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A B S T R A C T

In silicomethods and models are increasingly used for predicting properties of chemicals for hazard identification
and hazard characterisation in the absence of experimental toxicity data. Many in silico models are available and
can be used individually or in an integrated fashion. Whilst such models offer major benefits to toxicologists, risk
assessors and the global scientific community, the lack of a consistent framework for the integration of in silico
results can lead to uncertainty and even contradictions across models and users, even for the same chemicals. In
this context, a range of methods for integrating in silico results have been proposed on a statistical or case-specific
basis.

Read-across constitutes another strategy for deriving reference points or points of departure for hazard
characterisation of untested chemicals, from the available experimental data for structurally-similar compounds,
mostly using expert judgment. Recently a number of software systems have been developed to support experts in
this task providing a formalised and structured procedure. Such a procedure could also facilitate further in-
tegration of the results generated from in silico models and read-across. This article discusses a framework on
weight of evidence published by EFSA to identify the stepwise approach for systematic integration of results or
values obtained from these “non-testing methods”. Key criteria and best practices for selecting and evaluating
individual in silico models are also described, together with the means to combining the results, taking into
account any limitations, and identifying strategies that are likely to provide consistent results.

1. Introduction

In silico methods based on modelling structure-activity relationship
(SAR) offer an alternative approach to generate estimates of chemical
toxicity in the absence of experimental data. The availability of high-
quality chemical property/effect databases, powerful data mining al-
gorithms, and growing computational power over the past decades has
led to more versatile and reliable computational tools and systems for
assessing chemical toxicity. Such “non-testing methods” include pre-
dictive computational models based on SAR, quantitative SAR (QSAR),
read-across extrapolations from measured data on analogous chemicals,
and integrated expert systems that derive estimates from a combination
of more than one model/approach. Considering the wide diversity of
chemical structures, a number of methods and models may be needed to
assess different chemicals and toxicological endpoints, and to interpret
the results using a “weight of evidence” (WoE) approach.

Models based on (Q)SAR are mathematical descriptions of the bio-
logical/toxicological activity of a group of chemical compounds in
terms of one or more of their physicochemical properties. A quantita-
tive model may be based on linear or non-linear relationships between
the property(ies) and the structural parameters. SARs on the other hand
describe qualitative relationship(s) between a chemical structure and
its property or biological activity. A simple SAR model may be based on
a structural alert (SA), which is a distinctive moiety or a structural
feature in the molecule related to its property or biological activity.
These models can, however, be only as reliable as the data used to build
them, and therefore approaches used in ensuring the quality of che-
mical and biological data used in model development have been the
subject of a number of reviewsPrice and Chaudhry, 2014 (Price, 2014;
Benfenati et al., 2007). The assessment of responses at the level of the
whole organism also involves understanding of the complex biological
processes. This needs a wide range of descriptors of molecular
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properties to encode such complexities, in conjunction with advanced
algorithms based on linear, non-linear or soft-computing techniques
(Chaudhry et al., 2007). The selection and use of a particular model(s)
and interpretation of the results therefore also require expert knowl-
edge (Benfenati et al., 2013).

A fully tested and validated (Q)SAR model would generally yield a
good predictive assessment of toxicity for untested chemicals as long as
the compound is within the applicability domain (AD) of the model
with regard to chemical space. Due to a different AD, each model will
have certain limitations when applied to chemicals belonging to widely
diverse classes. Such limitations can however be overcome through the
use of several (Q)SAR models, and results can be further improved by
combining with read-across extrapolations. Potentially, such an in-
tegrated approach would generate robust data, which, when integrated
with other lines of evidence using a WoE approach (e.g. in vitro, in vivo
data), could provide the basis for reliable characterisation of tox-
icological hazard - e.g. a reference point/point of departure.

Many (Q)SAR models are currently available for a range of complex
toxicity endpoints. Some of these models have been developed for
regulatory use - in line with the quality criteria and the validation
principles specified in the OECD's Guidance Document on the validation
of (Q)SAR Models (Organisation for Economic Cooperation and
Development (OECD), Environmental Directorate, 2004). According to
the Guidance, a (Q)SAR model should provide: a defined endpoint; an
unambiguous algorithm; a defined domain of applicability; appropriate
measures of goodness-of-fit, robustness and predictivity; and a me-
chanistic interpretation if possible.

The European Chemicals Agency (ECHA) has recently published a
document describing how to use and report results from QSAR models
(European Chemicals Agency, 2016). It includes practical examples on
some in silico platforms, such as the OECD QSAR toolbox, EPISuite and
VEGA.

Since individual QSAR models have become increasingly applied to
a broad range of endpoints, and several models have become available
for some endpoints, the emphasis has also shifted to the use of several
models together to achieve more reliable results. However, this has also
raised new questions - such as how to integrate different models, and
how to resolve any conflicting outcomes. Finally, how the integration of
results from QSAR models and read-across methods can be carried out
in a consistent and standardised manner.

A number of integration methods for combining in silico results from
QSAR models and application of read-across methods exist, and this
article proposes a practical guide and stepwise approach that addresses
first (Q)SAR models, then read-across, and finally the ways to in-
tegrating them through:

• Selection of appropriate (Q)SAR model(s) for a specific property/
endpoint,

• Assessment of chemical toxicity using individual (Q)SAR model(s),

• Integration of results from different (Q)SAR models,

• Assessment of chemical toxicity using read-across procedures,

• Integration of results from (Q)SAR and read-across.

These steps that are described below, refer to the general framework
provided by the recent EFSA Scientific Committee Guidance on “the use
of Weight of Evidence (WoE) approach in scientific assessments”
(Hardy et al., 2017). The Guidance constitutes our general theoretical
basis; indeed, it is not limited to in silico models and proposes three key
criteria for assessing, weighing and integrating lines of evidence in a
WoE approach: relevance, reliability and consistency. These criteria can
be applied to the lines of evidence that are heterogeneous in nature, as
explained in the Guidance. In this case, the nature of the results pro-
vided using read-across approaches based on extrapolation from ex-
perimental data, can be rather different from that obtained from in silico
modelling. Furthermore, the nature of the results of expert systems can
also be different from modelling results that are statistically-based. For

instance, models providing structural alerts related to adverse effect can
be used for scientific reasoning, and this can inform on the relevance of
the predicted value. These aspects will be discussed below, with prac-
tical examples.

2. Using individual (Q)SAR models

2.1. Selection of appropriate model(s)

Numerous free-access and commercial models are available – e.g.
see lists at ANTARES (www.antares-project.eu), QSARDB (https://
qsardb.org/), QMRF DB (http://qsardb.jrc.it/qmrf/), and ECHA
(European Chemicals Agency, 2016). However, the fact that a model
exists for a given property/endpoint does not necessarily mean it is also
appropriate or reliable for in silico toxicity assessment of a given che-
mical. A number of criteria need to be taken into account, and these
refer to specific features related to the target chemical. For example,
most models do not work on inorganic chemicals, disconnected che-
mical structures, salts, or chemical mixtures. Moreover, a number of
models may give different results depending on the format used for a
chemical structure (e.g. CAS number, SMILES, name, etc.), whereas
some models (e.g. VEGA – www.vegahub.eu) offer a solution by
transforming any of the formats into an internal, consistent format.
Another consideration for excluding a model may be the cost of the
model, and users may prefer freely-available models. Comparative
studies have shown that commercial models may not be more reliable
than the free-access ones (Milan et al., 2011; Gonella Diaza et al.,
2015).

If a commercial QSAR model is available, it should be used.
However, it is more critical to provide full documentation, regarding for
instance the algorithm and the training set used to build the model.
Typically, the algorithm is not fully available, particularly for com-
mercial models. Furthermore, confidentiality of the algorithm and the
underlying data may also limit the possibility to develop networks be-
tween different systems. If the underlying data used to build the model
are not indicated, as may happen for commercial models, this may limit
the full and transparent use of the models with regards to their AD.

The inclusion criteria for models need to be based on two major
considerations: the quality of each model, and the heterogeneity among
different models. Regarding the model quality, it is advisable to start
from an assessment based on the comparative performance of different
models (for example the EU projects ANTARES - www.antares-life.eu/,
and CALEIDOS - www.life-caleidos.eu/).

If available, results on the chemical category of interest should be
evaluated and preference should be given to the model(s) that perform
best for the category closest to the target chemical.

Where possible and feasible, more than one model should be used to
add confidence to the assessment results. Ideally, all those models that
fit with the inclusion criteria should be used, but this may be im-
practical, expensive and time-consuming. For instance, there are cur-
rently about 60 models available to predict mutagenicity (Ames test).

2.2. Assessment of individual QSAR results

Each model is based on the structural and activity data of a set of
chemicals (the training set). ECHA has recommended taking into ac-
count the AD of the models, and whether the training set of the model
contains compounds that are similar to the target chemical (European
Chemicals Agency, 2017a). Furthermore, details on the output of a
model can be variable. If the information provided as output is limited,
it is difficult for the user to make a decision on the reliability of the
results. Since each model has strengths and limitations, it is preferable
to use models that are also more explanatory and provide detailed
description of the reliability of the results, which typically is based on
the AD.

Three broad categories of models are possible:
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1) Models for which the AD is not assessed;
2) Models for which the AD is poorly assessed;
3) Models for which the AD is assessed and described using a sound

methodology.

The evaluation discussed below refers to the AD of the model as in
the REACH regulation, Annex XI (Regulation (EC) no 1907/2006 of the
European Parliament and of the Council of 18 December 2006
Concerning the Registration, Evaluation, Authorisation and Restriction
of Chemicals (REACH), Establishing a European Chemicals Agency.).

2.2.1. Models for which the AD is not assessed
Many models only provide a predicted value for the property/effect

but no means to check whether the target substance is within the
models' AD. For these models, a generic way to assess applicability is to
refer to the performance on a general set of compounds. Another option
is to identify the correct predictions and then to measure the similarity
of the target compound compared to the predicted set of chemicals
(Kulkarni et al., 2016). However, this process often requires manual
handling of the data.

2.2.2. Models for which the AD is poorly assessed
Many models do not include a user-friendly tool for evaluating the

AD. The rules for the AD definition are given, but they can only be
applied manually. For example, EPISuite indicates that the results of the
model are valid if the target chemical has some features within a certain
range, and if a number of chemical fragments does not exceed a given
values (www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-
program-interface#what). Thus calculations have to be done manu-
ally for each chemical.

2.2.3. Models for which the AD is assessed and described using a sound
methodology

Some models not only provide the prediction but also a detailed
description of the AD check. If the output of the model provides a high
level of detail, the expert can have greater confidence in the results. In
any case, the expert has to verify and ‘approve’ any result produced by
the software. Such an assessment has to address the three main com-
ponents of a (Q)SAR model: the toxicological/biological part, the che-
mical part, and the algorithm used for modelling. Example of such
implementation can be found in the VEGA platform (www.vegahub.eu),
which also indicates critical issues that call for expert judgment. VEGA
provides a quantitative value, termed as AD index (ADI), considering
similar compounds in the model's training set. Automatic calculation of
the ADI is based on a series of factors, i.e. accuracy of the results on
similar compounds, the ‘similarity’ of the similar compounds, the con-
cordance of the predicted value of the target compounds with the ex-
perimental values of the similar compounds, etc. Those values provide
the user data that are useful for read-across. Unfortunately, in most
other programs, the AD is only based on consideration of chemical si-
milarity.

2.3. Uncertainty in the results of a QSAR model

Scientific advisory bodies and regulatory agencies have to deal with
different levels of uncertainty in the risk assessment of chemicals.

Uncertainties relating to the use of a model to derive toxicity estimates
include:

- Parameter uncertainty: the parameters used to construct the model
are computed, not experimentally measured, e.g. a computed value
for LogP.

- Parametric variability: the input variables to the model, e.g. the
descriptors, may have different values if computed by different
programs.

- Structural uncertainty: each model has a bias based on its core da-
tasets.

- Algorithmic uncertainty: a computer implementation may have
numerical errors and/or numerical approximations.

- Experimental uncertainty: a measured property generally has a
certain degree of observation error. Often this uncertainty is the
largest, compared with other sources of uncertainty.

In read-across, the main source of uncertainty is the method itself,
which is based largely on the assumptions for similarity scoring of the
target molecule to the library molecules. Ideally, to integrate different
components into a WoE strategy, the uncertainty associated with each
component needs to be characterised. As the quality of a computational
model will reflect the quality of the data used to build it, the un-
certainty of a (Q)SAR estimate will also reflect the uncertainty of the
experimental data. This should be taken into consideration in a QSAR
model. Table 1 gives examples of the levels of uncertainty associated
with experimental data.

These reproducibility values need to be considered when de-
termining the prediction errors of a QSAR model. It needs noting that:

1) The result of a QSAR cannot be more predictive than the uncertainty
of the measured values used to build it. If this is the case, the model
is over-fitted. Thus, the uncertainty associated with a particular
endpoint should be assessed.

2) The description of the predictivity of a QSAR model is related to the
population of chemical substances used to build the model.

3) Different levels of predictivity may apply to different subsets of
chemicals. It is useful to know whether results are for a specific
chemical class, or a subset of compounds with a certain mode of
action (Cappelli et al., 2015).

4) Besides the assessment of the prediction results of the model, it is
always preferable to have a measure of the reliability of the pre-
diction for each specific chemical. For example, the ANTARES
(www.antares-life.eu/), CALEIDOS (www.life-caleidos.eu/) and
PROSIL (www.life-prosil.eu) projects have evaluated several QSAR
models for various endpoints, concluding that the use of models for
chemicals within the AD improved the results.

3. Integrating results from different (Q)SAR models

3.1. Theoretical basis

The investigation of integrated systems is stimulated by the
awareness that combined and integrated approaches are necessary to
solve real world problems. Historically, these efforts started with
seminal work about bagging classifiers (Breiman, 1996), which opened

Table 1
Reproducibility of the experimental results for some endpoints.

Endpoints Reproducibility Reference

Mutagenicity (Ames test) ~80–84% Piegorsch & Zeiger (1991)
Bioconcentration factor (BCF) ~ ± 0.6 log units Lombardo et al. (2010)
Acute fish toxicity LC50 range ~ 3 log units Hrovat & Segner (2009)
Carcinogenicity ~57% Gottmann et al. (2001)
Developmental toxicity LOAEL Geometric standard deviation 3.3 Janer et al. (2008)
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the way to the general concept of ensembles (Dietterich, 2000). An
ensemble is an algorithm trained with the results of a number of
models, which is then used to make predictions. The ensemble itself,
therefore, produces a hypothesis that is usually new compared with the
hypotheses generated by the models used to build it. This empirical
finding has been confirmed by a few theorems (Dietterich, 2000).

Ensembles tend to give better results when there is significant di-
versity among the models used to build them; in fact models of close
similarity tend to have similar prediction errors that cannot be cor-
rected. The prediction accuracy of models to integrate should be better
than random choice and individual outputs of the models should be
diverse. To the best of our knowledge, there is no explanatory theory
about why and how diversity between component models contributes
to the ensemble accuracy. One of the most used measures is the Q di-
versity (Polikar, 2006). Q assumes positive values if the same instances
are correctly classified by both classifiers, and negative values other-
wise. Maximum diversity is for Q=0. The Q-value between the clas-
sifiers A and B can be computed, taking Nt and Nf to respectively re-
present the number of data correctly or wrongly predicted by both
classifiers, where Na represents number of data correctly predicted by A
but wrongly predicted by B, and Nb vice versa, as in Eq. (1).

= − +Q (NtNf NaNb)/(NtNf NaNb) (1)

The Q value ranges between −1, +1; the interpretation of Q=0 is
that A and B are independent.

Model diversity can be achieved with various strategies, such as
using different datasets or different training parameters to train in-
dividual classifiers. Alternatively, entirely different types of classifiers,
such as linear regression, decision trees, and support vector machines,
to cite a few, can be combined to enhance model diversity.

Two main strategies can be used to combine models: classifier se-
lection and classifier fusion (Kuncheva, 2005). Classifier selection is based
on the assumption that each classifier is an expert in a subpart of the
domain, so the ensemble has to select the classifier best suited to predict
a property or endpoint. Classifier fusion is based on the assumption that
all the classifiers are trained in the entire space so the ensemble merges
all the classifiers to obtain more accurate models. If the probability that
each classifier gives the correct answer is better than 0.5, the accuracy
of the ensemble approaches the value of 1 as the number of composing
classifiers grows to infinity (Boland, 1989). In the case of the in silico
models, a classifier is an algorithm that assigns the substance to a class,
for instance a toxicity class. Two or more classes may be identified by a
classifier.

Initial examples of classifier fusion were based on bagging and
boosting. Using bagging, a number of training data subsets are ran-
domly drawn—with replacement—from the training data. Each subset
is used to train a different classifier of the same type; the classifiers are
then combined using majority vote. A variant of bagging is random
forests, which merges simple decision trees constructed with different
parameters. The boosting technique uses a pool of classifiers that are
sequentially trained on subsets of data, each time including data mis-
classified by the previous classifiers. The classifiers are combined using
majority vote. Other combination strategies can be applied, such as
algebraic combinations or voting. More complex combinations include
the bucket and stacking methods. The bucket method takes the outputs
of the different models as input to train a new classifier that learns how
to combine them. Alternatively, the stacking method generates a
combined output from all the outputs of the individual models
(Wolpert, 1992). These strategies imply sequential or parallel use of the
methods.

The no-free-lunch theorem (stating that any two models are
equivalent when their performance is averaged across all possible
problems) holds for ensembles as well as for single models (Polikar,
2006). It means that no single ensemble algorithm or combination rule
is universally better than the others, and different combinations of the
models are expected to provide quite similar results. The approaches

discussed below have been shown to be effective to address real world
scenarios.

The factors affecting the prediction errors of the integrated model e
(x) are related to two components, namely the average error across the
different models Ē(x) and the variance ā(x) of the models relative to the
output of the integrated model as described in Eq. (2) (Li et al., 2007).

= −e x x ā x( ) Ē( ) ( ) (2)

The important variables that reduce the prediction errors of the
integrated models are the quality and the diversity of the individual
models. Both variables are inversely correlated; integrating individual
models with good prediction score and of diverse nature will reduce
prediction errors of the integrated models. In addition, the stability of
the integrated model increases with the number of individual models
that have been integrated.

3.2. Practical basis

The above described strategies are discussed in the context of QSAR.
There it is quite common to use the term “consensus” instead of en-
semble or integrated model. Indeed, consensus should be used when
there is agreement (consensus comes from the Latin cum+ sentire, to
feel with, which obviously is not true for models that provide con-
flicting results).

Of course, integration is easier if there is agreement between the
results of the different models. The advantage of using different models
lies in the fact that confidence in the results increases when concordant
outputs arise from the models. This applies to models that are different
since results from closely related models are expected to be very si-
milar, hence they only add redundant information, which does not in-
crease the result reliability.

While most studies have reported better results with integrated
approaches, a few studies have also reported similar or better results
with a single model (Milan et al., 2011; Gómez-Carracedo et al., 2012;
Lei et al., 2009; Katritzky et al., 2006). For such cases, most probably
the best model is more predictive compared to other models which may
bring “noise”, not novel information (Milan et al., 2011). Considering
Eq. (2), if the quality of the additional models is modest, or their di-
versity is low, there is no advantage over the single model.

3.2.1. Dependent and independent models
The integration of results from independent models makes the

overall results more robust for three main reasons:

1. Diverse set of compounds. Here, the larger the set of compounds, the
larger is the statistical significance of the model.

2. Variety of chemical descriptors, or fragments used to describe the
chemical information.

3. Variety of algorithms to build the model.

Two models are independent when they relate to different strate-
gies, and are based on different algorithms, diverse sets of compounds
or chemical descriptors. There is clearly added value when more in-
dependent models are integrated. For instance, the International
Council for Harmonisation (ICH) M7 guidance on the use of QSAR
models for predicting mutagenicity (Ames test) recommends using two
models, one with SA, and one with a statistically-based approach
(International Council for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use (ICM), 2017).

Besides the statistical differences, as in Eq. (1), other factors also
need attention. A model based on SAs has the advantage of greater
confidence, because it can be represented as one single SA, activating
the mechanism causing the toxic effect. However, the list of toxic
fragments is by no means complete (Serafimova et al., 2010). Thus,
models based on SAs can give false negatives; if no alert is identified,
one cannot exclude that there may be a yet-uncharacterised fragment
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responsible for the effect. For false positives, some of the alerts may be
present for chemicals that are known to be non-toxic (Gini et al., 2014).
It is likely that biological/toxicological effects involve multiple factors,
and no single alert is sufficient to explain the effect.

The issue of dependent/independent models is even more critical
when specific statistical approaches are used, such as Bayesian
methods, for which a pre-requisite is that dependence does not exist
(Buist et al., 2013).

4. Available methodologies for the integration of prediction
results from individual QSAR models

Overall, five categories of methods are used to integrate results from
individual QSAR models:

1. Algebraic and voting methods;
2. Weighing methods;
3. Hybrid methods;
4. Learning methods;
5. Expert-based methods.

Fig. 1 illustrates available integration method together with simple
schemes for the integration procedures from the predictions of in-
dividual QSAR models.

4.1. Simple algebraic and voting methods

Algebraic and voting methods are simple integrations of multiple
models, or programs that routinely process the output of several
models, like TEST (www.epa.gov/chemical-research/users-guide-test-
version-42-toxicity-estimation-software-tool-program-estimate). The

user runs several models, and all results are treated as equally good. To
assess the reliability of the output, users should also check whether the
individual models are independent and, for this purpose, different
strategies are applied depending on classifiers or regression-based
models.

4.1.1. Classifier models
For in silico models defined as classifiers, three combinations are

available under the assumption that all model outputs are equally re-
liable:

(a) The majority vote;
(b) The conservative approach (worst case scenario);
(c) Unanimity: results are used only if they agree.

4.1.1.1. The majority vote. The majority vote takes as correct the most
frequent situation, and thus the most probable one, and has been
adopted by the US-EPA in TEST. Ruiz et al. applied majority vote to
endocrine disruption (Ruiz et al., 2017). For the prediction of estrogen-
receptor binding, an integrated model based on four models gave better
prediction results compared with an integrated model based on three
models, the latter being more predictive compared with the individual
models. In contrast, for the prediction of androgen-receptor binding, no
improvement of the prediction reliability was observed while
comparing integrated and individual models, even considering
unanimous predictions. Other studies applied different integration
methods, such as simple majority, or plurality, in which case most of
the classifiers gave highly reliable predictions (Kulkarni et al. 2016;
Morales Helguera et al., 2013). The majority vote method has been
applied in case of agreement of positive predictions of any two out of
three models (Frid and Matthews, 2010). In this case, the results were

Fig. 1. Methodologies for the integration of prediction results from individual QSAR models. Each method is reviewed in Section 4.1.
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more reliable compared with both the conservative and unanimity
methods. The majority vote is usually applied with an odd number of
models, as no majority exists for conflicting results from two models
(Alves et al., 2016).

4.1.1.2. The conservative approach. The conservative approach intends
to minimise false negatives. Hence, one disadvantage is that the results
are likely to be over-conservative. With classifiers, this strategy
provides a large number of false positives, increasing with the
number of models used. The approach may be fit for purpose when a
small number of models is used to assess large series of chemicals, to
prioritise them and to identify chemicals of no-concern.

Jolly et al. applied the conservative approach to assess mutageni-
city, using two or three models (Jolly et al., 2015). The authors also
considered reliability of the predictions, and added a “no classification”
zone when predictions gave ambiguous results. Asturiol et al. adopted
the conservative approach to integrate models for skin sensitisation and
commented “discordant positive predictions should correspond to low
confidence predictions” (Asturiol et al., 2016). Contrera et al. compared
prediction results from a number of integration strategies for carcino-
genicity assessment, including the conservative approach, and an op-
posite strategy for minimising false positives (Contrera et al., 2007).
The authors concluded that risk assessors should be more prone to ac-
cepting a lower risk for carcinogens, hence, avoiding false negatives.

4.1.1.3. Unanimity. The unanimity method has two major advantages:
it provides the highest confidence in prediction results, and the most
robust statistical results. The main disadvantage is that the coverage of
the overall set of models is reduced. Several authors have applied the
unanimity method and compared it with other methods (Ruiz et al.,
2017; Jolly et al., 2015; Marzo et al., 2016). For instance, Marzo et al.
reported that the unanimous approach gave the best accuracy for six
models predicting developmental toxicity, but in some instances the
approach could only be applied to less than 10% of the chemicals with
experimental values (Marzo et al., 2016). Contrera et al. applied the
unanimity approach to assess carcinogenicity, reporting more robust
sensitivity, specificity and accuracy compared with other approaches,
but with less coverage of chemical space (Contrera et al., 2007).

4.1.2. Regression models
The average of the predicted values is the most common approach,

typically providing the most robust results. This is particularly relevant
if the range of values is limited since the confidence of the results will
increase. Conversely, if a large spread of the values is observed it may
indicate that at least one of the predicted values is not reliable. This
requires a more thorough evaluation of the quality of the models.

The arithmetic mean has been applied to predict water solubility
(Muratov et al., 2010), pKa (Balogh et al., 2012), soil-sorption partition
coefficient (Gramatica et al., 2007), histone deacetylase inhibitors
(Zhao et al., 2013), apoptosis inducing substances (Sciabola et al.,
2007), biotransformation in fish (Papa et al., 2014), algal toxicity
(Erturk et al., 2012), Daphnia toxicity (Kar and Roy, 2010), and car-
cinogenicity (Kar and Roy, 2010). Balogh et al. noticed that not only the
number of integrated models is important, but also their quality
(Balogh et al., 2012). The similarity of the predicted values for soil-
sorption partition coefficient depended on the chemicals; the authors
therefore split chemicals in homogeneous or high variability classes
(Papa et al., 2014). Santos-Filho et al. also generated more reliable
predictions with the integration of different models for cell perme-
ability coefficient (Santos-Filho and Hopfinger, 2008). Zhao applied a
filter to select the preferred models to be integrated, based on their
statistical quality (Zhao et al., 2013). Gaudin et al. generated hundreds
of models to predict caffeine encapsulation (Gaudin et al., 2012). The
authors explored the performance of the integrated model with in-
creasing numbers of models (up to 100), and observed that 50 models
produced optimal results, with minimal improvements by adding

additional models. The models were selected based on best predictive
performance and diversity. The results from these two strategies were
similar; however, the authors favoured integration of the most diverse
models to allow for a larger coverage of the chemical space. Li et al. also
explored the impact of the number of models on the prediction of in-
frared spectra and noted an increase in the statistical performance be-
tween 10 and 100 models; 50 models gave optimal predictions (Li et al.,
2007).

4.2. Weighing methods

Weighing in silicomodels prior to their integration is the second step
of a WoE approach according to a recent EFSA Guidance (Hardy et al.,
2017). This evaluation is important not only when the models agree but
also when the results do not converge. When the results conflict, users
often discard all results, which may waste useful datasets and predic-
tions (Benfenati et al., 2013). A number of approaches are available to
evaluate the reliability of the models. This evaluation should be done
according to explicit criteria, and preferably under a formalised
scheme, as discussed below.

Studies on weighing the results of different models and assessing
reliability have been proposed to apply weights using considerations
regarding (i) the specific case of the target substance, (ii) the results of
the model for a certain category of substances (e.g. chemical class or
mechanism of action), or (iii) the overall assessment of the results of a
model in general, typically related to the test set or the total set of
compounds available.

4.2.1. Applying substance-specific weights
Some studies have selectively applied weights to specific substances

of interest as part of a group of chemicals. For example, the VEGA
software (www.vegahub.eu) measures the AD index (ADI) and uses this
weight to integrate the results of different models for mutagenicity
(Cassano et al., 2014). Kulkarni et al. have integrated the results of
several models to predict mutagenicity proving account that the target
substance is similar to the chemicals that are correctly predicted by a
given model (Kulkarni et al., 2016). Fernández et al. used molecular
descriptors relative to the presence of a certain moiety in the molecule
(Fernández et al., 2015). The substances in the training set were split
into two subsets, depending on whether a certain chemical descriptor
was present or not, and the performance of each model was evaluated
separately for each of the two. The approach provided a priority list for
all QSAR models and descriptors, and allowed the use of the best QSAR
model.

Some QSAR studies report prediction performance for specific
chemical classes and these can also provide predictions for chemical
category(ies) of target compound(s) (Cappelli et al., 2015). More
complex case studies have also been explored, and include integration
of several model results dealing with several toxicological endpoints
(Pizzo et al., 2016).

4.2.2. Applying model-specific weights
Several studies have investigated the integration of different models

using a WoE approach with weights assigned to each model (the same
weight is applied for all substances predicted by the model). For ex-
ample, Mansouri et al. integrated with numerous approaches the results
of 48 models to predict estrogen receptor activity (Mansouri et al.,
2016) and observed that no single method outperformed the others.
This conclusion agrees with the theory that prediction accuracy grows
with the number of models and is not associated with a specific in-
tegration scheme.

Bayesian statistical approaches have been used in several studies.
Rorije et al. applied a WoE approach to predict the skin sensitisation
potential of chemicals using Bayesian statistics to calculate the prob-
ability of the predictivity of the approach and to estimate the reliability
of a conclusion (Rorije et al., 2013). The probability whether a
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substance was correctly predicted as a skin sensitiser with the first
QSAR model was used as prior probability for the second QSAR model,
and the process then iterated with each additional model, with the
assumption that the models were independent. The study concluded
that the application of two or more predictions from QSARs resulted in
a higher probability of the conclusion to be reliable. The authors also
adjusted the WoE for quality factors using a scale ranging between 0
and 1 – and set a threshold for the probability of the WoE conclusion for
‘conclusive evidence’. Based on this study, van der Veen et al. proposed
a tiered strategy, using a battery of QSAR models in the initial phase
(Van der Veen et al., 2014). Buist et al. used Bayesian statistics to in-
tegrate models predicting mutagenicity (bacterial Ames test); the au-
thors commented that models may be dependent, either because they
are based on very similar datasets, or they may be related to the same
mechanism of action (Buist et al., 2013). Fernández et al. applied
Bayesian statistics for the integration of models predicting BCF using
both discretized and continuous probability distributions as inputs for
the Bayes theory (Fernández et al., 2012). The authors also considered a
cost matrix to take into account the cost of misclassification; to provide
a conservative assessment, the cost for false negatives was higher.

Information on the AD was used to apply weights to preferred
predictions for human monoamine oxidase inhibitors, obtaining better
performance of the integrated model (Morales Helguera et al., 2013).
Alves et al. also noted that the use of AD improved the statistical per-
formance of integrated models for skin sensitization (Alves et al., 2016).

Gupta et al. used a scoring function to integrate two models for the
prediction of kinase inhibition activity, using an optimal coefficient for
each model (Gupta et al., 2010).

In the case of models developed with the random forest approach,
the integration of multiple models is a rule which has promoted the use
of ensemble methods. For instance, Zhang et al. studied a range of
ensemble methods, and identified a preferred method for imbalanced
datasets Zhang et al., 2009 (Zhang & Hughes-Oliver, 2009).

4.3. Hybrid models

A number of in silico models have also been combined in the form of
hybrid intelligent systems (Amaury et al., 2007). Compared with the
approaches previously described, where pre-existing models are in-
tegrated a posteriori, the integration of different models is planned up-
front. In this context, neural networks with fuzzy systems (Neagu,
2003), and neural networks with symbolic rules, have been the most
used (Gini et al., 1998).

Hybrid intelligent architectures can be classified in two main cate-
gories: stand-alone, and integrated. Stand-alone systems combine dif-
ferent techniques in a single computational model, sharing data struc-
tures and knowledge representations. This is the case for many neuro-
fuzzy systems. Integrated hybrid systems combine various techniques
and focus on their interaction; for instance, genetic algorithms are used
in the selection of the most relevant variables and are then further
combined with learning methods to build a classifier (Amaury et al.,
2007).

Well-known techniques may have limitations; however, these can be
overcome through integration with complementary methods. Table 2
compares the pros and cons of the most common systems - i.e. expert
systems (ES), neural networks (NN), fuzzy systems (FS), and genetic
algorithms (GA) - and summarises their technical features.

Briefly, the integration of results generated from in silico models can
be visualised at two levels. The first level includes individual models
built in the classical manner or in silico models. Then, the second level
takes their results as inputs into a software platform (Fig. 2).

The use of hybrid systems is particularly appealing since it can
employ models that are already available and integrate them to create a
broader system.

For example, Gini et al. integrated a neural network predicting the
dose response relationship for the carcinogenicity of aromatic

compounds with a rule-based system that assessed chemical fragments
to predict the carcinogenicity classification (Gini et al., 1999). More
detailed discussion on the use of hybrid methods in the QSAR field is
given in Amaury et al. (Amaury et al., 2007)

Another case of integrated models includes prediction of ecotox-
icological properties of pesticides (Benfenati, 2007). Five environ-
mental endpoints were modelled using hybrid systems and outputs of
each individual model were combined as inputs in an integrated soft-
ware, providing more robust predictions.

Another example is the CAESAR mutagenicity (Ames test) model
within VEGA. It is a hybrid model, composed of a statistical model
predicting whether the substance is mutagenic or not; in order to in-
crease the sensitivity, a second model is applied to substances that have
been predicted to be negative using a set of rules (Ferrari and Gini,
2010). If the output of the second model also predicts mutagenicity, the
software stops. In contrast, if the output of the second model predicts
non-mutagenicity, a third model is applied based on another set of rules
to obtain additional assessment regarding mutagenicity or non-muta-
genicity.

4.4. Learning methods

Learning methods constitute a further step towards more complex
integration of the results from different models. With the approaches
described previously, only a priori information and prediction results
could be integrated. In contrast, learning methods optimise the in-
tegration of different models based on a posteriori results when pre-
dicting new chemicals, so that data on chemicals not used in any of the
separate models are needed. In most cases, this requirement is data
demanding, because typically all chemicals with available activity data
are already used in the development of individual models (i.e. the
training and test sets).

In multiclass classification (Benfenati et al., 2002), the learned
combination from five models with a neurofuzzy method gave better

Table 2
The main features of ES, NN, FS, and GA.

Property ES NN FS GA

Knowledge representation Good Very poor Good Poor
Knowledge discovery Very poor Good Poor Fair
Explanation ability Good Very poor Good Poor
Tolerance to imprecision Bad Good Good Good
Tolerance to uncertainty Fair Good Good Good
Adaptability Very poor Good Poor Good
Learning ability Very poor Good Very poor Good
Maintainability Very poor Good Fair Fair

Fig. 2. Integration of individual models into a hybrid model.
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prediction accuracy for predicting fish toxicity of organophosphorus
pesticides. In another example, the authors used a neural network
programmed to learn and combine models for the prediction of pesti-
cide oral LD50 in quail for great improvement in accuracy (Gini et al.,
2009).

4.5. Expert-based integration of in silico results from different models

In certain circumstances, expert judgment provides decision points
on how to manage the results of the different models. Ellison et al.
proposed a WoE approach for in silico methods for assessing skin sen-
sitisation potential based on semi-quantitative scoring of the models
using expert judgment (Ellison et al., 2010). Price and Chaudhry as-
sessed the contribution of different individual input data to build QSAR
models by a WoE approach for the evaluation of toxicity from chemicals
migrating from food packaging, using a number of steps as follows:
(Price and Chaudhry, 2014)

1) Data with low reliability from a (Q)SAR were excluded.
2) Data from “out of domain” compounds were excluded.
3) ‘Positive’ predictions were assigned if more than one method re-

turned a positive prediction and fewer than two gave a negative or
equivocal prediction.

4) ‘Negative’ predictions were assigned if more than one method re-
turned a negative prediction and fewer than two gave a positive or
equivocal prediction.

5) ‘Equivocal’ predictions were assigned if one of the above conditions
was not fulfilled.

6) The final prediction of toxicity for each endpoint was based on a
combination of results from read-across, QSAR models within
VEGA, and the OECD QSAR Toolbox. The assessment showed that
65 of the 136 migrant packaging compounds were outside the do-
main of any of the relevant QSARs in the Toolbox. For these com-
pounds, SAs were used for carcinogenicity or mutagenicity, together
with read-across and VEGA results. These SARs are part of the
profiling module of the Toolbox and comprise carcinogenicity and
mutagenicity alerts from the expert system Toxtree (http://toxtree.
sourceforge.net/). An unequivocal prediction was recorded when at
least two results were in agreement.

7) For read-across purposes, QSARs were available for analogs of the
migrant compounds in the first place since this was one of the cri-
teria for their selection. To compare the individual models used on
both sets of compounds to derive the WoE predictions, standard
statistical parameters were used to assess the quality of the predic-
tions.

Integration of models for the prediction of BCF has been applied by
other studies for which a workflow was developed to identify the
conditions producing more reliable results (Gissi et al., 2013). The
components were the inputs of the different models, their relative di-
versity as well as the ADI (note that the ADI is different for each sub-
stance). Later on Grisoni et al. applied the integrated strategy and
compared the results with other models for BCF prediction (Grisoni
et al., 2015). The authors found that the integrated strategy did not
provide better predictions but a broader AD.

4.5.1. Sequential integration of in silico models
In silico models may be processed in parallel or in a sequential

manner. The latter requires the identification of exclusion criteria
which may be applied as a filter, or to the identification of the preferred
model.

Some results may be excluded for their low prediction reliability as
described in Price and Chaudhry (Price and Chaudhry, 2014). Another
strategy is to identify the preferred model, providing good prediction,
and adding other models if necessary. For instance, if a model specific
for a certain chemical class is available, it is generally preferred over a

model developed for a broader chemical space.
When a large number of chemical classes is present in the dataset,

specific QSARs can be developed for each class, and an “expert selec-
tion” approach can be applied to find the best QSAR model(s) for a
specific substance. This approach gave good results for the prediction of
the lethal concentration for 50% the animals (LC50) in fathead minnow,
with prediction errors 30% lower than that from a QSAR built on the
entire dataset (Koenig et al., 2004). Another example is the above de-
scribed CAESAR model for mutagenicity, which integrates statistics and
expert-based rules (Ferrari and Gini, 2010).

5. Integration of prediction results from read-across
methodologies: tools and results

In most cases reported so far, methods for the integration of pre-
diction results from read-across methodologies have been based on
expert judgment. This may give subjective results, because such an
evaluation depends on personal expertise, and the parameters used to
evaluate different lines of evidence may not be harmonised.

Some QSAR models provide the experimental values of the chemi-
cals similar to the target compounds, as VEGA and TEST. This in-
formation can be used to facilitate read-across. The process is re-
producible if it is run with automatic protocols so that these programs
can be used for read-across, disregarding the predicted values.
Furthermore, there are statistical QSAR models based on k-nearest
neighbour (kNN), searching for the k most similar compounds, which
also constitute a kind of automatic read-across (Manganaro et al.,
2016).

A number of software have been specifically designed for read-
across including:

• The OECD toolbox (www.qsartoolbox.org) allows the user to per-
form read-across, and provides several profilers to explore the pos-
sible mechanisms associated with a toxic effect or hazard property.

• ToxRead (www.toxread.eu) graphically shows chemicals similar to
the query molecule, and provides a rationale for the effect in rela-
tion to the target compound. ToxRead represents all the elements for
the evaluation on the same scheme - the similar substances, the rules
that apply to the target compounds, and the similar compounds that
have rules in common with the target compound. Based on the
presence of active and inactive compounds, and of similar com-
pounds, ToxRead calculates the effect value for the target compound
(Gini et al., 2014).

• AMBIT offers another tool for read-across and includes the sub-
stances registered in REACH (http://cefic-lri.org/lri_toolbox/ambit/
). However, the tool highlights legal disclaimers preventing the use
of the available registered data for commercial purposes.

• Toxmatch is an open-source tool for the assessment of similarity for
multiple properties which facilitates read-across and grouping
(https://eurl-ecvam.jrc.ec.europa.eu/laboratoriesresearch/
predictive_toxicology/qsar_tools/toxmatch). For a recent review see
Patlewicz et al. (Patlewicz et al., 2017)

Recently, several studies recognised that the development of read-
across strategies will benefit from the integration of multiple properties
and criteria, which are not limited to the similarity based on the che-
mical structure. These include physicochemical, toxicokinetic and tox-
icodynamic properties which can also be used to evaluate similarity
between chemicals (Schultz et al., 2015; Schultz and Cronin, 2017;
Schultz & Richarz, 2019; Kuseva et al., 2019; Cronin et al., 2019).
Relevant physicochemical properties may include logKow (the partition
coefficient between octanol and water), water solubility, melting point,
boiling point, hydrolysis rate, and Henry constant. These properties are
often linked to bioavailability, and are closely related to a range of
toxicological endpoints, both of ecotoxicological and human relevance.
Toxicokinetics and/or (a)biotic transformation may strongly affect the
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behaviour of the chemical substances, including metabolic pathways.
The biological and toxicological similarities are also strongly linked to
the read-across hypothesis. Recently, mechanistic data and information,
assessed through mode of action or adverse outcome pathways (AOP)
has raised interest for use in read-across (Schultz et al., 2015). Thus,
these properties can also be applied to identify similar compounds.

Novel testing methods have also been indicated as useful support for
read-across (Berggren et al., 2015). Read-across has also been described
within guidelines published by regulatory authorities, such as ECHA,
and these clearly shows that there is both a theoretical and a practical
interest in such non-testing method (European Chemicals Agency,
2017b).

For read-across, typically only one assessment is performed fol-
lowing a single conceptual pathway. Indeed, read-across is context-
dependent (Schultz and Cronin, 2017). Some studies have addressed
the validation of read-across. For instance, one study has evaluated the
results of read-across for 27 substances assessed by several experts for
three endpoints: mutagenicity, BCF and fish acute toxicity and results
using ToxRead provided good reproducibility (Benfenati et al., 2016).

6. Integrating evidence

6.1. Advantages and disadvantages of ensemble methods

Ensemble models have a number of advantages over a single model.
First of all, the use of a single model implies rejecting a priori part of the
evidence that may be available from other models. The second ad-
vantage is of statistical nature. It is hard to find the best model but it is
possible to find several good models. Integrating their outputs may
reduce the effect of random noise in data and avoid over- or under-
estimation (Gaudin et al., 2012). A third advantage is data availability,
since often there are too few data to build individual models with ro-
bust predictions. In this case, a resampling technique can be applied to
generate different overlapping subsets, which can be applied to train
the single model, and then create an ensemble of models.

Another advantage of ensemble models regards diversity of the
available endpoints (e.g. in vitro, in vivo, OMICs, etc.), and the experi-
mental test species (e.g. rat, mouse, dog, rabbit, etc.). Such diverse data
do not allow building a single classifier or continuous model, but rather
different classifiers or continuous models from each data/endpoint type
of the same nature. These models can be integrated using ensemble
models.

The disadvantages of ensemble methods are related to complexity of
the integration of the numerous models to be executed, and diversity of
the integration methods.

Besides these disadvantages, there are at least two other main is-
sues: (Price and Chaudhry, 2014) the time required to run the models
and to integrate them, and (Benfenati et al., 2007) the cost of the
models, which may be high for commercial software. One partial so-
lution is to use free tools and platforms which automatically integrate
results of different models as in the already cited TEST and VEGA
systems. Roy et al. has made available a free program for integrating
multiple models in three possible ways, from all the predictions, or the
weighted predictions, or selecting the best (Roy et al., 2018).

6.2. Integrating the results from individual (Q)SAR and read-across models

Fig. 3 illustrates major factors impacting the integration of the
elements of non-testing methods such as QSAR and read-across. The
expert uses her/his knowledge to assess the substance(s) for (eco)tox-
icological properties. The predicted values from in silico and read-across
methods to be integrated should be relevant, reliable and consistent and
those deserve attention to support the expert in the assessment.

Table 3 indicates the prevailing elements within the (Q)SAR and
read-across approaches. (Q)SARs are general models for which detailed
knowledge of the property may not be as explicit and detailed as a

specific read-across. Indeed, read-across are often focused on specific
chemicals, and the information applied for read-across relates to the
chemicals (target and source chemical(s)), and can include other types
of evidence (such as target organ, plausible mode or mechanism of
action, presence of one or more SAs, etc.). All these details are not al-
ways considered in (Q)SAR models.

On the other hand, (Q)SAR models may use well-defined parameters
(e.g. polarity, solubility, presence of a certain active fragment in the
molecule) and thus may indicate a solid, general and transparent sci-
entific basis associated with the prediction.

In general, read-across approaches apply to a narrow chemical
space, and are appropriate for compounds of closely similar structure. It
is not recommended to derive conclusions from substances that do not
share similar properties. In addition, it is important to note that che-
mical similarity is one criterion to address similarity and there are also
others such as physicochemical properties, exposure, source, biological
and toxicological effect, use and regulatory criteria.

Referring to the reproducibility of the experimental value applied to
read-across, results from a single compound are considered less reliable
compared with those based on a range of compounds. Ideally, the
quality of the data predicting the property values of the substances used
for read-across should be higher than in the case of QSAR.

Various QSAR programs and software platforms include an assess-
ment of chemicals similarity to the target compound, and the results
can be directly used for read-across assessment. For example, ToxRead
integrates the results of QSAR models and read-across evaluation for
mutagenicity as a single output.

In any case, the use of optimised software tools for the integration of
in silico tools with automated functions should not undermine the role
of expert judgment for assessing the results for their consistency, re-
levance, limitations and the corresponding uncertainties particularly
for conflicting outcomes. Overall, the evaluation resulting from the
application of QSAR and read-across tools should be integrated based
on the evidence available. This requires the evaluation of each in-
dividual model prior to integration, the assessment of the results of the
QSAR models used, and finally the assessment of the combined QSAR
and read-across results.

6.2.1. Integrating concordant results
If the results of different models/tools agree, the evaluation is

simple, and the only issue is the level of reliability. If one of the values
is sufficiently reliable, the others will contribute towards raising the
overall level of confidence.

However, things may differ if results agree only for a series of
models, but none of them is individually supported by the evidence that
the prediction is valid. It may happen for results of models lacking the
AD assessment. Anyhow, as all the results support each other, the
confidence can increase by increasing the number of models.

Table 4 summarises elements of uncertainty analysis for the inter-
pretation of the results from in silico methods in relation to increasing
evidence (columns) and agreement between models (rows) (adapted
from the IPCC guidance) (Mastrandrea et al., 2010). In principle, con-
fidence in the model results is highest as agreement and evidence are
highest and the reverse provides the lowest confidence. In the case of a
very large number of QSAR models, the user may still obtain sufficient
confidence in the results, even if the models are not fully transparent.

Factors increasing the confidence of the assessment include:

• Number of models in agreement;

• Information on the applicability domain of the models;

• Identification of the scientific criterion for the effect/property – e.g.
SA/molecular feature associated with toxic properties;

• Number of similar compounds in agreement with experimental va-
lues;

• Agreement between the results from in silicomodels and read-across.
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Conversely, factors increasing the uncertainty of the assessment
include:

• Limited number of models;

• Lack of information on the applicability domain of the model;

• Limited number of similar compounds;

• Conflicting results between different models;

• Conflicting results between similar compounds;

• Lack of knowledge regarding the scientific criterion for the effect/
property.

Fig. 3. Scheme for the integration of the results from in silico models and read-across methods. Experts evaluates the lines of evidence for each endpoint for their
relevance, reliability and consistency. In silico methods may help experts in this process particularly to support the identification of the most robust datasets for the
context of the assessment. Similarly, tools for read-across may identify datasets which may not be adequate for the purpose of the assessment. During the process,
experts can integrate the results from multiple sources, applying weights related to the relevance, reliability and consistency of the results.
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6.2.2. Integrating conflicting results
In the case of conflicting results, the two separate lines of evidence

obtained from results of QSAR model predictions and read-across ap-
proaches, should be carefully assessed. This often requires careful
analysis of the scientific criteria to classify the effect or property dealt
with by the QSARs or the read-across and it is useful to identify similar
compounds as a starting point. This may be the preferred approach,
since evidence associated with experimental values, i.e. read across, are
considered more robust than that from the results of QSAR models. If
the read-across also indicates an adverse (potent) effect or property, it
may be difficult to find a solid scientific ground which supports lack of
effects, even if the QSAR model predicts it. In this case, a strategy would
be to document the scientific ground demonstrating that such adverse
effect or property is not likely for the target compound, due for example
to pharmacokinetic properties which would not apply to similar com-
pounds.

For situations under which no closely similar compounds are
available, the read-across evaluation may become weak, and results
from QSAR models may be more informative.

For models predicting effects for which a sound scientific ground
has been defined as an explicit rule, e.g. SA, this may provide relevant,
reliable and consistent results. If the same SA is present in the target
and source compound, this may overrule the result of the in silico
model. Fig. 4 illustrates the approach using ToxRead to predict the
output of the mutagenicity assessment for diethylcarbamic chloride.

In this graph, chemicals are shown as circles, and rules as triangles.
The target compound (diethylcarbamic chloride), at the center, is
connected to three triangles, representing read-across by three rules all
indicating mutagenicity because the triangles point downwards and are
red. The rule with the lowest p-value for toxicity is at the top, and the
values increase clockwise. Thus, we start with rule R3.0, referring to the
fragment N-C-Cl. Linked to the alerts are chemicals found in the data-
base that are similar to the target and fall under the specific rule. These
similar compounds are represented as circles and denoted by CAS
numbers; all are shown in red because they have already been tested
positive for mutagenicity. The size of the similar compounds depicts the
level of similarity (larger ones are closer). From this picture, it can be
seen that the most similar compound is CAS 79-44-7, which is di-
methylcarbamic chloride (see Fig. 5). This substance is very similar to
the target compound, the only difference being the carbon chain linked
to the nitrogen, with one or two carbon atoms. Thus, this provides a
strong line of evidence towards mutagenicity. Positivity is further

confirmed by three other similar compounds that are also mutagenic.
The combination of these two lines of evidence is important for the
overall conclusion on mutagenicity of the query compound.

The other two SAs are rules R1.0 and R2.0, which are closely related
- both being acyl halides - R1.0 includes different halogens, while R2.0
refers only to the acyl chloride. Linked to R.0, there are two mutagenic
compounds, and one non-mutagenic. Chemical 79-44-7 is again asso-
ciated with this rule. However, there is also a non-mutagenic compound
(CAS 2941-64-2), which is S-ethyl chloridothiocarbonate; it contains no
nitrogen and its sulfur is linked to the C]O moiety. This is a major
difference compared to the target compound and, therefore, does not
necessarily conflict with the fact that other substances with the acyl-
chloride linked to nitrogen (and hence more similar to the query
compound) are mutagenic. Very similar considerations apply to the rule
R1.0, because these rules are closely related, and the similar com-
pounds are the same. Thus, the read-across results provide a strong
evidence for mutagenicity from rule R3.0 and the related compounds,
and partial support from the evidence from rules R2.0 and 1.0.

ToxRead also shows similar compounds (Fig. 4), regardless of the
presence of rules. The most similar compounds, shown in Fig. 3 as
circles directly linked to the target compound, are dimethylcarbamic
chloride (CAS 79-44-7, already discussed), N,N-diethylacetamide (CAS
127-19-5), and N-nitrosodiethylamine (CAS 55-18-5). Two of them are
mutagenic whereas N,N-diethylacetamide is non-mutagenic but quite
similar to the target compound. Its similarity index to the target com-
pound is 0.84. The information provided by this substance does not
contradict the line of evidence of mutagenic effect relating to rule R3.0,
because this rule is absent in CAS 127-19-5, and therefore despite being
structurally similar it is not relevant for the assessment.

Chemical CAS 55-18-5 poses a similar situation as it does not con-
tain the same alerts for mutagenicity present in the target compound,
even though it is quite similar (similarity index 0.817). Thus, this
substance is not important for the assessment due to the absence of the
relevant rule in the target compound. Table 5 summarises the elements
used for the assessment. This shows that a simple evaluation of the most
similar compounds, as in Fig. 4, without further expert scrutiny, may be
misleading: one substance is mutagenic and relevant, whilst the other
two are not relevant because neither has the relevant information re-
lated to mutagenicity. Thus, the user needs to look beyond simple
chemical similarity as it may provide false indications.

In ToxRead, the results of VEGA QSAR models appear by clicking on
the target compound. All four QSAR models predict the substance as

Table 3
Knowledge perspectives and range of approaches available in read-across and QSAR models.

Local approach General approach

Implicit knowledge Similar compounds: Only one or few substances are used. (Q)SAR models. At the basis of the model there is a large number of
substances with the relative property values.

Explicit knowledge SAs, mode-of-action, mechanism of action, etc. relative to a specific
property. The user should check if the same theoretical mechanism is
applicable to the target and the similar compounds.

Pharmacokinetic properties, polarity, etc. Ideally, the descriptors used within
the model are associated with the mechanism involved in the process to be
modelled.

Table 4
The integration of different scenarios with varying levels of agreement and number of tools.

Limited evidence Medium evidence High evidence

High agreement Many QSAR models agree, but there is limited
evidence from read across/similar compounds/
alerts.

Many QSAR models agree and there is a medium
level of evidence from read-across/similar
compounds/alerts.

Many QSAR models agree and there is a high level
of evidence from read-across/similar compounds/
alerts.

Medium agreement Medium agreement between some QSAR
models and limited evidence from read-across/
similar compounds/alerts.

Medium agreement between some QSAR models
and a medium level of evidence from read-across/
similar compounds/alerts.

Medium agreement between some QSAR models
and a high level of evidence from read-across/similar
compounds/alerts.

Poor agreement Low number of QSAR models in general and/or
poor agreement among the models. Also limited
evidence from read-across/similar compounds/
alerts.

Low number of QSAR models in general and/or
poor agreement among the models. Also a medium
level of evidence from read-across/similar
compounds/alerts.

Low number of QSAR models in general and poor
agreement among the models. Also a high level of
evidence from read-across/similar compounds/
alerts.
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mutagenic, with different levels of ADI; ToxRead combines the results
of read-across and QSAR, and provides the overall assessment for the
compound as mutagenic.

This case study demonstrates the importance of assessing different
lines of evidence generated from in silico models and read-across ap-
proaches and specifically here three lines of evidence: (Price and
Chaudhry, 2014) similar compounds; (Benfenati et al., 2007) presence
and relevance of alerts; and (Chaudhry et al., 2007) results of an in-
dependent method (e.g. QSAR model). The availability of all these
elements simplifies the interpretation of the results to conclude,
whereas in contrast, ‘weaker’ evidence may be disregarded. For ex-
ample, a combination of a structural alert with data from similar
compounds greatly increases the confidence in the prediction. In such a
situation, it may be possible to over-rule the conflicting result from a
QSAR model.

7. Conclusions

The assessment of complex biological properties, such as chemical
toxicity, without involving the use of animals is not straightforward. In
the absence of a living and functioning biological organism, alternative
non-testing methods such as in silico models can at best provide pieces

of the evidence. However, if several strands of the partial evidence are
combined in a systematic way, they may provide sufficient overall
evidence to support conclusions with a robust scientific basis. Among
other alternative methods, in silico approaches stand out because they
provide low-cost and rapid means for qualitative and quantitative as-
sessment of chemical toxicity. In silico tools have also diversified hugely
over the years and have become more stringent to provide relevant,
reliable and consistent results. However, the outcomes of various in
silico approaches still face the challenge of their wider acceptance, to

Fig. 4. Graph representing mutagenicity as-
sessment for diethylcarbamic chloride, si-
milar compounds and toxicity alerts using
ToxRead. The numbers in the CAS number
format (XXX-YY-Z) indicate the substances,
which in most of the cases appear more than
once. The numbers in the triangles indicate
the rules, such as structural alerts. Important
substances are discussed in Table 5.

Fig. 5. From left to right - chemical structures of dimethylcarbamic chloride (CAS 79-44-7), N,N-diethylacetamide (CAS 127-19-5), and N-nitrosodiethylamine (CAS
55-18-5).

Table 5
Elements in common with the target compound.

Similar 1:
79–44-7

Similar 2:
127–19-5

Similar 3: 55-
18-5

Mutagenic Yes No Yes
Rule 3.0 Yes No No
Rule 2.0 Yes No No
Rule 1.0 Yes No No
Similarity with the target

compound
0.861 0.840 0.817

Relevance Yes No No
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assemble sufficient evidence for hazard assessment and ultimately for
their regulatory use in chemical risk assessment. The recent EFSA gui-
dance document on the use of the WoE approach in scientific assess-
ments provides a robust framework and methodology to assemble,
weigh and integrate lines of evidence under different data-poor and
data-rich scenarios (Hardy et al., 2017).

This review has focused on the methods and stepwise approaches to
integrate results from available in silico models and read-across ap-
proaches which can be used to predict hazard or property values.
Concerning such integration approaches, data gaps have been identified
from the literature particularly in relation to recent QSAR and read-
across models and software. It is widely recognised that integration of
the results from different (Q)SARs and other in silico tools can improve
the overall confidence in the predicted estimates. In doing so, it is
critical to consider key criteria about evidence, agreement and un-
certainty that will affect relevance, reliability and consistency of the
results. As discussed in this article, several strategies for the integration
of results from are available, and for QSAR models the predicted value,
the model's AD and the information on structurally-similar compounds
are of critical importance. It is also clear that integration of the results
from different tools must not be taken as a mere aggregation of the
numbers. A number of other aspects also need consideration, such as
the underlying principles and rules, SAs, chemical similarity, similar
physicochemical properties and relevant molecular descriptors. Each of
these elements should be included in the overall integration of the re-
sults from different models/models. It is also important that the overall
process of integration is transparent, and allows exploration and critical
assessment of the various steps. Indeed, interpretation of the results
needs to be performed by the user in the context of the assessment, as
integration tools can only provide a means for assembling the relevant
elements. In this context, the integration methods and steps presented
here also aim to break down the current barriers between QSARs and
read-across approaches and facilitate their acceptance and application
in regulatory risk assessment.

The integration of different models potentially offers reliability and
confidence in the assessments because of the consideration of multiple
lines of evidence. However, this also requires the user to be familiar
with QSAR modelling approaches and read-across, and to take into
consideration the detailed information provided by each tool to inter-
pret the output and draw conclusions with confidence.

The use of data regarding physicochemical properties will further
improve the integration of QSAR models and read-across. These data
may be of experimental or predicted nature, in the case of missing
values. These data are not only relevant to analysing chemical struc-
tures, but also to exploring and understanding the biological and tox-
icological processes that are fundamental to the interaction of a sub-
stance with a biological target site to elicit an adverse effect.

The integration of the results from multiple modelling tools is ex-
pected to increase with the increased use of large collection of data
collection, such as ToxCast (https://www.epa.gov/chemical-research/
toxicity-forecasting) and the US-EPA computational dashboard. The
availability of toxicological data in structured databases will offer
greater possibilities to apply read-across approaches, and a basis to
develop new in silico models. A recent example includes EFSA's che-
mical hazards database: OpenFoodTox (https://www.efsa.europa.eu/
en/microstrategy/openfoodtox). OpenFoodTox contains EFSA's hazards
data used in over 1650 risk assessments for over 4500 chemicals. The
availability of in silico tools for toxicokinetic parameters, including
those describing absorption, distribution, metabolism and excretion
(ADME), represents another very important factor to be added to the
weight of evidence. For instance, the use of toxicokinetic data may help
to select data on chemicals and species relevant for the target com-
pound, since the metabolism may vary between different species.

Thus, in the future, the general framework might remain valid,
however, data complexity and steps may probably be added while in-
creasing the level of relevance and reliability and consistency required

to decipher the complexity of the biological and toxicological processes.
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