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This paper, dedicated to new function space topologies between the uniform 
topology and the Whitney topology also in the setting of the ωμ-metric spaces, 
splits in two parts. In the former, where X is a Tychonoff space and (Y, d) is 
a non-discrete metric space, we explore suggestive uniformizable function space 
topologies on C(X, Y ), the set of all continuous functions from X to Y , located 
between the uniform topology and the Whitney topology. In the Whitney uniformity, 
whose natural associated topology is the Whitney topology, any continuous function 
from X to the positive reals gives a measure of closeness between functions in 
C(X, Y ). But, a less stringent and, by the way, efficient uniform control can be 
performed equally well by limiting, as for example at a first glance, to the measures 
deriving from all continuous positive functions continuously extendable to a T2-
compactification of X. And next, when X is a local proximity space, i.e. densely 
embedded in a natural T2 local compactification l(X), by limiting to the positive 
ones in C(l(X), R). We investigate two classes of Tychonoff spaces. That of locally 
compact ones splittable in two essentially different cases: X hemicompact or not. 
And, that of spaces densely embedded in a locally compact one. We prove that, 
whenever X is hemicompact, then any weak Whitney topology relative to a T2-
compactification of X agrees with the classical one. Whenever X is locally compact 
but not hemicompact, then the weak Whitney topology associated with its one-
point compactification reduces just to the uniform topology. In the case X is locally 
compact, paracompact but not hemicompact, thus the free union of an uncountable 
family of open σ-compact subsets, then, between the uniform topology and the 
Whitney topology there is a great variety of weak Whitney topologies relative to 
T2-compactifications of X. Also, whenever X is not locally compact, weak Whitney 
topologies associated with different T2 local compactifications of X are generally 
different as is the case if X is the rational Euclidean line. So, weakening the Whitney 
topology but without renouncing to the uniform convergence, we produce different 
uniformizable topologies on C(X, Y ) related to various significant structures on X.
In the latter, since ωμ-metric spaces, where ωμ is an ordinal number, fill a large and 
attractive class of peculiar uniform spaces containing the usual metric ones, we focus 
our attention on the ωμ-metric framework. Indeed, we extend the Whitney topology 
to C(X, Y ), where X is again a Tychonoff space but Y is replaced with an ωμ-
metric space. Precisely, the range space Y carries a distance ρ : Y ×Y → G, sharing 
the usual formal properties with real metrics but valued in an ordered Abelian 
additive group G, which admits a strictly decreasing ωμ-sequence converging to zero 
in the order topology. By a proof strategy essentially based on zero-dimensionality 
of any ωμ-metric space with μ > 0, we achieve, among others, the following result: 
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Whenever X is an ωμ-additive and paracompact space and (Y, ρ, G) is an ωμ-metric 
space, then the Whitney topology on C(X, Y ) is independent of the ωμ-metric ρ. 
More precisely, the Whitney topology is a topological character as in the classical 
metric case, μ = 0, and X paracompact.

© 2020 The Author. Published by Elsevier B.V. This is an open access article 
under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let X be a Tychonoff space and (Y, d) a non-discrete metric space. The Whitney topology or also fine 
topology, or strong topology on C(X, Y ), the set of all continuous functions from X to Y , is the topology 
having as a local base at any f ∈ C(X, Y ) the family of all sets of the type:

T (f, ε) := {g ∈ C(X,Y ) : d(f(x), g(x)) < ε(x), ∀x ∈ X}

where ε runs over all continuous functions from X to the real positive numbers [9], [10], [5], [2], [13], [11].
The Whitney uniformity on C(X, Y ) admits as diagonal basic neighborhoods the sets of the type:

U(ε) := {(f, g) ∈ C(X,Y ) : d(f(x), g(x)) < ε(x), ∀x ∈ X}

where ε runs over all continuous functions from X to the real positive numbers.
In the Whitney uniformity, whose natural underlying topology is just the Whitney topology, any contin-

uous function from X to the positive reals gives a measure of closeness between functions in C(X, Y ). But, 
a less stringent and, by the way, efficient uniform control can be performed equally well by limiting, as for 
example at a first glance, to the measures deriving from all continuous positive functions continuously ex-
tendable to a T2-compactification of X. And next, when X is a local proximity space, i.e. densely embedded 
in a natural T2 local compactification l(X), by limiting to those ones in C(l(X), R+).

When thinking to reduce functions we look for a natural and appropriate way. So, when focusing on 
this, since the Stone-C̆ech compactification β(X) of X is characterized by the property: any real-valued 
continuous and bounded function on X continuously extends to β(X), it is evident that the Whitney 
topology on C(X, Y ) relates naturally to β(X). In view of this, it comes in mind to reduce C(X, R+) to 
the set of those functions which are continuously extendable to a T2-compactification γ(X) of X, which we 
denote as Cγ(X)(X, R+). And, indeed, the usual Whitney topology on C(X, Y ) comes naturally associated 
with the Stone-C̆ech compactification of X. Generally, the weak Whitney topologies relative to two distinct 
T2-compactifications of X are different. But, it can happen that they all coincide with each other as, for 
example, in the case of the real Euclidean line.

We investigate two different classes of Tychonoff spaces. The former: the class of locally compact spaces 
splittable in two essentially different subclasses: hemicompact or not. The latter: the class of Tychonoff 
spaces densely embedded in a T2 locally compact space or, in other words, the class of local proximity 
spaces. We prove that, whenever X is T2 locally compact and σ-compact, or equivalently hemicompact, then 
all weak Whitney topologies relative to a T2-compactification of X agree with the usual one. Whenever X is 
T2 and locally compact but not hemicompact, then the weak Whitney topology associated with the one-point-
compactification of X reduces just to the uniform topology. Furthermore, whenever X is T2 locally compact 
and paracompact but not hemicompact, thus the free union of an uncountable family of open σ-compact 
subsets, then there is a great variety of weak Whitney topologies relative to T2-compactifications of X.

The notion of local proximity space is a combination of proximity with boundedness with some natural 
reciprocal compatibility conditions [12]. By embedding the underlying space of a local proximity space X
in the T2 local compactification l(X) naturally associated with it, we can apply to the local proximity case 
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most of the results achieved in the locally compact one. Any given T2 local compactification l(X) of X
takes up two features of X. The former one is the separated EF-proximity on X induced by the one-point 
compactification of l(X), i.e. two subsets of X are far iff their closures in l(X) don’t intersect and one of 
them is compact, [14], [6]. The latter one is the bornology [12], [7], done by all subsets of X whose closure 
in l(X) is compact, which are called bounded. In the proximal case the uniform control with a consequential 
appropriate way to topologize can be operated by limiting to the functions in C(l(X), R+). In the case 
the bornology has a countable base or, equivalently, l(X) is hemicompact, as we show in Theorem 4.1, we 
achieve as issue the following: Whichever is Y , a sequence of continuous functions {fn : X → Y, n ∈ N+}
converges in the weak Whitney topology associated with l(X) to a function f ∈ C(X, Y ) iff it uniformly 
converges to f and there is a bounded set B and a positive number n0 so that fn coincides with f outside 
B and for each n > no.

In the examined cases, the players in substitution of C(X, R+) are Cγ(X)(X, R+) and C(l(X), R+), with 
γ(X), l(X) running over all T2-compactifications, T2 local compactifications of X, respectively. In every 
case, all examined weak Whitney topologies are uniformizable.

Finally, we can enlarge the range Y to run inside all ωμ-metric spaces.
In [15], independently of [11], Sikorski introduced the concept of ωμ-metric space as a set X equipped 

with a distance ρ : Y × Y → G valued in a totally ordered Abelian additive group G, which admits a 
strictly decreasing ωμ-sequence converging to zero in the order topology, sharing the usual formal properties 
with real metrics. The ρ-balls, defined as usual, determine the natural topology τρ associated with (Y, ρ, G)
which has some peculiar properties giving us a powerful tool for achieving our results. The topology τρ is 
T2, paracompact, ωμ-additive, i.e. every intersection of |α| many open sets is open for each α < ωμ, and in 
the uncountable case, μ > 0, of covering dimension 0.

The proof technique in the ωμ-metric case when μ > 0 is really different from the usual metric one, μ = 0, 
and essentially based on the property: Any ωμ-additive paracompact space, and any ωμ-metric space is of 
this type, is zero-dimensional in the sense that every open cover admits a refinement of pairwise disjoint 
clopen sets, whenever μ > 0. From zero-dimensionality of any ωμ-metric space with μ > 0, we achieve, 
among others, the following result: Whenever X is an ωμ-additive and paracompact space and (Y, ρ, G) is 
an ωμ-metric space, then the Whitney topology on C(X, Y ) is independent of the ωμ-metric ρ. More precisely, 
the Whitney topology is a topological character as in the classical metric case, μ = 0, and X paracompact 
[10].

2. Some basic facts

In order to give some useful background and for more exhaustive information, the definitions, the termi-
nology and the results quoted below are drawn by [6], [14], [18], [8].

We summarize here a number of basic facts. We start by introducing the classical Whitney topology [9], 
[10]. Let X be a Tychonoff space and (Y, d) a non-discrete metric space. The Whitney topology or also fine 
topology [10], or strong topology [9] on C(X, Y ), the set of all continuous functions from X to Y , is the 
topology having as a local base at any f ∈ C(X, Y ) the family of all sets of the type:

T (f, ε) := {g ∈ C(X,Y ) : d(f(x), g(x)) < ε(x), ∀x ∈ X}

where ε runs over all continuous functions from X to the real positive numbers. The Whitney neighborhood 
T (f, ε) is usually referred as the tube centered at f with radius ε.

TheWhitney uniformity on C(X, Y ) admits as diagonal basic neighborhoods the sets of the type:

U(ε) := {(f, g) ∈ C(X,Y ) : d(f(x), g(x)) < ε(x), ∀x ∈ X}

where ε runs over all continuous functions from X to the real positive numbers.
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Firstly, we underline the following basic facts in the metric setting:

• For a Tychonoff space X the Whitney topology on C(X, R) (or more generally on C(X, Y ), where Y is a 
non-discrete metric space) is finer than the topology of uniform convergence and reduces to it iff the space 
X does not admit any real-valued positive continuous function whose range admits zero as its greatest lower 
bound, or, in other words, iff X is pseudo-compact.

• Whenever X is an n-dimensional topological manifold, i.e. a second countable T2 topological space for 
which every point has a neighborhood homeomorphic to the Euclidean space Rn, then a sequence {fn :
n ∈ N+} in C(X, R) converges in the Whitney topology to a function f iff it converges to f in the uniform 
topology and there are a positive integer n0 and a compact K so that fn(x) = f(x) for each n > n0 and 
each x outside K, see chapter 2: Function spaces in [9].

Trying in the next section to extend this result to the class of T2 locally compact (non-compact) spaces 
which are first countable at infinity we remind that: a space X is hemicompact if it is a union of countably 
many compact sets Kn so that Kn ⊂ int(Kn+1) for each n. In T2, hemicompactness is equivalent the one-
point compactification being first countable at infinity. Again in T2, hemicompactness is equivalent to local 
compactness plus σ-compactness; a space is σ-compact if it is a union of countably many compact subsets. 
And, once again in T2, hemicompactness is equivalent to local compactness plus the Lindelöf property as 
well. Furthermore, it is worth mentioning that in T2 hemicompact pseudo-compact spaces are compact [17]. 
Finally, any T2 locally compact and paracompact space is a free union of open σ-compact subspaces and, 
in particular, any T2 locally compact topological group can be seen as a free union of open σ-compact 
topological groups (not subgroups).

• Whenever X is paracompact, then the Whitney topology is independent of the metric d. More precisely, 
it is a topological character [10].

• The Whitney topology is not metrizable in general [10].

• Let Q be the rational Euclidean line. Then, any real-valued positive continuous function can be minorized 
by a locally constant function [5].

• Even when the space X is first countable at infinity it can happen that a net converges in the Whitney 
topology without being eventually constant outside a compact set, as proven in the following example.

Example 2.1. Let X be the set of non-negative real numbers. The set S of decreasing sequences of distinct 
real positive numbers {εn : n ≥ 0} converging to zero equipped with the relation < defined as {εn : n ≥
0}<{ηn : n ≥ 0} iff εn > ηn, ∀n ≥ 0, is preordered and filtered. For any given sequence {εn : n ≥ 0} in S, let 
us denote as f{εn:n≥0} : X → R the piecewise linear function whose graph relative to the interval [n, n +1] is 
the segment joining the point (n, εn) to (n +1, εn+1). Actually, we have a net, {f{εn:n≥0} : {εn : n ≥ 0} ∈ S}
that converges in the Whitney topology to the null function. But, any f{εn:n≥0} is different from the null 
function at each point of X. Namely, {f{εn:n≥0} : {εn : n ≥ 0} ∈ S} uniformly converges to the null function. 
For each positive ε > 0 it happens that f{εn:n≥0}(x) < ε for each sequence {εn : n ≥ 0} in S for which ε0
is less than ε and each point x in X. Next, let g : X → R+ be a continuous function having zero as its 
greatest lower bound. The function g has a positive minimum mn on each of the intervals [n, n + 1], n ≥ 0. 
Consequently, there are decreasing sequences of distinct real positive numbers {εn : n ≥ 0} converging to 
zero with εn < mn for each n ≥ 0. And, for each of them and for each n ≥ 0 and more for each x in [n, n +1]
it happens that f{εn:n≥0}(x) < mn < g(x). And the result is obtained.

And moreover, the following ones in the ωμ-metric setting.
In [15], Sikorski introduced the concept of ωμ-metric space as a set X equipped with a distance ρ :

Y × Y → G valued in a totally ordered Abelian additive group G, which admits a strictly decreasing ωμ-
sequence converging to zero in the order topology, sharing the usual formal properties, i.e. positiveness, 
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symmetry and triangle inequality, with real metrics. Recall that if (G, +, <) is a totally ordered Abelian 
group, whose neutral element 0 is not isolated in the order topology, the character of G is the minimal ordinal 
number ωμ for which there is a strictly decreasing ωμ-sequence convergent to 0 [4]. The ρ-balls, defined as 
usual, determine the natural topology τρ associated with (Y, ρ, G) which has some peculiar properties. The 
topology τρ is T2, paracompact, ωμ-additive, i.e. every |α| intersection of many open sets is open for each 
α < ωμ, and in the uncountable case μ > 0 of covering dimension 0, that is, any open covering of X admits 
a refinement of pairwise disjoint clopen sets of X.

• Furthermore, naturally attached to the topology τρ there is the totally ordered (with respect to the usual 
inclusion) diagonal uniformity Uρ having as a base {Uα : α < ωμ}, where {aα : α < ωμ} is a positive 
strictly decreasing ωμ-sequence converging to 0 and Uα := {(x, y) : ρ(x, y) < aα} for all α [1]. But, the 
converse implication is also true. In association with any diagonal uniformity with a totally ordered base 
{Uα : α < ωμ}, i.e. α < β ⇔ Uβ ⊂ Uα, of cardinality ℵμ, there is an ωμ-metric structure on X, of which 
it is a compatible uniformity, based on the group Jμ of the ωμ-sequences of integers carrying the pointwise 
addition and lexicographic order [16].

• Any totally ordered Abelian group G of character ωμ becomes naturally an ωμ-metric space when equipped 
with the absolute value ωμ-metric ρ defined as ρ(a, b) = |a − b|, a, b ∈ G, after introducing as the absolute 
value |a| = max{a, −a}, a ∈ G [4].

3. The locally compact case

In this section we investigate the locally compact case. In particular, the hemicompact case, the locally 
compact but not hemicompact case, the locally compact plus paracompact case.

Let X be a Tychonoff space, γ(X) a T2-compactification of X and (Y, d) a non-discrete metric space. We 
introduce on C(X, Y ) the weak Whitney topology associated with γ(X), τWγ(X) , as the topology having as 
a local base at any f ∈ C(X, Y ) the family of all sets of the type:

T (f, ε) := {g ∈ C(X,Y ) : d(f(x), g(x)) < ε(x), ∀x ∈ X}

where ε runs over Cγ(X)(X, R+), the set of all continuous functions from X to the positive reals continuously 
extendable to γ(X).

Theorem 3.1. Let X be a T2 locally compact but non-compact space. Then, X admits a real-valued positive 
continuous function continuously extendable to the one-point compactification of X having zero as its greatest 
lower bound iff X is first countable at infinity, or, equivalently, hemicompact.

Proof. Suppose X hemicompact. So, X can be written as a union of countably many compact sets Kn with 
Kn ⊂ int(Kn+1), n ≥ 1. There are two possibilities. The former: Fr(Kn) 	= ∅ for each n. In this case, after 
choosing a sequence {εn : n ≥ 1} of positive real numbers strictly decreasing to zero, we select for each n ≥ 1
a continuous function fn : Kn+1 \ int(Kn) → [εn+1, εn] so that fn(Fr(Kn)) = εn, fn(Fr(Kn+1)) = εn+1
and as f1 the constant function on K1 associated with ε1. Then, we can join together all fn to each other 
and to f1 in a unique global positive continuous function f . Of course, f admits zero as its greatest lower 
bound and, moreover, is continuously extendable at infinity. In fact, for each ε greater than 0 and greater 
than εn, f is less than ε outside Kn.

The latter: If the set of the empty boundaries is finite we proceed similarly. In the infinite case, for 
simplicity, X can be considered as the union of K1 with the family of pairwise disjoint closed sets {Kn+1\Kn :
n ≥ 1}. The function f , defined as f(x) = ε1 when x ∈ K1, f(x) = εn, when x ∈ Kn+1 \Kn and n ≥ 1, 
works well. Being locally constant, f is continuous, also positive and admits zero as its greatest lower bound. 
Moreover, as above, f is continuously extendable at infinity.
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The converse implication is also true. Let f : X → [0, 1] be a positive continuous function convergent to 
zero at infinity and {εn : n ≥ 1} a sequence of positive real numbers decreasing to zero. If we denote as 
f∞ the continuous extension of f to X ∪ {∞}, the one-point compactification of X, then {f−1

∞ ([0, εn[)} is a 
countable family of open neighborhoods of ∞ forming a local base. Indeed, by continuity, on any compact 
set K of X, f admits a positive minimum ε. Consequently, whenever εn is less than ε, K cannot intersect 
f−1
∞ ([0, εn[), which is therefore contained in X ∪ {∞} \K. And this completes the proof. �

Theorem 3.2. Let X be a T2 hemicompact space and (Y, d) any non-discrete metric space. Then any weak 
Whitney topology relative to a T2-compactification of X on C(X, Y ) agrees with the usual one.

Proof. In the case X is pseudo-compact, since the Whitney topology agrees with the uniform topology, the 
result is trivially obtained. Otherwise, since X is hemicompact but not pseudo-compact, then X admits 
a real-valued positive continuous function f which is infinitesimal at infinity, see Theorem 3.1. For that 
any other real positive continuous function g can be minorized with the function h = min(f, g) that in its 
turn is infinitesimal at infinity. Consequently, if a net converges with respect to the weak Whitney topology 
relative to the one-point compactification, it does converge with respect to any other one, as well. �

We give now some results on Whitney convergence for sequences. It is known that for an n-dimensional 
topological manifold M , see section 2, and chapter 2 in [9], a sequence {fn : M → R, n ∈ N+} converges 
in the Whitney topology to a limit f iff it converges to f in the uniform topology and fn agrees eventually 
with f outside a compact set of M .

In the absence of local compactness as in the rational case a sequence can converge in the Whitney 
topology without being eventually constant outside a compact set, as we prove with the next example.

Example 3.1. Let r be an irrational number and, for each integer n ∈ N+, σn : Q → R so defined: 
σn(q) = −q, when q ∈ ] − r/n, r/n[ and σn(q) = q, otherwise. Any σn agrees with the identity function iQ
except locally around zero where, instead, it agrees with the symmetry σ : Q → R such that σ(q) = −q

for all q. Two local symmetries σn, σm coincide except on ] − r/m, −r/n[∪]r/n, r/m[ when m > n. The 
sequence of the local symmetries {σn : n ∈ N+} converges in the Whitney topology to the identity function 
iQ. It happens that |σn(q) − q| = |2q| when q ∈] − r/n, r/n[ and is zero otherwise. Now, let ε : Q → R+ be 
a continuous function. Since the inequality |2q| < ε(q) holds in zero, then, by continuity, it holds around 
zero as for example in ] − r/n0, r/n0[. It follows that for each n ≥ n0, |σn(q) − q| is zero or less than ε(q). 
And convergence in the Whitney topology follows. Next, let K be a compact set in Q. Zero can be an 
accumulation point of K or not. If not, there is an integer n so that ] − r/n, r/n[ does not intersect K. But, 
in ] − r/n, r/n[ no σm agrees with iQ, when m ≥ n. In the other case, from compactness of K, zero can be 
approached by a sequence {qn : n ∈ N+} of rationals chosen outside K so that r/(n + 1) < qn < r/n. For 
each integer n ∈ N+, it happens that σn+k(qn) 	= σn(qn), when k > 0.

The following theorem generalizes the already known and above cited result for n-dimensional topological 
manifolds. We extend that to X being a T2 hemicompact space and Y any non-discrete metric space.

Theorem 3.3. Let X be a T2 hemicompact space and Y a non-discrete metric space. Then, a sequence 
{fn : n ∈ N+} in C(X, Y ) converges to f in the Whitney topology iff it converges to f in the uniform 
topology and, moreover, there are a compact set K in X and a natural number n0 so that fn(x) = f(x) for 
each n > n0 and x in X \K.

Proof. Consider X as a union of countably many compact sets Kn so that Kn ⊂ int(Kn+1), n ∈ N+. Of 
course, any compact set K is contained in some Kn. Suppose that {fn : n ∈ N+} converges in the Whitney 
topology to f and, at the same time, for each integer k there exist a positive integer nk greater than k and 
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a point xnk
outside Kk such that |fnk

(xnk
) − f(xnk

)| = εnk
> 0. Since any compact set is contained in 

some Kn, the sequence {xnk
: k ∈ N+} cannot admit any accumulation point in X. Finally, as previously 

proven in the first part of the Theorem 3.1, the hemicompactness of X allows to see any εnk
as the value 

taken in xnk
from a positive continuous function on X. And that contradicts the Whitney convergence. The 

converse implication derives easily from the very basic property: any real-valued continuous function admits 
minimum on every compact set, so yielding the coincidence of the uniform convergence with the Whitney 
convergence on any compact set. �

We exhibit the following example to show two different facts:

• Weak Whitney topologies associated with different T2-compactifications of X are generally different.

• • In local compactness but without hemicompactness the characterization of the Whitney convergence for 
sequences, as in Theorem 3.3, does not hold.

Example 3.2. Let X be a free union X = ∪{Rα : α ∈ A} of open fibers Rα each a homeomorphic copy of 
the Euclidean real line R and Y be a metric space. The space X is hemicompact iff the number of fibers 
is finite or countable. Consequently, whichever is Y , in that case all weak Whitney topologies on C(X, Y )
associated with T2-compactifications of X agree each other, see Theorem 3.2. On the other hand, when the 
family of fibers is uncountable, then the Whitney topology associated with the one-point compactification 
of X is the topology of uniform convergence, see Theorem 3.1. Moreover, the space X has different types of 
two-point compactifications admitting different relative weak Whitney topologies. Remind that a T2 space 
X admits an n-point compactification iff it is a union of non-empty non-compact pairwise disjoint open 
sets A1, ..., An with a compact set K [3]. When X splits in the union of two disjoint open sets A, B, each 
union of fibers, then the free union of their one-point compactifications is a two-point compactification of 
X. When one of the open set A is a union of countably many fibers, then a sequence {fn : X → Y, n ∈ N}
converges to f in the weak Whitney topology associated with the relative two-point compactification of X
iff it uniformly converges to f and there are a compact set K and a positive integer n0 so that fn(x) = f(x)
for each n > n0 and each x ∈ A \ K. We underline that A \ K is not the complement of a compact set 
in X. Namely, the complement of a compact set in X in the examined case has to contain uncountable 
families of fibers. If the splitting of X consists of the unions of two disjoint open sets A, B, both union of 
uncountably many fibers, then the relative weak Whitney topology reduces just to the uniform convergence. 
Of course, we can proceed by considering n-point compactifications, since X admits topologically distinct 
n-point compactifications for each n.

The same argument works equally well whenever X is a T2 locally compact topological group. In fact, 
any T2 locally compact topological group can be seen as a free union of open σ-compact subsets.

4. Local proximity spaces

In this section we investigate weak Whitney topologies when X is densely embedded in a T2 locally 
compact space.

Let X be a Tychonoff space, l(X) a T2 local compactification of X and (Y, d) a non-discrete metric space. 
We introduce on C(X, Y ) the weak Whitney topology associated with l(X), τWl(X) , as the topology having 
as a local base at any f ∈ C(X, Y ) the family of all sets of the type:

T (f, ε) := {g ∈ C(X,Y ) : d(f(x), g(x)) < ε(x), ∀x ∈ X}

where ε runs ∈ C(l(X), R+).
Any given T2 local compactification l(X) of X takes up two features of X. The former one is the separated 

EF-proximity on X induced by the one-point compactification of l(X), i.e. two sets in X are far iff their 
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closures in l(X) don’t intersect and one of them is compact, [14], [6]. The latter one is the bornology [12], [7], 
done by all subsets of X whose closure in l(X) is compact, which are called bounded.

In trying to apply results obtained in the locally compact case we focus on the T2 local compactifications 
which are hemicompact, or, in other words, to the T2 local compactifications l(X) whose one-point com-
pactification l(X) ∪{∞} is first countable at ∞. So, first of all, we will look for conditions which guarantee 
that and see two examples showing:

Theorem 4.1. A T2 local compactification l(X) of a Tychonoff space X is first countable at infinity, or, 
equivalently, hemicompact, iff the natural associated bornology B admits a countable base, i.e. there is a 
countable family {Bn : n ∈ N+} of bounded sets of X so that any bounded set B is contained in some Bn.

Proof. First, we show that any compact set K of l(X) is contained in the closure in l(X) of some bounded 
set of X. Let A be an open set of l(X) with compact closure containing K. By the density of X in l(X), 
the trace A ∩X of A on X is a non-empty open bounded set of X with the same closure in l(X) of A. From 
this it follows that K is contained in the Cll(X)(A ∩X).

Now, suppose there is a countable base {Bn : n ∈ N+} of bounded sets. Since, as previously proven, 
any compact set K of l(X) is contained in the closure in l(X) of a bounded set B of X which is in turn 
contained in the closure in l(X) of some Bn, it follows that l(X) is union of the countable family of compact 
sets {Cll(X)(Bn) : n ∈ N+}. Thus, l(X), which is T2 and locally compact, is hemicompact too.

For the converse implication, let {Kn : n ∈ N+} be a countable cover of l(X) done of compact sets with 
non-empty interiors and so that any other compact set of X is contained in some Kn. Then {Bn : n ∈ N+}, 
where Bn := Kn ∩X, is a countable family of non-empty bounded sets of X which is a base. Indeed, any 
bounded set B of X has a compact closure in l(X) contained in some Kn. Thus, B ⊆ Cll(X)(B) ∩ X ⊆
Kn ∩X. �

When X is a local proximity space, the combination of the results in Theorem 4.1 and Theorem 3.1 gives 
the following characterization of the weak Whitney convergence for sequences relative to the natural T2

local compactification l(X) associated with X.

Corollary 4.1. Let l(X) be a hemicompact T2 local compactification of a Tychonoff space X and Y a metric 
space. Then, a sequence {fn : n ∈ N+} in C(X, Y ) converges to f in the weak Whitney topology relative 
to l(X) iff it converges to f in the uniform topology and, moreover, there are a bounded set B in X and a 
positive integer n0 so that fn(x) = f(x) for each n > n0 and x in X \B.

Proof. One way is simple. Namely, any continuous function from l(X) to the reals admits minimum on 
every bounded set of X, so yielding the coincidence of the weak Whitney topology relative to l(X) with the 
uniform topology. For the converse implication consider l(X) as a union of countably many compact sets 
Kn with Kn ⊂ int(Kn+1) for each n ∈ N+. Therefore, the family {Bn := Kn ∩X, n ∈ N+}, is a countable 
base of the bornology associated with l(X). Suppose that {fn : X → Y, n ∈ N+} converges to f in the 
weak Whitney topology on C(X, Y ) relative to l(X) and, at the same time, for each positive k there exist 
an integer nk greater than k and a point xnk

outside Bk such that |fnk
(xnk

) − f(xnk
)| = εnk

> 0. Since any 
bounded set is contained in some Bn, the sequence {xnk

: k ∈ N+} cannot admit any accumulation point 
in l(X). So, as in Theorem 3.1, we can see εnk

as the value in xnk
of a continuous function from l(X) to 

the positive reals. And that contradicts the weak Whitney convergence. �
• In general, a weak Whitney topology relative to a T2 local compactification is finer than the uniform 
topology. To this end we exhibit the following example:
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Example 4.1. Let r be an irrational number and fn : Q → R be defined as: fn(q) = 0 if q ∈] − r/n, r/n[
and fn(q) = 1/n otherwise, for each n ∈ N+. The sequence {fn : n ∈ N+} converges uniformly to the null 
function but not in the weak Whitney topology relative to the Euclidean real line R regarded as a T2 local 
compactification of the rational Euclidean line Q with relative bornology that of the bounded sets of Q in 
the Euclidean metric. That is because there is no bounded set in Q outside of which fn eventually agrees 
with the null function.

When X is a local proximity space whichever is Y , two weak Whitney topologies emerge naturally. That 
associated with l(X), the natural T2 local compactification of X, determined from (Cl(X), R+) and that 
associated with the T2-compactification of X, l(X) ∪ {∞} = γ(X), determined from Cγ(X)(X, R+). We 
prove that, in general, they are different. Namely:

• • In general, a weak Whitney topology relative to a T2 local compactification l(X) is different from 
the weak Whitney topology relative to the one-point compactification of l(X) and weaker than the usual 
Whitney topology, as well.

Example 4.2. Regard the Euclidean real line R as the T2 local compactification of the Euclidean rational line 
Q naturally associated with the bornology of bounded sets and the proximity both induced by the Euclidean 
metric. Furthermore, consider the unit circle S1 in the Euclidean plane as the one-point compactification 
of R. Let r be an irrational number and, for each n ∈ N+, fn : Q → R the function taking 1/n as value 
on ]r − 1, r + 1[ and 0 otherwise. Then, the sequence {fn : n ∈ N+} converges to the null function in 
the weak Whitney topology associated with R since it is uniformly convergent to the null function and, 
moreover, outside the bounded set ]r−1, r+1[ all fn agree with the null function. But, it does not converge 
in the weak Whitney topology associated with S1. That is because there exists a continuous real-valued 
positive function ε on Q continuously extendable to S1 admitting zero as its greatest lower bound when 
restricted to ]r− 1, r+1[ ∩ Q and a sequence of rationals {qn : n ∈ N+} converging to an irrational so that 
{ε(qn) : n ∈ N+} tends to zero more rapidly than the sequence {1/n : n ∈ N+}.

5. ωμ-metric spaces

We now enlarge the range Y to run over ωμ-metric spaces. Indeed, the previous player (Y, d), a non-dicrete 
metric space, is replaced by (Y, ρ, G+) an ωμ-metric one, the reals by the base group G and C(X, R+) by 
the set of continuous functions from X to the positive cone G+ of G equipped with the subspace topology 
induced by the absolute value ωμ-metric on G.

Let X be a Tychonoff space and (Y, ρ, G) an ωμ-metric space. We introduce on C(X, Y ) the 
Whitney topology, τW , as usual, as the topology having as a local base at any f ∈ C(X, Y ) the family 
of all sets of the type:

T (f, ε) := {g ∈ C(X,Y ) : ρ(f(x), g(x)) < ε(x), ∀x ∈ X}

where ε runs over C(X, G+).
Of course, in the ωμ-metric setting too the Whitney convergence implies the uniform convergence. Now, 

we give conditions for their coincidence.

Proposition 5.1. Let X be a Tychonoff space and (Y, ρ, G) an ωμ-metric space. Then, the Whitney topology 
is strictly finer than the uniform topology iff there is a continuous function from X to G+ admitting an 
ωμ-sequence of its values approaching 0, or, equivalently, whose range admits 0 as the greatest lower bound.

Proof. It is trivial that, when any continuous function from X to G+ admits a positive lower bound, the 
Whitney convergence reduces to the uniform one. Conversely. Suppose ε : X → G+ as a continuous function 
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and {xλ : λ < ωμ} an ωμ-sequence of points in X so that {aλ := ε(xλ), λ < ωμ} is a decreasing ωμ-sequence of 
values of ε tending to 0. This way, we produce an ωμ-sequence of constant functions {ηλ : X → Y, λ < ωμ}, 
by putting ηλ(x) := ε(xλ), ∀λ < ωμ, ∀ x ∈ X, that converges to the null function in the uniform topology 
but not in the Whitney topology. �

Next, we give conditions for an ωμ-additive space to satisfy the properties stated in Proposition 5.1. We 
remind that a space is ωμ-compact iff any ωμ-sequence has an accumulation point.

Theorem 5.1. Let X be an ωμ-additive space of covering dimension zero and (Y, ρ, G) an ωμ-metric space. 
Then, there exists a continuous function from X to G+ admitting an ωμ-sequence of its values approaching 
0 iff X is non-ωμ-compact.

Proof. We examine the case μ > 0. One way is simple. If ε : X → G+ is a continuous function with 
{xλ : λ < ωμ} an ωμ-sequence of points in X for which the ωμ-sequence of values {ε(xλ) : λ < ωμ} is 
decreasing to 0 in G, it happens that, by continuity and positiveness of ε, the ωμ-sequence {xλ : λ < ωμ}
cannot accumulate in X. The converse implication. Let {xλ : λ < ωμ} be an ωμ-sequence of distinct points 
in X with no accumulation point and {ελ : λ < ωμ} an ωμ-sequence in G+ strictly decreasing to zero. For 
each x in X there is a neighborhood Ux of x and a tail Tx = {xλ, λ > λx} so that Ux∩Tx = ∅. Consequently, 
for each xλ distinct from x and not in Tx there is a clopen neighborhood Hλ of x not containing xλ and 
not intersecting Tx. Now, from ωμ-additivity of X, Cx = ∩{Hλ : xλ /∈ Tx} is a clopen neighborhood of x
so that Cx \ {x} does not contain any point in the ωμ-sequence. The collection {Cx : x ∈ X} is an open 
cover of X refinable by covering dimension zero with a cover of pairwise disjoint clopen sets, any of them 
containing at most one point in the ωμ-sequence. So, it makes sense to introduce the function ε : X → G+

by putting ε(x) = ελ whenever x is in the unique clopen in the refinement containing xλ and ε(x) = ε0
otherwise. Of course, the function ε is locally constant, hence continuous. �
Corollary 5.1. Let X be an ωμ-additive space of covering dimension zero and (Y, ρ, G) an ωμ-metric space. 
Then, the Whitney topology agrees with the uniform topology iff X is ωμ-compact.

Proof. It is an immediate consequence of Proposition 5.1 and Theorem 5.1. �
Proposition 5.2. Let X be a non-ωμ-compact space of covering dimension zero and G an Abelian totally 
ordered group G with character ωμ. Then, any continuous function ε from X to G+ having an ωμ-sequence 
of values decreasing to 0 in G can be minorized with a locally constant function η : X → G+ with 2η < ε.

Proof. Let ε be a continuous function from X to G+ and {xλ : λ < ωμ} an ωμ-sequence in X so that 
{aλ := ε(xλ), λ < ωμ} is a decreasing ωμ-sequence of values of ε converging to 0. For each λ < ωμ put 
Aλ := {x ∈ X : ε(x) > 2aλ}. If λ < μ, then Aλ ⊆ Aμ and each Aλ is different from X. Positiveness and 
continuity of ε plus convergence of {2aλ : λ < ωμ} to 0 imply that the family {Aλ : λ < ωμ} is an open cover 
of X so admitting a refinement {Cγ : γ ∈ Γ} of pairwise disjoint clopen subsets of X. If λ(γ) is the first λ
for which Cγ is contained in Aλ, it happens that ε(x) > 2aλ(γ), ∀x ∈ Cγ . Thus, by putting η(x) = aλ(γ) for 
each x in Cγ we construct a locally constant, hence continuous, positive function η so that 2η < ε. �
Proposition 5.3. Let X be a space of covering dimension zero and (Y, ρ, G) an ωμ-metric space. Then the 
Whitney topology on C(X, Y ) is uniformizable.

Proof. The family of diagonal neighborhoods of the type:

U(ε) := {(f, g) ∈ C(X,Y ) : ρ(f(x), g(x)) < ε(x), ∀x ∈ X},
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where ε runs in C(X, G+), is a base for a uniformity on C(X, Y ) inducing the Whitney topology. Namely, 
the minimum of two functions in C(X, G+) is in its turn in C(X, G+). Thanks to Proposition 5.2, if both 
ε, η are in C(X, G+) and 2η < ε, then U(η) ◦ U(η) ⊂ U(ε). �

In the ωμ-metric setting the Whitney topology can be uniformizable but not ωμ-metrizable. Remind that 
the metric case is once again in [10].

Theorem 5.2. Let X be an ωμ-additive non-ωμ-compact space of covering dimension zero and G a totally 
ordered Abelian group with character ωμ, μ > 0. Then, the Whitney topology on C(X, G), where G carries 
the absolute value ωμ-metric, is not ωμ-metrizable.

Proof. Suppose G carrying the absolute value ωμ-metric ρ [4]. It is enough to show that in the Whitney 
topology on C(X, G) the null function f on X has no totally ordered basic family of neighborhoods {Uα :
α < ωμ} i.e. Uα contains Uβ when α < β, of cardinality ℵμ. If it were so, we might extract from any 
Uα a tube T (f, εα). Hence, the family {T (f, εα) : α < ωμ} should be a local base at f . But then there 
should be a tube centered at f containing no tube in that family; a contradiction. Indeed, any ωμ-sequence 
{xλ : λ < ωμ} of distinct points in X with no accumulation point determines a partition of X consisting 
of ℵμ non-empty clopen sets. Namely, by ωμ-additivity and zero-dimensionality of X, proceeding as in the 
second part of Theorem 5.1, X can be covered with a collection of pairwise disjoint non-empty clopen sets 
each of them containing at most one point in the ωμ-sequence. The clopen sets in that collection containing 
some point in the ωμ-sequence plus the union of those ones containing no point in the ωμ-sequence, which 
is in its turn a clopen set, form a partition of ℵμ non-empty clopen sets of X. So, after splitting the space 
X in a partition {Cα : α < ωμ} of non-empty clopen sets and after choosing for each α < ωμ a continuous 
function ηα : X → G+ so that 2ηα < εα, it should be possible to join together in a unique globally 
continuous function η the restrictions of the ηα to Cα. Since, for each α, T (f, ηα) is included in T (f, εα)
but not in T (f, η), consequently the tube T (f, η) should contain no T (f, εα). �

It is known that for a paracompact space X and (Y, d) a metric space, the usual Whitney topology on 
C(X, Y ) is a topological invariant. The following result generalizes that one proven in [10] relative to the 
metrizable case.

Theorem 5.3. Let X be an ωμ-additive paracompact space and (Y, ρ, G) an ωμ-metric space. Then, the 
Whitney topology on C(X, Y ) is independent of the ωμ-metric ρ. More precisely, it is a topological character.

Proof. First remind that the result in the metrizable case, μ = 0, is in [10]. From the ωμ-additiveness plus 
paracompactness of the space X and μ > 0, it follows that the Whitney topology is generated from the base 
of sets of the type:

A = ({Cα : α ∈ A}, {Vβ : β ∈ B}, φ) := {f : X → Y, f(Cα) ⊂ Vφ(α), ∀α ∈ A},

where {Cα : α ∈ A} is a pairwise disjoint clopen cover of X, {Vβ : β ∈ B} an open cover of Y and φ a 
refinement map from A to B. Let f be in A. For each x in X there is only one Cα containing x and there are 
balls centered at f(x) contained in Vφ(α). For each a in G+, let Ua stand for the subset of X sharing with 
Cα the points x for which there is a ball centered at f(x) contained in Vφ(α) whose radius is greater than a. 
Any point x belongs to some Ua and any Ua is an open subset in X. In fact, if x is in Cα ∩ Ua and δx > a

is the radius of a ball centered at f(x) contained in Vφ(α), then Cα ∩ f−1(Bρ(f(x), δx − a)) is contained 
in Ua. Consequently, the open cover {Ua : a ∈ G+} admits a refinement of pairwise disjoint clopen sets 
{Aγ : γ ∈ C} with refinement map ψ. To any point x, if Aγx

is the unique clopen in the refining partition 
containing x, we can associate ψ(γx) in G+, so coherently defining a locally constant, hence continuous, 
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function ψ : X → G+ so that the tube T (f, ψ) is contained in A. Let g ∈ T (f, ψ). If x is in Cα ∩ Aγx
, 

then, by definition, the ball Bρ(f(x), ψ(γx)), and thus g(x), has to be contained in Vφ(α). The converse 
implication. Let T (f, ε) be a tube around f . Choose ηx in G+ so that 4ηx < ε(x). For each x in X put:

Vx := f−1(Bρ(f(x)), ηx) ∩ {z ∈ X : 2ηx < ε(z)}.

The family {Vx : x ∈ X} is an open cover with a refinement of pairwise disjoint clopen sets {Cα : α ∈ A}
with refinement map φ. Of course, f ∈ A = ({Cα : α ∈ A}, {Bρ(f(x), ηx) : x ∈ X}, f ◦ φ). Furthermore, 
A ⊆ T (f, ε). Indeed, if g is in A, and z is in Cα, then g(z) and f(z) both are in Bρ(f(φ(α)), ηφ(α)) and 
ε(z) > 2ηφ(α). So, ρ(f(z), g(z)) ≤ ρ(f(z), f(φ(α)) + ρ(g(z), f(φ(α)) ≤ 2ηφ(α) < ε(z) and g is in T (f, ε), just 
the final result. �
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