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Highlights

• conceptual principles behind control and steering of swimming micro-organisms

• periodic beating of flagella leads to helical trajectories (helix theorem)

• coupling of body rotations with helical motion explains phototactic guidance

• the validity of the helix theorem is extended to ciliated micro-organisms

• a principle for self-assembly explains why helices are so recurrent in nature
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Abstract

Some recent results on biological and bio-inspired swimming at microscopic scales are reviewed,
and used to identify promising research directions for the future. We focus on broad conceptual
principles such as looping in the space of shapes, loss of controllability of systems in which
shape is only partially controlled, and steering by modulating the actuation rate. Moreover, we
discuss propulsion mechanism that are most common for unicellular swimmers, such as flagellar
and ciliary beating, and we examine amoeboid motion and flagellar propulsion in Euglena. The
Helix Theorem, a universal law characterising orbits traced by ciliated and flagellated unicellular
swimmers propelled by the periodic beating of cilia and flagella, is proved and discussed as a
principle of self-assembly for helical structures.

Keywords: low Reynolds number flows, micro-swimmers, helical trajectories, fluid-structure
interaction, control of Stokes system, cell motility, soft robotics

1. Introduction

Cells are the fundamental units of life, and many of the processes responsible for the func-
tioning and fate of living organisms are governed by biological machines. For example, the
response of the immune system to a wound is organised through the recruitment of leukocytes
from blood vessels, and their migration to the site of the wound, where they attack and dispose
of pathogenic intruders. Many coordinated processes are needed for the correct functioning of
this complex response, but cell motility, namely, the capability of certain unicellular organisms
(the leukocytes) to reach a target position (the site of the wound) and then chase pathogens is
clearly crucial. This example can be vastly generalised to many other biological functions: the
successful swimming of a single sperm cell to its target egg cell, for example, is at the origin
of (almost) every human being. The study of cell motility is therefore an important chapter of
biology. And, quoting Cohen (2004), mathematics is biology’s next microscope, only better.

Interestingly, our bodies host a large number of unicellular organisms (including, for example,
bacteria) that are capable of moving around it quite freely and proficiently. Yet, we are still
unable to engineer systems of microscopic size capable of reproducing at least some of the abilities
of these exquisite biological machines. Not surprisingly, interest is growing on the possibility of
manufacturing micro-machines that could perform some useful function within a human body,
such as imaging, or delivering drugs to specific locations, or performing small surgeries such as
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removing material or patching small wounds Ornes (2017). Quoting Feynman (1960), it would
be interesting in surgery if you could swallow your surgeon.

Motivated by this challenging and exciting background, in the last few years we have been
involved in conducting research on the mathematical modelling of cell motility. As a part of this
effort, we have studied locomotion based on the interactions between a cell and a surrounding
fluid, namely, swimming of unicellular organism. The field has been blessed by the attention
of some scientific giants (Taylor (1951); Purcell (1977); Shapere and Wilczeck (1989)), and is
enjoying considerable attention in the current research literature. Excellent recent reviews are
available, e.g., Lauga and Powers (2009); Gaffney et al. (2011); Guasto et al. (2012); Goldstein
(2015). Together with the papers cited therein they provide the interested reader with several
hundred references to explore the state-of-the-art.

In this paper, we review some of our recent results on biological and bio-inspired swimming
at microscopic scales, and use them to look ahead at promising research directions for the future.
Our emphasis will be on conceptual principles of general validity, that can help rationalise the
observed behaviour of complex biological organisms. The idea is to use mathematical modelling
as the tool to extract some templates, which yield the “secrets” of their successful performance.
Bio-inspiration has a great and rather unexplored potential at this level of abstraction, and we
see in this field an opportunity for mathematical biology to contribute and help to go beyond
the more traditional approaches of bio-mimetics and bio-mimicry.

The lessons learned from the study of biological organisms can inform the design of new
bio-inspired engineered devices. Conversely, looking back at biology through the functionalist
view of an engineer wishing to replicate its successes can help us to understand how biological
machines function, with a level of detail which is unprecedented.

The rest of the paper is organised as follows. Section 2 describes the mathematical formulation
of the swimming problem, setting the stage for our discussion. We illustrate in Section 3 some
key conceptual principles of swimming motility at microscopic scales such as: looping in the
space of shapes; the distinction between swimming with prescribed shapes and cases where
shape is partly controlled and partly emergent from the competition of hydrodynamic resistance
and elastic restoring forces; the loss of controllability in the second scenario; and steering by
modulation of the rate of actuation. In Section 4 we review the most common mechanisms used
by unicellular swimmers, which are based on the beating of flexible cilia and flagella, and we
continue in Section 5 with an in-depth case-study of Euglena gracilis. This protist exhibits two
very different forms of motility, namely, amoeboid motion or metaboly and swimming by flagellar
propulsion. The latter leads us to discuss the Helix Theorem, a universal law for the orbits traced
by micro-organisms that swim in free-space under the propulsive action of a periodically beating
system of flagella or cilia. The same theorem, interpreted as principle for self-assembly of helical
structures, is used to explain their ubiquity in nature.

Finally, in Section 6, we argue that the growing need for the accurate evaluation of the
details of the flows induced by unicellular organisms, or of reliable tools and algorithms for
motion planning and control of bio-inspired micro-robots represents an opportunity for the future
development of new numerical tools for the solution of fluid-structure interaction and control
problems.

2. Swimming at low Reynolds numbers: mathematical model

We describe the motion of a generic swimmer through a (time-dependent) shape map t 7→ Φ̄t,
which specifies the way the reference configuration B changes in time as seen from a reference
frame moving with the swimmer (body-frame), and through the way the body frame evolves
with respect to the lab-frame. The current position and orientation of the body-frame are given

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

�̄t(X)

x = �t(X)ūt(X)
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Figure 1: Reference and deformed configurations of the swimmer: parametrisation in terms of positional and
orientational change, and shape change.

by the position of the origin, c(t), while the axes are obtained from the axes of the lab-frame
through the rotation R(t). In formulas (see also Figure 1),

Φt(X) = c(t) + R(t)Φ̄t(X) = (c(t) + R(t)id(X)) + R(t)ūt(X) (1)

where, in the second identity, we have written Φ̄t as the sum of the identity map id plus a
displacement ūt. This emphasizes that Φt(X) consists of a rigid motion (the one in brackets),
and of a genuine change of shape associated with ūt.

The map (1) gives the position x at time t of a (material) point X ∈ B of the swimmer.
Given a point x ∈ Bt = Φt(B), this is the position at time t of the point

X = Φ−1
t (x) = Φ̄−1

t (RT (t)(x− c(t))) (2)

The (Lagrangian) velocity of a (material) point of the swimmer is the time derivative of (1),

Φ̇t(X) = ċ(t) + Ṙ(t)Φ̄t(X) + R(t) ˙̄Φt(X) (3)

where superposed dots denote time derivatives. The (Eulerian) velocity of the point of the
swimmer occupying place x at time t is

Φ̇t
(
Φ−1
t (x)

)
= ċ(t) + ω(t)× (x− c(t)) + R(t) ˙̄Φt

(
Φ̄−1
t

(
RT (t)(x− c(t))

))
(4)

where ω(t) is the axial vector associated with the skew-symmetric matrix Ṙ(t)RT (t).
Shape changes of the swimmer induce motion of the surrounding fluid. Dealing with micro-

scopic scales (so that the Reynolds number is small) and assuming that the rate at which shape
changes occur are not exceedingly fast (so that the Womersley number is also small), we model
the flow with the stationary Stokes system, so that the velocity u and pressure p in the fluid
satisfy

η∆u−∇p = 0 and divu = 0 in R3 \ Bt (5)

where η is the viscosity of the fluid, together with the no-slip condition at the interface between
the fluid and the swimmer boundary

u(x, t)|∂Bt = Φ̇t
(
Φ−1
t (x)

)
|∂Bt (6)

and suitable decay conditions at infinity. This outer Stokes problem is well posed, and given the
one-parameter family of Dirichlet data t 7→ u(x, t)|∂Bt (i.e., given the maps t 7→ c(t),R(t), Φ̄t),
the velocity u(x, t) and pressure p(x, t) distributions in the fluid are uniquely determined.
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The motion of the swimmer is governed by the balance of linear and angular momentum.
We neglect inertia, and all other external forces different from those exerted by the fluid. So the
balance of linear and angular momentum become the statement that the total force and torque
exerted on the swimmer by the surrounding fluid vanish. Denoting the Cauchy stress in the fluid
with

S[u](x, t) = −p(x, t)Id + η
(
∇u(x, t) +∇uT (x, t)

)
(7)

we write these as

0 = f(t) =

∫

∂Bt

S[u](x, t)n(x)dA and 0 = g(t) =

∫

∂Bt

(x− c(t)× S[u](x, t)n(x)dA (8)

where n(x) is the outer unit normal at x ∈ ∂Bt. It turns out that, given t 7→ Φ̄t, equations
(8) determine uniquely the two time-dependent vectors v̄(t) = RT (t)ċ(t) and ω̄(t) = RT (t)ω(t),
namely, the representations in the body-frame of ċ(t) and ω(t). Thus, c(t) and R(t) are found
by integrating the equations ċ(t) = R(t)v̄(t) and Ṙ(t) = R(t)[ω̄(t)]× (where the skew-symmetric
tensor [ω̄(t)]× is defined by [ω̄(t)]×a = ω̄(t)× a holding for every vector a). This shows that the
following

Swimming Problem: given a history of swimmer shapes t 7→ Φ̄t, find the corresponding history
of positions and orientations t 7→ c(t),R(t)

has a unique solution. This is proved in full detail in Dal Maso et al. (2011).
A further interesting question is whether, given initial position and orientation c(0),R(0)

and a target position c(0) + ∆c (or a target position and orientation pair), there exist a shape
history t 7→ Φ̄t such that the swimmer can reach the target. This is a typical question of control
theory. In fact, swimming is a perfect example of exploiting fluid-structure interactions to control
the (Navier)-Stokes equations: we use shape changes and act on the fluid to produce flows that
generate exactly those forces that propel the swimmer in the desired way.

3. Locomotion principles

In this section, we use the framework introduced in Section 2 to discuss some general loco-
motion principles. We do this by focusing on some simple, yet representative examples.

3.1. No looping? No party!

A simple system which is of great conceptual value is the three-sphere-swimmer proposed
in Najafi and Golestanian (2004). Consider the case in which B consists of three rigid spheres
of equal radius, whose centres are aligned and constrained to move along one line parallel to
the unit vector e, only varying their mutual distances L + ū1(t), L + ū2(t) (see Figure 2). The
position of every point of the system is specified, once we know the positions of the three centres

x1(t) = c(t)− (L+ ū1(t)) , c(t) , x2(t) = c(t) + (L+ ū2(t)) . (9)

We will only follow these while considering a T -periodic shape change

t 7→ ū(t) = (ū1(t), ū2(t)) (10)

a closed curve in the space of shapes, which for concreteness we will assume to be traced in the
anti-clockwise direction.
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Figure 2: Three-sphere-swimmer: parametrisation in terms of positional change, and shape change.

Linearity of the Stokes system leads to linear dependence of the forces in (8) on the Dirichlet
data of the outer Stokes problem, hence on ċ, ˙̄u1, ˙̄u2. The component along e of the force balance
is then written as

0 = f(t) = f1(ū(t)) ˙̄u1(t) + f2(ū(t)) ˙̄u2(t) + f3(ū(t))ċ(t) (11)

where, in view of translational invariance, the force coefficients are independent of position and
depend only on shape. Solving for ċ we obtain

ċ(t) = V(ū(t)) · ˙̄u(t) , where Vi(ū(t)) := − fi(ū(t))

f3(ū(t))
(12)

Using Stokes theorem, we obtain the displacement ∆c in one stroke as

∆c =

∫ T

0

V(ū(t)) · ˙̄u(t)dt =

∫

ω

curlūV(u1,u2)du1du2 (13)

where curlūV = ∂V2/∂ū1 − ∂V1/∂ū2 and ω is the region of shape space enclosed by the closed
curve (10).

As emphasised in Alouges et al. (2008), formula (13) above summarises several cornerstone
results of low Reynolds number swimming. The first one is that, if the closed curve ∂ω spans zero
area (i.e., the loop in shape space is trivial, as it happens for a reciprocal shape change), then
the displacement vanish. This is the so-called Scallop Theorem of Purcell (1977), stating that,
without inertia, a scallop-like organism that can only open and close its valves cannot swim.

The second important result is that, even when the loop in shape space is non-trivial, the
displacement is zero if the integrand in (13) vanishes. Therefore, swimming rests on the fact that
hydrodynamic resistance forces (the fi’s defining the vector field V in (12)) are shape-dependent,
as probed by the differential operator curlū.

The third fact following from (13) is that the displacement in one stroke is geometric: it only
depends on the geometry of the loop drawn in the space of shapes, (10), not on the speed at
which the loop is traced.

Finally, formula (13) shows that the system is fully controllable. Indeed, if ∆c 6= 0 is the
displacement achieved with the loop Γ, smaller displacements of the same sign can be achieved
with loops of smaller area, any positive multiple k∆c can be achieved by tracing Γ k times, and
−∆c can be obtained by tracing Γ in the opposite direction.

3.2. Minimal swimmers with or without directional control

Building on the results of the previous section, we want to ask now the question: What is the
minimal number of independent motors, or controllers, that can allow the three-sphere swimmer
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to achieve non-zero net displacements? A superficial answer would be: two. However, as shown
in Montino and DeSimone (2015), the correct (and, at first sight, surprising) answer is: one.

Indeed, by replacing one of the “arms” between two consecutive spheres with a passive spring,
and actuating periodically the remaining one, once can still extract net displacements, because
the two arm lengths can still describe a loop in the space of shapes. To understand how this
arises, consider the two limit cases of very slow and very fast actuation frequencies. At low
actuation frequencies, the viscous forces are negligible with respect to the elastic ones, and the
system behaves as if it had one rigid arm (hence, no net displacements). At high actuation
frequencies, elastic forces are negligible with respect to viscous ones, and the system behaves
as a collection of three beads, one of which is free, while the distance between the other two is
oscillating. It is relatively straightforward to show that, in this case, long range hydrodynamic
interactions lead to synchronisation of the three spheres, and the two distances (the arm lengths)
oscillate keeping their sum constant. At intermediate actuation frequency ω, elastic and viscous
forces compete, and the dynamics of the system leads to the two distances oscillating at the same
frequency, but with a frequency-dependent (locked) phase difference which is controlled by the
non-dimensional parameter

Ω :=
ωηL

K
. (14)

Here K is the stiffness of the passive spring, L its rest length, and η is the fluid viscosity. Thanks
to this phase lag, the two arm lengths trace a non-trivial loop in the space of shapes, leading to
non-zero (frequency dependent) net displacements in one cycle.

The gain in simplicity associated with getting rid of independent control of one the two arms
comes, however, with a cost in terms of the performance of the device. This is the loss of control-
lability. Indeed, since the phase lag is set by system properties that cannot be tuned, see (14),
the loops in the space of shapes will be traced with a fixed phase lag, hence in a fixed direction.
The sign of the displacement is then hard-wired into the system and the three-sphere swimmer
with one passive arm can only move with the passive arm ahead, see Montino and DeSimone
(2015). Put differently, one motor/controller leads to the minimal system capable of achieving
non-zero net displacements, but without a reverse gear. Two independent motors/controllers are
necessary for a controllable system.

3.3. Steering by modulation of the actuation speed

In Cicconofri and DeSimone (2016) we studied a low Reynods number swimmer that reveals
some surprising features when contrasted with the observations in Section 3.1. The swimmer
consists of a (rigid) spherical head with an elastic tail attached to it, as schematically depicted in
Figure 3. We considered planar motions of the system, assuming that the swimmer can actively
control only the angle α between the head and the tail. We studied the resulting swimming
motion under generic periodic time histories t → α(t) of the control parameter, resulting in
periodic tail beating.

The first surprising feature of the system is the ability of the swimmer to propel itself and to
“steer”, following either straight or curved trajectories (on average, after many beats), despite
being actuated by only one control parameter. Secondly, the resulting displacements after each
beating period are not geometric: Changing the speed of the periodic control α does change
the resulting displacement. There is no contradiction, however, between these results and the
observations in Section 3.1. The key to realise this is that, in the swimmer of Figure 3, shape is
not completely prescribed, because of the presence of the elastic tail. The shape of the latter is not
a-priori known, and it only emerges from the balance of elastic and hydrodynamic forces arising
from the actuation of the angle α. Thus, moving from systems in which shape is completely
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Figure 3: Swimmer with elastic tail. The moving frame of the swimmer is given by the centre c and the orientation
θ of the head. The swimmer controls the angle α between its spherical head and its tail at the point of attachment.

controlled to systems in which shape is partly emergent, the picture changes completely with
respect to the Scallop Theorem scenario of Purcell (1977).

We considered the equations of motion of the system in the local drag approximation of
Resistive Force Theory, see Lauga and Powers (2009), restricting our analysis to stiff-tailed
swimmers. This allowed us to obtain analytical results in the small parameter regime ε � 1
where ε is the ratio between the typical viscous and elastic force acting on the tail. A formula that
sheds light on the behaviour of the system during its motion is the one proved in Cicconofri and
DeSimone (2016) for the (normalized) deviation y(x, t) of the tail from its straight configuration

y(x, t) = −εp(α(t), x)α̇(t) +O(ε2) , (15)

see Figure 3. The function p(α, x) in equation (15), which can be calculated explicitly, is a
positive polynomial with α-dependent coefficients in the variable x. The dependence of the
deviation y on the velocity α̇ of the angle α has a simple physical reason: The faster the tail
beats, the larger are the viscous forces acting on it, which result in larger bending of the tail itself.
The critical consequence of (15) follows from another simple observation: given the position of
centre c and the orientation θ of the swimmer’s head (see Figure 3), the configuration of the
swimmer is fully determined by the angle α and the deviation y. That is, α and y determine the
shape of the swimmer. What (15) shows, then, is that the shape of the swimmer in motion is
fully determined (at least at first approximation) by the angle α and its rate-of-change α̇, which,
in turn, can be considered as a shape parameter.

Indeed, a loop in the shape-space of the elastic tail swimmer can be effectively given by the
closed curve t → (α(t), α̇(t)). Consistently with the basic principles stated in Section 3.1, we
showed that net displacements ∆c and net rotations ∆θ of the swimmer arise because of this
looping. More precisely, denoting ω the two dimensional set enclosed by the loop t→ (α(t), α̇(t)),
we derived the following formulas

∆c = ε

∫

ω

U(α,ψ)dαdψ +O(ε2) and ∆θ = ε

∫

ω

W (α,ψ)dαdψ +O(ε2) , (16)

where U and W are two non-vanishing functions (vector-valued and scalar-valued, respectively)
which are independent on the loop itself. At leading order in ε, formulas (16) have the exact
same structure of equation (13).

From (16) we can derive the characteristic motion control capabilities of the swimmer. First,
we can conclude that propulsion is possible, since a loop t→ (α(t), α̇(t)) naturally spans non-zero
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area, as one can see in the simple case α(t) = sin t. Second, (16) explains why displacements
are non-geometrical. For example, a simple time rescaling t→ λt results in a deformation of the
shape parameters loop t 7→ (α(λt), λα̇(λt)), thus faster (or slower) beating results in different
displacements. More general modulations of the velocity of beating can be considered, resulting
in different geometries of the shape parameters loop. This gives room for motion control, so the
swimmer can couple displacements and rotation during each period (steering). It is possible to
show that the swimmer follows curved trajectories in the case of asymmetric beating, when α
undergoes a fast up-beat followed by a slow down-beat during one period.

4. How do biological micro-swimmers swim?

It may seem surprising that the principles discussed above may have anything to teach us
about the locomotion strategies of unicellular organisms, which look very different from the
systems of beads and springs analysed in Section 3. In fact, this is indeed the case, as we argue
in the remainder of this section by showing that the principle discussed in Section 3.1 goes a
long way in rationalising observed behaviour in Biology.

4.1. Chlamydomonas’ breaststroke

Chlamydomonas is a unicellular alga, with a round body, which swims thanks to the beating
of two flexible anterior flagella, see e.g. Guasto et al. (2010); Goldstein (2015). It has been used
as a model organism, in particular for what concerns flagellar locomotion Drescher et al. (2010).

In one of its typical behaviours, the cell beats the two flagella in synchrony in a plane,
symmetrically about a central symmetry axis of the body. With this perfect breast-stroke, the
cell progresses with a rocking back-and-forth motion along the symmetry axis. Net displacements
are made possible by the fact that the shape of the flagella varies during one stroke cycle. They
are extended during the power phase of the stroke, when the flagella beat (say) downwards, and
push the cell body upwards. They are contracted in the recovery part of the stroke, when they
move upwards to recover the initial posture, and push the cell downwards (hence the rocking
motion). Net upward displacement results from the fact that the hydrodynamic forces generated
by the extended flagellum are higher than those generated by the retracted flagellum, moving
in the opposite direction. Considering as shape variables the angle formed at the attachment of
the body (localised curvature), and a measure of global curvature, we see that Chlamydomonas’
breast stroke consists of a loop in the space of shapes.

This mechanism is ubiquitous also in the self-propulsion of ciliates, which are typically covered
by numerous arrays of beating cilia. Their beating is typically organised in periodic spatio-
temporal patterns called metachronal waves. Individual cilia oscillate back and forth with a
shape asymmetry between an extended configuration in the power phase and a more bent one
during recovery.

4.2. Sperm cells, flagellar beating, and travelling waves

Sperm cells are among the most thoroughly studied examples of unicellular swimmers, see
e.g. Gaffney et al. (2011). There is hardly a more evident illustration of how cell motility is
relevant to life as the (swimming) event that is common to every human being (or, at least, to
the overwhelming majority of them). Namely, that of a sperm cell that successfully swims its
way until it reaches and fecundates an egg cell.

Sperm cells move by beating a flagellum, whose structure is highly conserved across eukaryotic
species. It consists of longitudinal bundles of microtubules, arranged in a precise spatial structure,
on which molecular motors exert forces that cause the creation and propagation of longitudinal
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bending waves. These bending waves generate the propulsive forces powering the motion of the
cell.

A travelling wave of bending is therefore a very common shape change propelling a large num-
ber of unicellular swimmers, and the mechanism by which it produces propulsion was analysed
in the seminal paper Taylor (1951), one of the milestones of the whole literature on biological
fluid dynamics at microscopic scales. The traveling waves of bending studied in this paper are
of the form

ū(X, t) = b sin(kX − ωt) = b cos(ωt) sin(kX)− b sin(ωt) cos(kX) , (17)

which shows how they represent a loop (in fact, a circle, since cos2(ωt) + sin2(ωt) = 1) in a space
of shapes parametrised by the two wave forms sin(kX) and cos(kX).

5. A case study: Euglena gracilis

We have been studying Euglenids, see Leander et al. (2017), and Euglena gracilis in particular
already for a few years. The reason of our interest in this protist, a unicellular flagellate, is that
it exhibits two distinct forms of motility. One is through the beating of a single anterior flagellum
(swimming motility). Another one is through very large, elegantly coordinated, rhytmic shape
changes of the whole body (amoeboid motion or metaboly). What controls the switching between
this two distinct “gaits” is an interesting question, which is still open, and on which we have
some hypotheses.

5.1. Metaboly and mechanisms for shape change

The large shape changes associated with metaboly correlate closely with geometric rearrange-
ments of the pellicle structure underneath the plasma membrane. This is a complex made of
protinaceous pellicle strips, microtubules, and molecular motors. The strips have overlap regions
and are able to slide one on another along their length. The sliding is powered by molecular
motors that induce sliding in the microtubules that run parallel to the strips, along the overlap
region. The relative sliding along the strips can be thought of as a mechanism of active surface
shearing or, in the language of differential geometry, of active change in the surface metric. In
view of Gauss’ Theorema Egregium, modulating the pellicle shears means modulating the surface
metric along the surface, and this can produce (Gaussian) curvature.

Interestingly, the propulsive mechanism associated with metaboly consists of the propagation
of a round protruding bulge along the axis of an elongated body of approximately cylindrical
shape. A surface with a bulge is one with nonzero Gaussian curvature, so that metaboly relies
on the propagation of nonzero Gaussian curvature along the cell body. This can be accomplished
and, as experiments show, is in fact accomplished by modulation of the pellicle shears along their
lengths. And in the regions where the bulge forms, the pellicle strips acquire a characteristic
helical shape. This mechanism is described in detail in Arroyo et al. (2012); Arroyo and DeSimone
(2014).

Further details on metaboly as a form of motility, and on the mechanisms controlling how
Euglena switches to this mode of behaviour are discussed in Noselli et al. (2018).

5.2. Helical trajectories and a principle for self-assembly

In Rossi et al. (2017), we have recently managed to reconstruct the three-dimensional trajec-
tories and flagellar shapes of swimming Euglena, starting from time-sequences of two-dimensional
images obtained with an optical microscope. This has been made possible thanks to the precise
characterisation of the orbits (the maps t 7→ c(t),R(t) of the swimming problem of Section 2)
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traced by an object propelled by a flagellum beating periodically in time. Hydrodynamics of
Stokes flows (the one commonly used for micro-swimmers) dictates the following universal law
of periodic flagellar (and ciliar) propulsion: the orbits of any object propelled by periodically
beating flagella (or cilia), swimming far away from walls, boundaries, etc. are always gener-
alised helices. This makes the reconstruction of three-dimensional trajectories possible: once the
three-dimensional geometric structure of the orbits is known, these can be obtained from their
two-dimensional projections, hence lifting the two-dimensional experimental images to three di-
mensions.

In fact, the same result on helical trajectories holds true if the organism is propelled by an
array of cilia, beating periodically. This situation is typically modelled treating the swimmer as a
squirmer, i.e. a rigid body with a distribution of slip velocities on its boundary, which represent
the relative velocity of the fluid (which moves like the tips of the cilia) with respect to the base
of the cilia, attached to the boundary of the body. If the slip velocity field is periodic in time, the
resulting orbits are generalised helices. For the sake of simplicity, we will illustrate the results
on helical swimming above by only considering the discrete curve traced by an arbitrary point
of the swimmer (the origin c(t) of the body-frame), following its positions after integer multiples
of the beating period T . We have the following:

Helix Theorem The discrete trajectory k 7→ ck = c(0+kT ) traced by a micro-swimmer moving
in free-space, propelled by the T-periodic beating of a flagellum or of an array of cilia, is a discrete
circular helix.

Figure 4: Tangents and binormals to the discrete helix to compute curvature θ/|d| and torsion φ/|d|.

While this result is a special case of a more general one proved in Rossi et al. (2017), we give in
the following a (new) direct proof. Assume that, at t = 0, body-frame and lab-frame coincide:
c(0) = o, R(0) = Id, and let d and R be the displacement and rotation at the end of one beat
cycle. After each cycle, the incremental displacement and rotation in the body-frame will always
be d and R since the shape change cycle is the same, and the swimming problem (written in the
body-frame) is invariant by rotation and translation. Composing these (constant) translations
and rotations with the motion of the body-frame, the discrete trajectory in the lab-frame will be

ck = o + d + Rd + R2d + . . .+ R(k−1)d , and Rk = Rk , (18)

where Rk = R(0 + kT ) and R0 = R(0) = Id.
To see that (18)1 is a discrete circular helix, we will use the discrete version of a result form

differential geometry, usually attributed to Lancret: a curve with constant curvature and torsion
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is necessarily a circular helix. To compute the (discrete) curvature at point ck, consider the
(osculatory) plane generated by the three points (ck−1, ck, ck+1) and spanned by the (discrete)
tangents R(k−1)d and R(k−1)Rd, see Figure 4. By Frenet’s formulas, the curvature at ck is
1/|d| times the angle θ between d and Rd, which is independent of k. Similarly, to compute the
torsion at point ck, consider the binormal at ck. This is orthogonal to the osculatory plane at
ck, hence parallel to R(k−1)(d×Rd). Similarly, the binormal at ck+1 is orthogonal to the plane
spanned by Rkd and R(k+1)d, hence parallel to R(k−1)(R(d×Rd)). By Frenet’s formulas, the
torsion at ck is 1/|d| times the angle φ between d×Rd and R(d×Rd), which is independent
of k. Special cases are that of a straight trajectory, which arises when d is parallel to the axis of
R (hence d ×Rd = 0, zero discrete curvature), and of a circular trajectory, which arises when
d is perpendicular to the axis of R (so that both d×Rd and R× (d×Rd) are parallel to the
axis of R and hence, zero discrete torsion).

The (informal) discussion above can be made rigorous by using the results in Carroll et al.
(2014), that show that curve (18)1 can be seen as the discretisation of a continuous curve having
as curvature and torsion exactly the values computed from (18)1.

Figure 5: Geometric construction of the parameters of the discrete circular helix associated with shift d and
rotation R = Rθ

e of angle θ and axis e. In the figure, d⊥ denotes the projection of d on the plane perpendicular
to the rotation axis e.

It is interesting to give a concrete geometric representation of the helix above, see Figure 5.
Let e be the axis of the rotation R (the eigenvector corresponding to its eigenvalue equal to +1)
and θ the angle. We can highlight the two parameters characterising the rotation R by writing
R = Rθ

e. In a reference frame with origin o, first axis aligned with d⊥, the projection of d on
the plane perpendicular to the rotation axis e (we are assuming here that d is not parallel to e,
for otherwise the trajectory is a straight line parallel to d), and third axis aligned with e, the
equation of the discrete circular helix (18)1 is

x1(k) = r cos

(
π − θ

2

)
+ r cos

(
−π + θ

2
+ kθ

)
(19)

x2(k) = r sin

(
π − θ

2

)
+ r sin

(
−π + θ

2
+ kθ

)
(20)
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x3(k) = 0 + k |d//| (21)

where

r =
|d⊥|/2

sin(θ/2)
, d// = (e⊗ e)d , d⊥ = (Id− e⊗ e)d . (22)

Finally, it is interesting to notice that, since the axis of body rotation R is also the screw axis
of the helix traced by the cell body, as the cell moves in average along the screw axis, the body
rotates so that the lateral surfaces containing the eyespot (in which a light receptor is located)
would be periodically exposed to or shaded from light, unless the screw axis is aligned with
the light source. In fact, this could be a vivid example of a general biochemical mechanisms,
repeatedly found in nature, to use periodic signals as a means to navigate in the sense that the
existence of a periodic signal implies lack of alignment Goldstein (2015). The coupling between
direction of average motion and axis of body rotations could explain the navigation mechanism
used by phototactic Euglena to orient with a light source.

The result contained in the Helix Theorem is interesting in its universality, and it has far
reaching consequences for the swimming of flagellated and ciliated unicellular organism: They
all trace helical trajectories. In fact, the recent literature abounds with reports of discoveries
of the helical structure of experimentally observed trajectories of a variety of micro-swimmers
of great biological relevance (bacteria, sperm cells, etc.). Most of the previous literature had
focused on the special cases of straight and circular trajectories, which are easily measured from
two-dimensional images from an optical microscope, while the reconstruction of trajectories such
as helices, which are spatial curves, require that we resolve the third dimension perpendicular to
the focal plane of a microscope.

The interest and applications of the Helix Theorem above are not confined to trajectories
of biological (and, possibly, artificial) micro-swimmers. Indeed, the theorem characterises the
geometry of any chain resulting from the assembly of rigid monomers, when the position and
orientation of the (k + 1)-th monomer are constrained to be those arising from a shift d and
a rotation R of the k-th one. The theorem shows that, in this case, a discrete circular helix
will emerge. Enforcing that two monomers can only bind in a precise relative position and
orientation is then a principle by which polymeric helical structures can self-assemble. This
simple observation provides a rationale explaining why helices are so ubiquitous in Biology and
Nature.

6. Conclusions and outlook

We have reviewed here some recent results on the fluid dynamics of unicellular swimmers.
Most of our arguments have emphasised overarching conceptual principles, that can be used to
rationalise complex biological behaviour. In view of their generality and far reaching nature,
these principles are best discussed using the simplest system exhibiting the targeted level of
complexity. It would be however misleading not to stress the key role that numerical simulation
of the flows generated by micro-swimmers can play in the future developments of the field. This
is true in at least two main directions.

The first one is in resolving the fine details of the induced flows, and capturing effects that are
beyond the reach of simple models. This is already advocated in Arroyo et al. (2012), where the
need of resolving the flows in the interior of the organism is apparent. Another interesting and
quite unexplored issue is to assess the role of inertial effects associated with the pulsatile nature
of flows generated by a fast beating flagellum, which moves in close proximity of the cell body.
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The details of these flows, the forces that they induce are often crucial to understand, for exam-
ple, how microorganisms feed (driving food to their mouths), how they sense and respond to the
environment (currents, density gradients of particles and chemicals, presence of other organisms
and physical obstacles, etc.). Here, numerical simulation of biological fluid-structure interac-
tion problems, coupled with experimental testing of their predictions through micro-velocimetry
measurements, an approach pioneered in Drescher et al. (2010), will be extremely valuable.

In addition, as the field of bio-inspired micro-robots moves from the stage of intellectual
speculation and proof-of-principle to the actual design of devices for biomedical applications, see
Ornes (2017), the need for quantitatively accurate tools to move and steer micro-robots to their
destinations, to model them and predict their behaviour is becoming acute, see Giuliani et al.
(2018). Progress in this area will rely crucially on the development of agile and reliable tools
for the prediction and control of motion, trajectories, and behaviour of these new bio-inspired
micro-machines.
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