˆ ˆ( ) ( ) ( )( ( ) ( , ))
ˆ ˆ( ) ( ) ( ) ( ) ( )

r r r i i j

T T
r ri i rj j

x t x t K t z t h x x

K t P t H t P t H t S

+ - - -

- - -

= + -

= +
(7)

where the index r =1, ..., M  describes the vessel, Kr(k ) is the
so-called Kalman gain with S the residual covariance, and
the last term is the residual. The H terms are the Jacobians
of the measuring function h with respect to the two state
vectors xi and xj :

2 2 2
0 0 0
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(9)

and Δr 2 =Δx 2 + Δy 2 + Δz 2. Clearly equation (8) describes the
distance measurement together with the proprioceptive
absolute measure of z, roll, pitch and yaw, while equation
(9) is relative to the other vessel and the distance measure
alone.

Finally the a-posteriori covariance matrix estimate is:

( ) ( )1ˆ ˆ ˆ ˆ ˆ ˆT T
rs rs ri i rj j i is j jsP P P H P H S H P H P+ - - - - - -= - + + (10)

with the indexes r =1, ..., M  and s =1, ..., M .

Until now the described process is relative to a single robot;
the localization of multiple robots considers a series of
multiple relative measurements among the various vessels
on the state vector of equation (1).

Such a scenario can be approached in two different ways:
in a centralized or in a distributed one. In the first a central
supervisor can be considered collecting all the data from all
the vehicles and performing the multi-robot system state
estimation. The second paradigm can be split into two
further classes: uncooperative or cooperative algorithms.
The first class simply tries to localize each robot as if it was
alone in the world, i.e., counting on its own estimate and
measures alone, without gathering additional information
from the others in the swarm. The second class can exploit
the information coming from the companions and per‐
forming a local algorithm for the pose estimation. Regard‐
less of the approach employed, the Kalman scheme makes
use of a series of matrices and vectors that must circulate
among the robots.

As stated, in an underwater environment an extremely
limited bandwidthis is available, and in the following a
distributed cooperative approach has been employed. Let
us now examine the scheme used in more detail.

In this Kalman scheme, whenever a robot measures its own
distance from another, it should broadcast a message with
its own ID, that of the measured robot, its state vector, and
the vector of measurement; for the update phase an
exchange of the predictions of all of the swarm should be
distributed between the members. Each robot may then
compute the update of its own state and covariance matrix,
which should be transmitted back to any other robot in the
swarm. In a fully distributed algorithm this would mean
an asynchronous and uncontrollable pattern of communi‐
cation among the robots. Taking into account transmission
latencies, communication delays and protocol strategies
(who transmits and when), the system would easily
saturate the available bandwidth.

In order to limit the communication problem in the swarm
as much as possible, a distributed-centralized approach has
been tested. The idea is as follows. Whenever a measure‐
ment is made, the measuring robot broadcasts its ID and a
measurement done flag. It then gathers predictions from all
the companions, performs the EKF for the whole swarm,
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and finally broadcasts the new matrices to the fellow
robots. It is obviously a centralized algorithm but it can be
considered distributed in time: at each time step the
measuring robot is the only one computing, and at the next
step it will probably be a different one.

The difference with the fully distributed approach is in the
limitation of the data exchange due to an ordered commu‐
nication strategy that can reduce the transmission over‐
heads. The amount of exchanged data will be the same, but
since only one robot is actually broadcasting its results and
collecting data, there will be fewer communication over‐
heads, collisions and possible multi-paths deriving from
multiple robots trying to communicate all at the same time.

The difference with a fully centralized approach with a
fixed location for the algorithm computation is in a slightly
smaller amount of data circulation: in a fully centralized
approach the measuring vessel should communicate its
share of data to the computing node.

The amount of exchanged data naturally increases if more
than a single robot performs exteroceptive measures. In the
following it has been supposed that at a given time step
each vessel measures the distance of all the others, i.e., it
performs M-1 exteroceptive measures. This scenario is
reasonable since the distance measure can be performed
exploiting the communication itself (that contains the
timestamp).

The algorithm may consider this scenario in two possible
ways: on one side it may compute the EKF considering one
measure at a time, and updating the state M-1 times; on the
other it may consider a single measurement (a vector of M-1
components) and update the state a single time only.
Naturally the second approach would certainly be less
computationally intensive.

A set of dedicated experiments has shown, as expected, that
the results of the EKF in terms of position accuracy does not
depend on the chosen method, and thus the second one has
been chosen.

4. Monte Carlo localization

In the Monte Carlo approach the idea is as follows. There
is a variable of interest (e.g., the underwater robot position)
that is represented at a given time by a set of N samples (the
particles) and a weight function that measures the contri‐
bution of each particle to the overall estimate of the
variable.

In this work the MCL approach estimates the robot pose,
i.e. position and orientation of each single robot considered
separately:

( ), , , , ,k k k k k k kx x y z y q j=
r

(11)

with k the index of the single robot.

Also in this method there are two distinct phases: predic‐
tion and update. The first is basically identical to that of the
Kalman case: through the use of the robot model, each
particle representing a given robot is made to evolve,
adding the appropriate noise to the process. In the second,
the information coming from a direct or indirect measure
of the considered variable is used in order to update the
particle weights for a better description of the variable itself
through a weight-based particle resampling.

As soon as a measure performed by a given robot is
available, the update phase begins. Each of the N particles
representing the robot pose is weighted with its suitability
with the available measure. There are, naturally, several
different ways to estimate this suitability. In the following
it has been used:

2

2

( )

21( )
2

i

W i e r

r r

s

rps

- -

= (12)

where ρi is the measure relative to the i-th particle (with i =
1,...,N) and ρ the actual available measurement, σρ is the
standard deviation of the measurement. The quantities
computed with equation (12), once normalized, represent
the a-posteriori distribution function for the particles, on
whose grounds the particles are subsequently resampled,
creating a new set for the following time step. The new set
composition will thus be poor in particles with lower values
for W(i) and rich in particles with larger weights, thus being
in greater accordance with the measurement, nevertheless
leaving open different possibilities but with a much lower
probability.

In the resampling process it may sometimes happen that
the algorithm may become too aggressive, discarding
many of the good particles, getting caught in some kind of
local minimum and yielding a poor estimate and a large
error. In order to limit such adverse behaviour, some
additional randomness is usually injected into the particle
set under the form of a fraction of the resampled particles,
assuming random values within a given distribution. The
decision for such an intervention may be performed, for
example, monitoring the long and short-term average
values of the weights in equation (12) [20]. This monitoring
estimates the algorithm ability in following the statistical
distribution describing the problem being considered.

Let us now consider a swarm of M robots. Each robot pose
will be described by a set of N samples, and each will
predict its next position using its own samples. Whenever
a distance measure is available, the robot that has per‐
formed the measurement will update its samples according
to equation (12) in a fully local way, regardless of the fellow
robots. Obviously it will rely on the believed position of the
measured robot. This approach thus considers M different
and independent Monte Carlo localizations with a state
vector as in equation (11), one for each of the M robots. This
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is different to the Kalman approach in which there is a
global state for the whole swarm (equation 1).

It is evident that in the MCL case the data circulation is
more limited; this amount of information will still increase
with the number of robots in the swarm, but at a smaller
pace with respect to the Kalman one since there are no
matrices to circulate. Whenever there exists the transmis‐
sion of position and time, a robot may measure a fellow one.

5. Data throughput considerations

Let us assume, for the sake of clarity, a swarm composed
of three robots only. Figure 1 compares the data flow
among the robots in the two algorithms in order to com‐
plete a localization action for all the elements in the swarm.

Figure 1. Data circulation among the robots of a swarm of three members to
complete a localization for all of the vessels. The image on the left shows the
Kalman-based approach; on the right is the MCL approach. t is the time.

5.1 Kalman-based Data Flow

In the Kalman-based scenario (left of Figure 1) each of
robots 2 and 3 should communicate to robot number 1 its
state and ID (six real numbers + 1 byte) and covariance
matrix (36 real numbers), plus the cross-correlation
matrices between itself and robot 1 (36 + 36 real numbers).
In the message should also be the timestamp (three real
numbers: minutes, seconds and milliseconds). This is
depicted by the topmost two arrows on the left of Figure
1. After communication, robot 1 may compute the update
of the whole swarm and then broadcast back to robot 2 and
3 the computed swarm state (3 x 6 real numbers) and the
full cross-correlation matrix (36 x 3 x 3 real numbers). This
is represented in Figure 1 by the lowermost arrows on the
left side.

Generalizing to a swarm composed of M robots, the full
amount of data (prediction and update) to be communicat‐
ed among the robots is: 432M 2−368M + 104 bytes, assuming
a real number to be represented in single precision (4 bytes).

These data are those needed to perform a full update of all
the vessels in the swarm, with a single robot measuring all
others.

5.2 MCL-based Data Flow

In the MCL-based scenario (right of Figure 1) each of robots
2 and 3 communicate to robot 1 their position with cova‐

riance (attitude is not needed), timestamp and ID (9 real
numbers + 1 byte). At this moment robot 1 may update its
own pose according to the incoming data. Subsequently
robot 1 and 3 will transmit the same quantities to robot 2,
which will in turn update its own pose. Finally robot 1 and
2 will transmit to robot 3 in order to let it compute its
update. Thus, to update the complete swarm locations
there will be data traffic of 9x6 real numbers plus 6 bytes
(robot ID).

Generalizing to an M elements swarm, the data will add up
to 37M (M −1) bytes.

This amount of data is that needed to enable the entirety of
the robots in the swarm to perform an update, under the
scenario of an all-to-all communication as in the Kalman
approach, for the sake of comparison. In fact the MCL
algorithm is fully decentralized and asynchronous: as soon
as a robot receives data from another, even a single one, it
may update its own state on the grounds of the incoming
data.

5.3 Kalman vs MCL Update Frequency and Throughput

A typical underwater ultrasound link allows a bandwidth
of about 30 kbps, see e.g., [23]. If, for example, a Slotted
Aloha protocol is used for the transmission system, the
actual bandwidth will be reduced to 36% of that available
in the best transmission conditions [5]. With the above
computed data flow needs and this limit, it is possible to
calculate two quantities: the update frequency allowed and
the data throughput.

The first is how often the swarm members may receive an
update on their position by the localization algorithm,
while the second shows the exchanged amount of data in
the communication network; both are a function of the
swarm elements number and the communication channel
capability. The two are obviously dependent, and one can
be deduced from the other.

Figure 2. Maximum allowed update frequency for the two approaches as a
function of swarm elements number. The blue line shows a viable update
frequency of 0.1 Hz.
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Figure 2 shows the maximum update frequencies of the two
approaches as a function of the number of vessels in the
swarm. The maximum update frequency represents the
update frequency saturating the communication channel
capacity. Naturally, as the number of robots increases the
higher bandwidth need lowers the frequency. Let us
assume, as an example, an update frequency of 0.1 Hz, i.e.,
one full swarm position update every 10 s. Using the graph
in Figure 2, it is possible to consider a Kalman swarm of up
to 16 elements and an MCL one of less than 54.

Figure 3 shows the transmission needs of the two ap‐
proaches as a function of the swarm elements number. This
plot is drawn at the above considered update frequency of
0.1 Hz.

Figure 3. Needed link speed as a function of vessel number at an update
frequency of 0.1 Hz. The blue line shows the available link speed (30kbps) as
reduced by the Slotted Aloha protocol.

The plot also shows the considered limit with the use of the
Slotted Aloha protocol. As above, the bandwidth saturation
will happen in the Kalman case with 16 robots, while the
MCL approach can withstand more than 50 vessels
communicating.

In addition to the above considerations, it must be taken
into account that the communication link cannot be fully
dedicated to swarm localization; it should also carry data
relative to the mission tasks and other relevant swarm
activities. Therefore, the above limits on robot numbers
must be considered indicative.

Underwater a different means of communication may also
be used: the optical one, based on high power light emitting
diodes, see e.g. [24]. With such technology it is possible to
attain higher throughputs, even if this comes at the cost of
a much narrower range than the ultrasound link. Taking as
an example a conservative 200kbps LED-based optical link,
the maximum number of robots may easily rise to 40 for the
Kalman case and to more than 135 for the MCL one, still at
0.1 Hz.

In the following section, in order to compare the two
approaches an update frequency of 0.1 Hz, an ultrasound

link at 30 kbps and a swarm composed of ten robots are
considered.

6. Communication Velocity Considerations

A further aspect should be considered: the speed of sound
in the water is limited, being about 1500 m/s; in other words
it takes time to transmit data using an ultrasound link. This
affects the considered localization approaches in different
ways.

6.1 Kalman Approach

In the Kalman-based approach all the robots need to
communicate their prediction to the computing node. This
in turn must then broadcast back the update of the whole
swarm. This ping-pong implies synchronization, a difficult
task with a finite transmission velocity as it is in the
underwater case.

Let us examine in some detail the communication charac‐
teristics of the prediction phase of the algorithm, the
broadcast one being basically similar. For the sake of
simplicity let us consider two robots: number 1 transmits
its prediction to number 2. Figure 4 shows the evolution of
this communication phase with the aid of a space-time
diagram of a mono-dimensional space; robot 1 is in a fixed
position, while robot 2 is moving. At the beginning (t=0),
robot 1 transmits its prediction with velocity vs, when the
data reach robot 2 (upper right) some time has passed and
robot 1 is in position 1a and robot 2 is in 2a.

Figure 4. Space-time diagram of the transmission of prediction between two
robots. Upper left: robot 1 starts transmission to 2 with sound speed vs.
Upper right: robot 2 receives data, robot 1 is in 1a and robot 2 in 2a. Lower
left: robot 2 backtracks itself as if being still in the initial position to update.
Lower right: robot 2 with two prediction phases on the grounds of the
updated initial position (2) reaches position 2b, robot 1 is in 1b.

Robot 2 should now update the state of the swarm, but with
respect to its initial position 2, so it must backtrack its
trajectory to the initial position (lower left diagram) and
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update as if it were still in that location. Once updated some
additional time has passed, and robot 2 should evolve its
corrected position with a series of prediction phases to 2a
and then to 2b. This schema can be implemented while
keeping a memory of the past robot course.

A similar scheme applies for the broadcasting phase of the
updated state by robot 2 towards 1.

6.2 MCL Approach

The MCL localization algorithm, on the contrary, does not
suffer the transmission lag. As stated above it is completely
decentralized and asynchronous: as soon as data are
received from a fellow robot, the receiver may compute an
update of its own state. The received data is composed of
the position of the sending robot at the sending time and
the sending time itself. The receiving robot, through the
TOF, may thus compute the distance from the received
position and perform the update. Naturally, in the mean‐
time the sending robot will have moved from the transmit‐
ted location, but this does not impair the algorithm, also
because the updating robot should not transmit anything
back.

7. Simulation characteristics and results

The underwater vehicle considered has proprioceptive and
exteroceptive sensors in order to measure itself and its
environment. It has been assumed that each vessel is
equipped with:

• a tachymeter, for the measurement of the linear velocity
due to the thrust of the propeller;

• an inclinometer (or gyro), for the measurement of the
pitch and roll angle;

• a pressure gauge, for the depth measurement (z absolute
coordinate);

• a compass, for the heading measurement (yaw absolute
coordinate);

• an ultrasound transducer, for the measure of relative
distance of two vessels with time of flight (TOF) and
communication.

The introduction of a compass and gyro for the absolute
orientation and a pressure gauge for the depth measure are
of basic importance since they improve the observability of
the system. The measurement noise is assumed Gaussian
with a zero mean.

In the result section the considered noise values for the
measured data are compatible with low-cost sensors
similar to those planned to actually equip a low-cost
submarine presently under development.

In the simulations, all the vehicles are considered to be
kinematic objects, i.e. without the computation of their
dynamics. The vehicles are supposed to exchange informa‐
tion instantaneously, i.e. it is implicitly assumed that the

mechanism considered in section 6 can be ignored at least
at a first level of approximation, considering the swarm as
dense (i.e., less than 0.25 s of TOF, that is a swarm radius of
circa 750m).

All the simulations have been performed in Matlab and a
porting in C++ is in progress. The time step is of 0.1 s.

The result section is organized by scenario. The missions
are stated with the details of the relative parameters and
the two approaches are then compared. The reported
simulations are: a linear trajectory, a circular one and a
sinusoidal one. The last, in the case of a Kalman approach,
is also computed with and without the aid of an external
ground truth point, i.e. a boat being an element of the
swarm, but with the additional possibility of exploiting a
GPS system.

Both the Kalman and the MCL localizations share the same
parameters in order to allow a meaningful comparison.

The robots move at a speed of 1 m/s. The assumed standard
deviation on linear and angular speed is 0.1 m/s and 0.05
rad/s respectively. The standard deviation on the TOF
distance measure is 0.3 m, on the heading is 2°, on roll and
pitch 1° and 0.07 m on depth. The initial positions of the
swarm elements are uniformly random and known with a
standard deviation of 0.05 m.

The update frequency for the localization is 0.1 Hz, i.e. one
full swarm update every 10s (following the considerations
in section 5). Since for the simulations the used time step is
of 0.1 s, this implies one update every 100 steps.

The measurement error on the velocity at each time step is
considered within 20% of the current value for the modulus
and randomly within a cone of 30° of aperture for the
direction, both in Kalman and in MCL.

Figure 5. Linear trajectory: average position error (on the ten robots) and
3σ error vs. time (Kalman), average on ten runs

For each method and scenario the simulations have been
repeated ten times, and the plots reported here are relative
to the averaged results.
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Finally, the Monte Carlo localization is performed using a
set of 1000 particles for each vessel.

7.1 Linear Trajectories

In this simulation the ten robots composing the swarm are
made to follow linear trajectories parallel to one another.

7.1.1 Kalman Results

Figure 5 shows the average position error (on the whole
swarm) and the 3σ error. The position error of the single
robot is computed as the distance between the true vessel
position as output by the simulator (subscript s) and the
localization algorithm computed one (subscript l):

( ) ( ) ( )2 2 2
R s l s l s lE x x y y z z= - + - + - (13)

The variance of this quantity is directly computed on the
grounds of the variances output by the Kalman filter.

After 5000 seconds of mission, i.e., 5000 metres, the relative
average position error is of about 0.1% and the 3σ error is
of 0.2%, i.e. the ratio of position error vs. the travelled
distance. The same quantities considering dead reckoning
alone have been of the order of 8% and 30%, with the same
variances on speed and initial position.

7.1.2 MCL Results

In Figure 6 the output of the MCL localization algorithm is
presented. In this case the algorithm computed position is
the weighted average of the positions of all particles.

The relative 3σ error is computed on the basis of the
weighted variance of each of the N particles:

( )2
i ii

R
ii

w r r
w

s
-

= å
å

(14)

Figure 6. Linear trajectory: same as Figure 5 in the MCL case, average on ten
runs

where ri is the position of the i-th particle, wi its weight
(equation 12) and r̄  the average position. As is evident from
Figure 6 the MCL approach yields a much larger average
error in the position of the vessels, of about 15 m. The
percentage values are thus 0.4% and 0.2% for average
position error and its 3σ error, respectively.

In Figure 7 a blow-up of the leftmost part of the plot in
Figure 5 is shown, to show the saw tooth shape of the plot
due to the periodical correction of the position by the
algorithm, once every 10 s, i.e., once every 100 time steps.

Figure 7. Average and 3σ errors as in Figure 4 zoomed to show the periodical
update at 0.1 Hz

Figure 8. Circular trajectory: average position error (on the ten robots) and
3σ error vs. time (Kalman), average on ten runs

7.2 Circular Trajectories

In this simulation the ten robots composing the swarm are
made to follow circular trajectories in a plane. The robots’
angular speed is 0.005 rad/s in yaw.

7.2.1 Kalman results

In Figure 8 the average position error as a function of time
in the Kalman case is shown.

After 5000 m of trajectory, the circles have been coursed
almost four times and the final relative average position
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error is of about 0.03%, and its 3σ error of about 0.04%
(position error vs. trajectory length).

7.2.2 MCL results

The simulation results in the MCL case for the same circular
trajectories are presented in Figure 9. The overall behaviour
of the error is similar to the Kalman case. The final relative
average position error is of about 0.2% and its 3σ error is of
about 0.1%. In this simulation the performance of the MCL
algorithm is also four to five times worse than the Kalman-
based one.

7.3 Sinusoidal trajectories

Here, the ten robots composing the swarm are made to
follow sinusoidal trajectories in vertical planes. The idea is
to roughly simulate an actual mission in which the swarm
starts at the surface, dives to a given depth, and finally re-
surfaces. The robots move with a slowly varying pitch
angular velocity.

Figure 9. Circular trajectory: same as Figure 8 in the MCL case, average on
ten runs

Figure 10. Sinusoidal trajectory: average position error (on the ten robots)
and 3σ error as a function of time (Kalman), average on ten runs

7.3.1 Kalman results

In Figure 10 the average position error as a function of time
in the Kalman-based case is shown. After 5000 s of simula‐
tion, the final relative average position error is of about
0.06% and its 3σ error of about 0.02% (position error vs.
trajectory length).

Comparing the results in Figure 5, 8 and 10, the Kalman
approach seems to better exploit a more complicated
motion pattern than a simply linear one to lower the
average position error.

7.3.2 MCL results

In Figure 11 the results in the case of the Monte Carlo
localization strategy are presented. The final relative
average position error is of about 0.3% and its 3σ error of
about 0.2%, always after 5000 m of mission. In this simula‐
tion the final error values are also around five times larger
than in the Kalman case.

7.3.3 Kalman with surface vessel in the loop

In the swarm operative conditions the exploitation of a
surface vessel, a boat, to deploy the underwater robots may
be foreseen. Once such a boat is available, it may be useful
to actively use it in the swarm mission. The boat can enter
the swarm as a further member with the added value of the
possibility of directly measuring its own position via a GPS
sensor.

In Figure 12 such a simulation is shown: a swarm of 9+1
robots has been considered. The nine vessels are the
underwater ones following the above sinusoidal trajectory;
the 1 is a GPS-enabled surface member.

From the results presented in Figure 13 it is evident that the
average position error becomes bounded: it does not
diverge with time as in the preceding simulations. This is
due to the existence of a absolute position reading incoming
from the GPS.

Figure 11. Sinusoidal trajectory: same as Figure 10 in the MCL case, average
on ten runs
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Figure 13. Sinusoidal trajectory case using a GPS-enabled boat: average
position error (on the 9+1 robots) and 3σ error as a function of time (Kalman),
average on ten runs

8. Parameter Analysis

In Figure 14 the dependence of the average position error
at the end of the simulation on the number of vehicles in
the swarm is shown, keeping all the other parameters fixed.
It is clear that ‘union is strength’: the more the vessels the
better the estimate, until an asymptote is reached. The
figure is relative to the Kalman case, but in the MCL one
the behaviour is also similar.

In the above simulations the initial positions of all the
vessels composing the swarm are known, with the stated
standard deviation of 0.05m. Physically, the initial position
error is due to the uncertainty of the deployment of each
vessel. This may vary in operative conditions due to, e.g.
sea conditions; it is thus interesting to change the initial
error to study its influence on the final average position
error in the localization. In Figure 15 the data are plotted
relative to 50 runs of the Kalman algorithm with ten robots
and a mission length of 2.5 km following the sinusoidal
trajectories.

Figure 15. Average final position error as a function of the initial position
standard deviation (Kalman case)

Naturally, the final position error increases with the initial
uncertainty on position, but for the smaller ones (the
reasonably attainable ones in operative situations) the final

Figure 14. Average position error as a function of the robot number (Kalman
case)

Figure 12. Surface (green) and underwater (red) courses. Units are in metres.
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errors are limited. In this experiment, the standard devia‐
tion of the percentage error on the velocity measure is kept
at 5%.

The behaviourof the MCL algorithm is similar, but with
larger errors.

Figure 16. Average final position error as a function of the percentage error
in speed at each time step (Kalman case)

At each time step, in the prediction phase the estimation of
the vessel position is performed through the propriocep‐
tive measure of the instantaneous robot velocity (dead
reckoning). This measure is affected by a measure error
whose percentage value can be increased in the simulations
to study its influence on the algorithm robustness. In Figure
16 a plot where the final average position error is charted
against the velocity measure error in the Kalman case is
shown. In this series of simulations the error on the initial
position is kept null.

From the plot in Figure 16 it can be deduced that the
percentage error in velocity measurement, on which the
dead reckoning is grounded, weakly affects the final error
for the typical values that can be expected in real-world
experiments. This means that the localization algorithm is
able to cope with the incorrect proprioceptive speed
measure unless the error is very large.

The same kind of test has been performed for the MCL case
yielding similar behaviour, but with larger final errors. This
reinforces the idea that the strategy of using the relative
distance as an exteroceptive measure is able to tame the
uncertainty of the velocity measure of the robots. On the
contrary, the uncertainty of the initial positions is a more
critical parameter, it makes the algorithm get more and
more imprecision on the guess of the real vessel position.

9. Discussion and Conclusions

This work has presented two possible approaches to the
localization of underwater swarms through the use of
ultrasonic communication. The first is a Kalman-based
approach, and the second is a particle filter, i.e. Monte
Carlo, localization.

The overall scenario exploits some proprioceptive meas‐
ures (pose, speed) and an exteroceptive one: the distance
between the measuring robot and the measured one as
computed through the time of flight of the exchanged sonar
message. In this sense every vessel of the swarm acts as a
beacon for all of the others, but the beacon position is
known with a varying amount of error.

In a three-dimensional environment each vessel possesses
six degrees of freedom; thus, the overall system is heavily
undetermined, i.e. the covariance on the system state
quickly diverges. The exploitation of real world measures
such as the yaw angle (compass), roll and pitch angles
(inclinometers) and the z coordinate (pressure gauge)
greatly improves the localization process both for the
Kalman and for the Monte Carlo-based localization,
enhancing system observability.

The two approaches differ greatly in the amount of data
needed to be circulated among the vessels in order to
compute the robot positions.

In the Kalman filtering, during the computation the various
vehicles must distribute to the others their own estimates
and covariance, and all the cross-correlation matrices
needed by the algorithm. This heavy communication
scheme clashes against the usually available bandwidth in
underwater ultrasound links, allowing swarms with a very
limited number of elements.

On the contrary, the Monte Carlo-based localization needs
a reduced data exchange: essentially time and position. The
transmission of these data can even be considered as a
header to whatever message a vessel should broadcast to
the others, allowing the localization algorithm to work
asynchronously and in the background.

The Kalman strategy can be labelled as a mixed distributed-
centralized approach. Only one robot, the measuring one,
computes the Kalman filter for all of the system elements
and distributes its results to the whole community, but at
the next time step a different robot will probably be the next
to observe and compute the system state.

The Monte Carlo approach, instead, is fully distributed,
since each robot computes its own position, in a totally
passive way, as soon as a fellow in the swarm has trans‐
mitted its position and time. The update phase in a robot
can be performed even on the basis of a single incoming
transmission and the communication among the robots is
one way only, without the need for any ping-pong between
them.

In the Kalman approach, the state to be estimated is one
encompassing the entire swarm, while for the MCL there
are as many independent states as there are robots.

The numerical results of the presented simulations show
that the Kalman approach performance, in terms of average
position error, is definitely better than the MCL-based one.
This is not unexpected, given the characteristics of the two
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schemes: on one side mathematics and on the other
statistics. Besides, it must also be considered that the
Kalman approach is based on a single synchronous swarm
where covariances and cross-correlations among vessels
are taken into account, while the MCL approach is fully
decentralized and asynchronous with a weak interaction
among the vessels’ state variables.

An analysis of the statistical significance of the difference
between the results of the two approaches (t-test) has
shown that the difference is not significant (5% threshold).

Robustness analysis of the Kalman-based algorithm has
shown that the final average position error can be limited
even in the presence of noise in the measure of each vessel
speed vector, and in the inaccuracy of initial position
knowledge. These are the two major error sources: the
initial position error is responsible for inaccuracy in relative
distances among the robots, and speed measure noise is
responsible for rendering unpredictable the future posi‐
tions of the vessels. The Kalman-based algorithm is able to
tame these two sources using the relative distance meas‐
ures coming from the sonar TOFs.

In the MCL approach, the overall behaviour against these
noise sources is similar, but the larger uncertainties, due to
the statistical nature of the filtering, cause larger position
errors. These worse results may also be due to an inaccurate
motion model, taking into account the 10 s interval between
updates. However, such a model originates from the noise
characteristics of the foreseen on-board low-cost sensors
that will equip the vessels.

On the side of the computational load, it is possible to assess
that the two approaches are roughly of the same computing
weight but with different characteristics. The Kalman one
has a heavier computational load, needing e.g. matrix
single value decomposition (SVD) and matrix inversion,
while the other has a much lighter load but repeated over
a large number of particles. It must be also noted that the
Kalman approach is monolithic, i.e. the necessary compu‐
tation amount is fixed, once the swarm parameters are
chosen. On the other hand, the MCL approach is more
flexible: depending on the on-board computing power and
the frequency of incoming data, it is possible to tune the
number of particles in the algorithm.

In summary, it can be affirmed that the Kalman approach
performs better than the MCL approach, keeping in mind
that a more thorough study of the parameters of the latter
is yet to be performed. Nevertheless, the MCL-based
algorithm seems more appealing when dealing with an
underwater swarm, being fully asynchronous and distrib‐
uted among the vessels. In addition, it is more flexible from
the point of view of the computational needs, being
possible to tune the particles number representing a vessel
depending on the available on board computational power.
Finally, it allows a much higher number of vessels, needing
a lower bandwidth for communication. This also implies
that the MCL-based swarm leaves more room for mission

and payload communication among the vessels than a
Kalman-based one.

Future work is targeted to a more thorough study of the
Monte Carlo algorithm to fine-tune its parameters and
characteristics for greater accuracy, and to study its
scalability with the swarm element number. In particular,
due attention will be placed to the conditions in which
resampling takes place and its characteristics in terms of
the number of resampled particles. Another aspect is the
robustness of the algorithm against the motion model and
the update frequency. In addition, a more realistic series of
simulations, taking into account the limits on acoustic
transmission, outlined in section 6, are foreseen in the near
future.
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