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Abstract— This paper addresses the problem of robust take-
off and landing control of a quadrotor UAV (Unmanned Aerial
Vehicle). During the critical flight phases of takeoff and landing
the vehicle dynamics change according to the possible existence
of contact with the ground. To model the vehicle during the
overall maneuver a hybrid automaton is used where each
state corresponds to a different dynamic behavior exhibited by
the UAV. The original takeoff and landing problems are then
addressed as a problem of tracking suitable reference signals
in order to achieve the desired transitions between different
hybrid states of the automaton. Both reference trajectories
and feedback control laws are derived to explicitly account for
measurement noise and uncertainties, in both the environment
and in the vehicle dynamics. Simulation results demonstrate
the effectiveness of the proposed solution.

I. INTRODUCTION

Flight control of autonomous Unmanned Aerial Vehicles

(UAV) is an active and extensively researched topic, with

crucial importance to numerous civilian and military appli-

cations [1], [2], [3], [4], [5]. To be truly autonomous, an

UAV must perform autonomously maneuvers that encompass

not only the normal flight conditions, like hover or forward

flight, but also the critical takeoff and landing maneuvers,

where interaction with the ground occurs.

The critical takeoff and landing phases of flight are of

fundamental importance since they are performed by all

aerial vehicles. In most practical settings, the controller must

provide robustness to uncertainties in both the environment

and the dynamical vehicle model. The methodology adopted

to addressed this problem borrows from the control frame-

work proposed in [6]. In this approach, the vehicle is mod-

eled as an hybrid automaton where each state corresponds

to a different operating condition, described by different

dynamics, according to the nature of the ground contact.

Hybrid automata allow for a complex model to be de-

scribed in a modular way by collecting simpler dynamical

models, each one focusing only on a precise operating

mode of the system. They constitute a subset of the larger

class of hybrid dynamical systems, which is nowadays an

important and active topic of research [7], [8], [9], [10].

Hybrid dynamical systems were recently the subject of an

in-depth article [11] focusing on modeling their dynamics,

on elements of stability theory, and on the basics of hybrid

control.
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Once the hybrid automaton is defined, the takeoff and

landing control problems are addressed as tracking control

problems. In particular both the reference signals, which are

such that their practical and not perfect tracking guarantees

the desired transitions to happen, and the feedback laws

for each operating mode are derived considering explicitly

the presence of uncertainties and measurement noise. The

latter in particular affects the knowledge of the current

operating mode, which can be determined using contact or

force sensors placed at each extremity of the vehicles landing

gear. The control law is therefore required to be robust

to mismatches between actual and detected operating mode

resulting from sensor noise.

The main contribution of this work consists in the explicit

design of the hybrid automaton and takeoff and landing con-

troller for a quadrotor vehicle, which guarantees robustness

to model and environment uncertainties and to sensor noise

in the operating mode detection.

II. QUADROTOR HYBRID MODEL

The UAV considered in this paper is a quadrotor air-

craft actuated in force generated by propellers. For sake of

simplicity, we consider only the “planar dynamics” on the

configuration manifold S
1 × R

2 since the general “spatial

dynamics”, defined on the configuration manifold SO(3) ×
R

3, can be dealt with in a similar way, though heavier from

a notational viewpoint.

During take-off and landing maneuvers the vehicle dy-

namics can vary greatly, depending on the type of contact

with the ground. To accurately describe the behaviour of the

rotorcraft during a complete takeoff and landing maneuver

we use the hybrid automata framework. The different states

of the hybrid automata correspond to each of the three

operating modes considered for the vehicle, related to the

number of points of contact of the UAV with the ground.

For the sake of simplicity we consider the ground to be a

horizontal surface at a height β. The physical state of the

quadrotor is described by the center of mass coordinates

(x, z), angle with the horizontal θ, and respective derivatives.

For the operation modes where contact with the ground exists

it is simpler to consider the horizontal displacement α of the

contact point rather than the horizontal displacement x of

the center of mass. They are related by

α = x + ℓ cos(θ + γ). (1)

Due to the quadrotor symmetry we consider only takeoff and

landing maneuvers where rotation occurs around the contact

point P2, resulting in θ ≥ 0. The symmetric situation is dealt

similarly and will not be discussed in this paper.
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Fig. 1. Planar quadrotor description

A. Dynamics of operating modes

1) Free Flight: In this operating mode the aircraft is

completely airborne and there is no contact with the ground.

To model the free flight mode we use the standard equations

of motion considering atmospheric drag, where m and J
denote respectively the mass and moment of inertia of the

vehicle, g the gravity acceleration and λx, λz the first order

aerodynamic drag coefficients.

mẍ = (F1 + F2) sin θ − λxẋ

mz̈ = (F1 + F2) cos θ − mg − λz ż

J θ̈ = (F1 − F2)r

(2)

The value of the drag coefficients λx, λz are subject to

possibly large uncertainties.

2) Partial interaction with the ground: In this mode of

operation there is only one contact point of the quadrotor

with the ground. The equations of motion for the partial

interaction mode are derived from the Lagrangian for the

system in that configuration given by

L = 1
2m(ẋ2 + ż2) − mgℓ sin(θ + γ).

The obtained equations of movement, noting (1), can be

written as

mα̈ + mℓθ̈ sin(θ + γ) + mℓθ̇2 cos(θ + γ) =

(F1 + F2) sin θ − λH α̇,

mℓα̈ sin(θ + γ) + mℓ2θ̈ + mgℓ cos(θ + γ) =

(F1 + F2)ℓg + (F1 − F2)r, (3)

where λH is the horizontal surface friction coefficient. For

sake of simplicity friction is modeled through a stateless lin-

ear model affected by large uncertainties on the coefficients.

For angles θ < π/2−γ, (3) can be written as the decoupled

dynamic equations

α̈ = Fα + hα(θ, θ̇, α̇, λH),

θ̈ = Fθ + hθ(θ, θ̇, α̇, λH),
(4)

where the functions hα and hθ are given by

hα(θ, θ̇, α̇, λH) = g tan(θ+γ)− ℓ
cos(θ+γ) θ̇

2− λH

m cos2(θ+γ) α̇,
(5)

hθ(θ, θ̇, α̇, λH) = − g
ℓ cos(θ+γ)+tan(θ+γ)θ̇2+ λH sin(θ+γ)

mℓ cos2(θ+γ) α̇.
(6)

and there is a one-to-one correspondence between the virtual

inputs Fθ , Fα and the real inputs F1 and F2. The equivalent

equations (3) and (4) describe a 4-state dynamical model for

the vehicle. The vertical coordinate of the center of mass and

its derivative are uniquely defined by θ and θ̇ through

z = β + ℓ sin(θ + γ)

ż = θ̇ℓ cos(θ + γ),

where the constant β is the height of the ground.

3) Complete interaction with the ground: In this state the

vehicle is completely landed and only the ground contact

drag affects the motion of the vehicle. The dynamic model

is completely described by the 2–state dynamical system

mα̈ = −λH α̇. (7)

B. Hybrid dynamical model of the overall dynamics

A description of the overall dynamics is obtained by means

of a hybrid automaton whose hybrid states correspond to the

above described operating modes. In this section we define

rigorously the automaton for the specific quadrotor appli-

cation. A hybrid automaton is identified by the following

objects, instanced here for the specific case of the planar

quadrotor.

1) Operating Modes: A set Q of operating modes, de-

noted by Q = {LL, TL, FF}, with the meaning

• LL, Landed, when the aircraft is completely landed and

has two ground contact points;

• TL, Take-off and Landing, in this situation there exist

only one contact point of the UAV with the ground;

• FF, Free Flight, situation where the aircraft is com-

pletely airborne and there is no contact with the ground.

2) Domain mapping: The state of the system ξ ∈
R

6 is described by either of the vectors (x, ẋ, z, ż, θ, θ̇),
(α, α̇, z, ż, θ, θ̇). When the UAV is in contact with the ground

(LL or TL operating modes) the preferred notation is using

α, α̇ while x, ẋ is preferred for the free flight mode. In the

work it is assumed that the planar UAV is controlled through

two inputs F1, F2, which correspond to the forces generated

by the propellers. These are bounded by a minimum and

maximum value, leading to the definition of the input domain

U ∈ R
2 as the compact interval U = [Fmin, Fmax] ×

[Fmin, Fmax]. The domain mapping D : Q ⇉ R
6×R

2 defines,

for each operating mode, the set of values where the state ξ
and the control input u may range.

D(FF ) = R
6 × U,

D(TL) = {ξ ∈ R
6 : z = β + ℓ sin(θ + γ),

θ < π/2 − γ} × U,

D(LL) = {ξ ∈ R
6 : z = β + ℓ sin(γ), θ = 0} × U.

3) Flow map: The flow map f : Q × R
6 × R

2 → R
6

describes for each operating mode q ∈ {LL, TL, FF} the

evolution of the state variables. In each operating mode q we

have the dynamic system ξ̇ = f(q, ξ, u), where each function

f(q, ξ, u) is derived from the differential equations (2), (3)

and (7) presented in the previous section.

4) Edges: The set of edges E ⊂ Q × Q includes all

the pairs (q1, q2) such that a transition between the modes

q1 and q2 is possible, for some combination of state and

actuation. For the takeoff and landing procedure we consider
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that transitions are possible between every state. The set of

edges is thus composed of

{LL, TL}, {TL, LL}, {FF, LL},
{LL, FF}, {TL, FF}, {FF, TL}.

5) Guard mapping: The guard mapping G : E ⇉ R
6×R

2

determines, for each (q1, q2) ∈ E , the set G({q1, q2}) that

the quadrotor state ξ and inputs F1, F2 must belong so that

a transition from the hybrid mode q1 to q2 can occur. To

simplify notation we introduce two functions,

FZ(θ, F1, F2) = (F1 + F2) cos θ − mg,

Fτ (θ, F1, F2) = (F1 + F2)lg + (F1 − F2)r − mgℓ cos(θ + γ),

which denote the resulting force acting on the vehicle along

the z-axis and the resulting torque around the contact point

P2, respectively. Transitions to and from the FF operating

mode are based on the sign of FZ and switches between the

LL and TL modes are governed by the sign of Fτ . The guard

sets for the quadrotor hybrid automaton are the following.

G({LL, TL}) = {(ξ, u) ∈ D(LL) : Fτ (θ, F1, F2) ≥ 0∨

θ > 0}

G({LL, FF}) = {(ξ, u) ∈ D(LL) : FZ(θ, F1, F2) ≥ 0}

G({TL, LL}) = {(ξ, u) ∈ D(TL) : θ ≤ 0∧

Fτ (θ, F1, F2) < 0}

G({TL, FF}) = {(ξ, u) ∈ D(TL) : FZ(θ, F1, F2) ≥ 0}

G({FF, LL}) = {(ξ, u) ∈ D(FF ) : θ = 0∧

z ≤ β + ℓ sin(γ) ∧ FZ(θ, F1, F2) < 0}

G({FF, TL}) = {(ξ, u) ∈ D(FF ) : z ≤ β + ℓ sin(θ + γ)∧

FZ(θ, F1, F2) < 0}

6) Reset map: For each (q1, q2) ∈ E and (ξ, u) ∈
G({q1, q2}), the reset map R : E ×R

6 ×R
2 → R

6 identifies

the jump of the state variable ξ during the operating mode

transition from q1 to q2. The jumps in the state reflect instant

changes due to collisions with the ground and also to the

use of either α or x to describe the state, according to the

operating mode. The collisions with the ground are modeled

as being perfectly inelastic, resulting in the reset maps

R({LL, TL}, (ξ, u)) = ξ,

R({FF, TL}, (ξ, u)) = (α, α̇, z, ż, θ, ż
ℓ cos(θ+γ)),

R({∗, FF}, (ξ, u)) = (x, ẋ, z, ż, θ, θ̇),

R({∗, LL}, (ξ, u)) = (α, α̇, z, 0, 0, 0).

III. THE TAKEOFF AND LANDING CONTROL

FRAMEWORK

The takeoff and landing problem is divided into two

steps. Foremost, reference maneuvers (encompassing the

vehicle state trajectory and control inputs) are designed with

the objective of maintaining a certain operating mode or

switching from one operating mode to the other robustly,

i.e. a non perfect tracking of these maneuvers does not lead

to undesired operating mode changes. Once the maneuvers

are conceived, control laws are designed to guarantee “suf-

ficiently close” following of the desired maneuver.

Both the definitions of the references and the design of

the closed-loop control laws will rely upon a parameter, ǫ,

which in practice specifies how far the actual trajectory can

be with respect to the desired one.

To precisely define the maneuvers of interest, we denote

by υq(t) = (ξ(t), u(t)) a maneuver taking place in the

operating mode q ∈ Q and by gr υq the graph of the

maneuver in a certain time interval. According to [6], towards

which the reader is referred for further mathematical details,

three different types of maneuvers are defined. The first one,

which is denoted as ǫ-robust q1-single maneuver in [t0, t1),
is such that the state and the input do not intersect any guard

condition in order to maintain the same “single” operating

mode q1. The second type, denoted as ǫ-robust q1 → q2

approach maneuver in [t0, T ], is such that at time T the

maneuver belongs to the desired guard set, G({q1, q2}), in

order to switch to the operating mode q2. The last one, the

q1 → q2 transition maneuver in [t0, t1), is obtained as a

combination of an ǫ-robust q1 → q2 approach maneuver and

a set of ǫ-robust q2-single maneuvers.

IV. ROBUST MANEUVERS

In this section we actually build some reference maneuvers

for the particular case of the quadrotor, with a focus on

maneuvers involving both the TL and FF operating modes.

In what follows, the subscript “sp” on a set denotes that it

is obtained considering the span of all the possible values

for the uncertainties affecting it. Although uncertainties can

be considered in every parameter of the vehicle, to keep the

analysis to a tractable level we consider only uncertainties

in the drag coefficients λx and λz on the FF mode and the

ground drag coefficient λH when in the TL operating mode.

Their nominal values are denoted by λx0, λz0 and λH0,

respectively. Moreover we assume that the ground height β
is not perfectly known and that the controller is only allowed

to know an upper bound denoted by β̄.

A. ǫ-robust TL-single reference maneuver

Nominal reference maneuvers are obtained through system

inversion, with the reference inputs being computed from the

desired state trajectories. Given twice differentiable desired

state trajectories θ⋆(t), α⋆(t), the nominal inversion of the

system (4) results in

F ⋆
α(t) = α̈⋆(t) − hα(θ⋆(t), θ̇⋆(t), α̇⋆(t), λH0) (8)

F ⋆
θ (t) = θ̈⋆(t) − hθ(θ

⋆(t), θ̇⋆(t), α̇⋆(t), λH0). (9)

Additionally, if θ⋆(t) < π/2−γ and θ⋆(t) 6= 0, the reference

actuation values can be recovered from the “virtual” forces

through
(

F ⋆
1 (t)

F ⋆
2 (t)

)

= G−1(θ⋆(t))L(θ⋆(t))

(

F ⋆
α(t)

F ⋆
θ (t)

)

(10)

where matrices G(θ) and L(θ) are expressed as

G(θ) =
(

sin θ sin θ
ℓg+r ℓg−r

)

, L(θ) = m
(

1 ℓ sin(θ+γ)

ℓ sin(θ+γ) ℓ2

)

.

In an ǫ-robust TL maneuver, the desired trajectory θ⋆(t) and

the resulting forces F ⋆
1 (t), F ⋆

2 (t) are such that

FZ(θ(t), F1(t), F2(t)) < 0

θ(t) > 0 ∨ Fτ (θ(t), F1(t), F2(t)) > 0
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for all (θ(t), F1(t), F2(t)) ǫ-close to (θ⋆(t), F ⋆
1 (t), F ⋆

2 (t))
and for all the possible uncertainties in the guard sets.

Note that as the angle θ approaches zero, sin θ also ap-

proaches zero and the matrix G(θ) becomes almost singular,

leading to conditioning problems when recovering F1, F2

using (10). For angles θ close to zero this controller is

avoided and the control effort is shifted towards controlling

the angle θ, ignoring the horizontal displacement α. This

results in definition of (F1 − F2)
⋆ through (11) and of

(F1 + F2)
⋆ being regarded as a design parameter.

F ⋆
θ =

(F1+F2)
⋆(ℓg−ℓ sin(θ⋆) sin(θ⋆+γ))+(F1−F2)⋆r

mℓ2 cos2(θ⋆+γ) . (11)

B. ǫ-robust FF-single reference maneuver

Starting with class C4 state trajectories, x⋆(t), z⋆(t) and

inverting system (2) the resulting reference angle θ⋆(t) and

control forces (F ⋆
1 (t), F ⋆

2 (t)) are given by

θ⋆(t) = tan−1
(

mẍ⋆(t)+λx0ẋ⋆(t)
mg+mz̈⋆(t)+λx0ż⋆(t)

)

,

F ⋆
1 (t) + F ⋆

2 (t) = mg+mz̈⋆(t)+λx0ż⋆(t)
cos θ⋆(t) ,

F ⋆
1 (t) − F ⋆

2 (t) = J
r
θ̈⋆(t).

As a robust maneuver in the FF state, the reference trajectory

verifies the inequality

z(t) > β̄ + ℓ sin(θ(t) + γ) ∨ FZ(θ(t), F1(t), F2(t)) > 0

for all (z(t), θ(t), F1(t), F2(t)) ǫ-close to

(z⋆(t), θ⋆(t), F ⋆
1 (t), F ⋆

2 (t)) and for all possible uncertainties

in the guard set.

Introducing actuation limits, we have that x⋆(t) and z⋆(t)
are chosen such that

1
2

(

mg+mz̈⋆(t)+λx0ż⋆(t)
cos θ⋆(t) ± J

r
θ̈⋆(t)

)

∈ [Fmin, Fmax]

considering all possible uncertainties.

C. ǫ-robust TL→FF reference approach maneuver

A TL→FF approach maneuver in [t0, T ] is ǫ-robust if the

reference trajectory is robustly far from any guard condition

except the desired one and the following is observed1

Bǫ(v
⋆
TL(T )) ⊂ {FZ(θ, F1, F2) ≥ 0}, (12)

which amounts to entering the desired guard condition ro-

bustly in a time upper-bounded by T .

Model inversion is used as for the ǫ-robust TL maneuvers

to determine the reference controls F ⋆
1 (t) and F ⋆

2 (t). Refer-

ence trajectories with sufficiently high reference horizontal

acceleration α̈⋆(t) lead to (12) being verified.

D. ǫ-robust FF→TL reference approach maneuver

For the sake of simplicity, as approach maneuvers we

consider trajectories of constant vertical velocity ż⋆(t) =
−v̄z and constant lateral position x⋆(t) = x̄. From the model

inversion, we get as reference trajectory and inputs

θ⋆(t) = 0, F ⋆
1 (t) = F ⋆

2 (t) = 1
2 (mg − λz0v̄z).

The total vertical reference force is given by

F ⋆
Z(t) = F ⋆

1 (t) + F ⋆
2 (t) − mg = −λz0v̄z

1For a point x ∈ R
n , Bǫ(x) denotes the ball of radius ǫ centered at x.

so that, as soon as the vehicle touches the ground, the

maneuver belong to the desired guard set G({FF,TL}), i.e.

FZ(·) < 0, enabling the transition. This condition can be

enforced more robustly by choosing larger values of v̄z .

E. ǫ-robust TL→LL reference approach maneuver

From model inversion in the TL operating mode it turns

out that the condition to be robustly in the desired operating

mode, Bǫ(υ
⋆(T )) ⊂ {θ ≤ 0∧Fτ (θ, F1, F2) ≤ 0}, is satisfied

by maneuvers such that the reference state trajectory θ⋆(t)
goes to negative values with a sufficiently negative second

derivative, leading to a negative angular acceleration.

F. TL→FF and FF→TL reference transition maneuvers

In the proposed framework, takeoff (landing) is obtained

by tracking a TL→FF (FF→TL) reference transition maneu-

ver. By construction a reference transition maneuver is built

by considering an approach maneuver followed by a set of

single maneuvers. The role of the set of single reference

maneuvers is to have at least one of them close to the

initial conditions in the new operating mode so that the

tracking error can remain bounded and lower than the design

parameter ǫ. In this respect, the reference single maneuvers

are designed once the set of all possible initial conditions

after the switch of operating mode is estimated. In the case

of the takeoff maneuver this set can be estimated considering

the intersection of the approach maneuver with the guard

set G({TL, FF}) (or G({FF, TL})). For the case of the

FF→TL maneuver, the effect of the reset map R({FF, TL})
also has to be taken into account.

V. CONTROLLER DESIGN

We now describe the local controllers designed for each

operating mode to track the reference maneuvers defined

before guaranteeing a tracking error lower or equal than ǫ
despite the presence of parametric uncertainties. We consider

two controllers for the TL mode, one that only tracks the

reference trajectory angle and another that tracks both the

reference angle and the horizontal displacement. When in

the free flight mode the controller used is the one proposed

in [12]. Hysteresis is considered when switching between the

two controllers for the TL operating mode. This guarantees

that chattering between these two controllers does not occur

when the maneuver is tracked robustly.

A. Control of θ and α in TL operating mode

The dynamic equations governing the evolution of the

horizontal displacement α and angle θ are given in (4).

Considering the control inputs in those equations as being

the nominal reference controls derived in (8) and (9) with

added error terms

Fα = F ⋆
α + F̃α, Fθ = F ⋆

θ + F̃θ, (13)

leads to the following vehicle error dynamics

¨̃α = F̃α + Ψα(θ̃, ˙̃θ, ˙̃α, t) + δα(t),

¨̃
θ = F̃θ + Ψθ(θ̃,

˙̃
θ, ˙̃α, t) + δθ(t),

(14)
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where

Ψα(θ̃,
˙̃
θ, ˙̃α, t) = hα(θ⋆ + θ̃, θ̇⋆ +

˙̃
θ, α̇⋆ + ˙̃α, λH)

− hα(θ⋆, θ̇⋆, α̇⋆, λH),

Ψθ(θ̃,
˙̃
θ, ˙̃α, t) = hθ(θ

⋆ + θ̃, θ̇⋆ +
˙̃
θ, α̇⋆ + ˙̃α, λH)

− hθ(θ
⋆, θ̇⋆, α̇⋆, λH),

δα(t) = λH−λH0

m
α̇⋆ λH

m cos2(θ⋆+γ) ,

δθ(t) = −λH−λH0

m
α̇⋆ λH sin(θ⋆+γ)

ml cos2(θ⋆+γ) ,

and functions hα(·) and hθ(·) are defined in (5) and (6). We

control the error dynamics (14) using PD control laws for

the error term of both virtual forces F̃α and F̃θ

F̃α = −KPα
(α̃+KDα

˙̃α), F̃θ = −KPθ
(θ̃ +KDθ

˙̃θ). (15)

With proper tuning of the parameters KPi
and KDi

, i =
{α, θ}, we design a closed-loop error system which is Input-

to-State Stable (ISS) with restrictions on the initial state and

disturbances [13] while guaranteeing well-definiteness of the

original controls F1, F2. We state the result in the following

Proposition (proofs are omitted here for reason of space).
Proposition 1: Let c1 > 0 such that ‖θ⋆‖∞+c1 ≤ π/2−γ

and let c2, ∆ and KDi
be arbitrary positive numbers, for

i = {α, θ}. There exists K⋆
Pi

> 0 such that for all KPi
≥

K⋆
Pi

the closed-loop of system (14) with controller (15) is

ISS with restrictions c1 on the initial state θ̃(0), restriction

c2 on the initial states
˙̃
θ(0) and (α̃, ˙̃α) and restriction ∆

on the disturbances δθ and δθ. Furthermore, the restrictions
restrictions are such that the closed-loop trajectory verifies
ξ(t) − ξ⋆(t) < ǫ and θ(t) < π/2 − γ − ǫ for all t ≥ 0.

B. Control of θ in the TL mode

For small θ angles the control objective is to track a

desired trajectory θ⋆(t) while being robust to external dis-

turbances. The dynamic equation governing the angle θ in

the TL operating mode is (9), with the reference input given

by (11) and α̇⋆ dependent on the design parameter function

(F1(t) + F2(t))
⋆. The control approach for θ is identical to

the one previously presented for control of both α and θ.

We use (13), (15) and recover the actuation (F1(t)− F2(t))
from Fθ(t) and (F1(t) + F2(t)) by means of the equivalent

of (11) for real (and not reference) trajectories. As before,

ISS with restrictions on the initial state and disturbances is

achieved, for the angle θ.

C. Control in Free Flight

To control the quadrotor vehicle in free-flight we adopt

an inner-loop control strategy based on the controller pro-

posed in [12]. The controller renders the closed-loop system

ISS with restrictions on initial conditions. We define new

control inputs u, v that are in a 1-to-1 relationship with the

quadrotor’s real inputs,

u = (F1 + F2) cos θ, v = F1 − F2.

The error dynamic system that results from acting on the

vehicle with controls v = v⋆ + ṽ, u = u⋆ + ũ where u⋆ =

(F ⋆
1 + F ⋆

2 ) cos θ⋆, v⋆ = F ⋆
1 − F ⋆

2 is

m¨̃x = (tan(θ̃ + θ⋆) − tan θ⋆)u⋆ − λx
˙̃x + tan θũ + δx(t),

m¨̃z = ũ − λz
˙̃z + δz(t), J

¨̃
θ = rṽ,

(16)
with the disturbances given by δx(t) = (λx0 − λx)ẋ⋆(t),
δz(t) = (λz0 − λz)ż

⋆(t). The ISS result for (16) is summa-
rized in the following Proposition.

Proposition 2: Consider the following control law for the
error system (16)

ũ = −k1z̃ − k2
˙̃z

ṽ = −KP (KD
˙̃
θ + tan(θ̃ + θ⋆(t)) − tan θ⋆(t) + θout)

θout = λ2σ
(

K2

λ2

ξ2

)

ξ2 = ˙̃x + λ1σ
(

K1

λ1

x̃
)

(17)
where σ is a saturation function. There are positive numbers
K⋆

D, K⋆
P and θ⋆

out such that for any KD < K⋆
D, KP > K⋆

P
and ‖θout‖∞ < θ⋆

out there exists a suitable choice of the
design parameters Ki, λi, i = {1, 2}, dependent only on θ⋆

out,
that renders the closed-loop system ISS with restrictions Rz

and Rθ on the initial states ‖(z̃(0), ˙̃z(0))‖ and ‖(θ̃(0), ˙̃θ(0))‖,

no restrictions on the initial state ‖(x̃(0), ˙̃x(0))‖ and restric-
tions (Rδz

, ǫRδx
) on the inputs (δx, δz).

VI. SENSOR NOISE ROBUSTNESS

The control methodology developed in the previous sec-

tions relies on a perfect identification of the current operating

mode and assumes the availability of discontinuous control

inputs. Given the nature of G({TL, FF}) and G({FF, TL}),
the vehicle can be ǫ-robustly in the TL or FF operating mode

at any time by appropriately setting the controls, indepen-

dently of the current operating mode. However, this situation

can generate large abrupt changes in control authority which

are not realistic. We now prove that the hybrid controller is

stable and robust to measurement noise on the force sensor

readings, without large instantaneous variations of control,

by showing that the FF control law can stabilize both the TL

and FF operating modes. When in the region of influence of

the sensor noise we can use this controller to stabilize the

system without knowledge of the current operating mode.

Let F̂Z be the sensor reading for the vertical force and σ1

be its maximum error, with σ2 > σ1 > 0. For measurements

F̂Z < −σ2 the local controller selected is the TL controller

and once F̂Z ≥ −σ2 is attained we select the FF controller.

This law for the supervisor controller guarantees that the

TL controller is never used when the vehicle is in the FF

operating mode. The desired trajectory tracking behaviour

is achieved if the conditions from Theorem 3 are verified.

Additionally, no chattering is observed provided that once

the change from TL to FF controller is performed, the FF

controller is applied until the vehicle is robustly in the FF

operating mode.

Assume that the FF controller is being used when the

vehicle is in the TL mode. In that situation, the common

mode input is given by

u = mg − mz̈⋆ − k1z̃ − k2
˙̃z. (18)

The idea is to show that the FF control law is still able to

achieve practical stability of the attitude dynamics, avoiding
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undesired overturns, so that in finite time the quadrotor will

be able to takeoff. For this reason we now focus on the angle

dynamic equation. Departing from (9), substituting Fθ as a

function of the FF controls u, v, and using (18) and (1) we

can express the dynamics equation for the time evolution of

θ as

θ̈ =
vr+u(ℓg−ℓ sin θ sin(θ+γ))

mℓ2 cos2(θ+γ) + tan(θ + γ)θ̇2

− g
ℓ cos(θ+γ) + λH tan(θ+γ)

mℓ cos(θ+γ) ẋ − λH tan(θ+γ)
mℓ cos(θ+γ) sin(θ)θ̇.

Consider a transition maneuver where the angle θ is constant,

resulting in θ̇⋆ = 0, θ̈⋆ = 0 and v⋆ = 0. With the free

flight controller (17), considering λH = 0, and noting that

ℓg = ℓ cos(θ + γ), the resulting closed-loop tracking error

dynamic equation for the angle is

¨̃
θ = 1

mℓ2 cos2(θ+γ)

(

− rKP (KD
˙̃
θ + tan(θ̃ + θ⋆) − tan θ⋆)

+ mℓ2 sin(θ + γ) cos(θ + γ)
˙̃
θ2 + v∆(θout, z̃, ˙̃z, ż⋆, z̈⋆)

)

(19)

with

v∆(·) = −rKP KDθout+ℓ(mz̈⋆+λz0ż
⋆−k1z̃−k2

˙̃z) cos(θ+γ).

Theorem 3: Consider the attitude error dynamics (19). Let
be KD fixed as in Proposition 2. Then there exist ∆, ∆v and,
K⋆

P2 such that for all KP > K⋆
P2 system (19) is ISS with

respect to the exogenous input v∆ with restrictions ∆v on

the input and ∆ on the initial states ‖(θ̃(0),
˙̃
θ(0))‖.

According to the above proposition the free flight control

law is tuned by fixing the parameters KD, Ki, λi, i = {1, 2}
as suggested in Proposition 2, while the proportional gain

KP is chosen such that KP > max{K⋆
P , K⋆

P2}, in a way

which turns out to be fully compatible with both Proposition

2 and Theorem 3.

VII. SIMULATION RESULTS

In this section we present the results from a simulation run

of the proposed controller. The reference trajectory consists

of a TL→FF robust transition maneuver. The tilt angle θ
is first driven to a reference value by generating torque

around the contact point P2 and then the reference horizontal

acceleration is augmented to drive the quadrotor to the free

flight operating mode. The vehicle parameters are m = 1 kg,

J = 0.5 kg m2, lg = 0.3 m, γ = 10◦, r = 0.5 m, β = 1 m,

λx = 1, λx0 = 0.5, λz = 1 , λz0 = 0.5, λH = 10, λH0 = 8.

The controller parameters are KP = 40, KD = 2 for the TL

mode and K1 = 2, K2 = 1, λ1 = 0.2, λ2 = 3, KP = 70,

KD = 1, k1 = 10, k2 = 10 for the FF operating mode.

In both figures the vertical dashed line around the 1.2
seconds mark indicated the time instant when the change

of operating mode from TL to FF occurs. Figure 2(a)

presents the time evolution of the centre of mass (x, z)
coordinates during the takeoff maneuver. The quadrotor

horizontal position is initially almost constant but follows a

quadratic evolution once a reasonable tilt angle is achieved,

approximately around the 0.5 second mark. The height of

the UAV follows the tilt angle and has little variation during

the TL operating mode. Once the free flight mode is attained

the height follows a quadratic time evolution. It can be seen

that the vehicle follows closely the desired trajectory.

Figure 2(b) shows the actual and reference actuations

during the maneuver. The small actuation jump around the

0.8 seconds mark occurs due to the switch from the θ to the

(α, θ) controller while in the TL mode. When in free flight

the forces are almost identical, again due to the fact that we

are tracking reference trajectories of constant horizontal and

vertical acceleration, leading to a slowly varying reference

angle.
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Fig. 2. (a) Planar quadrotor center of mass coordinates. (b) Planar quadrotor
F1 and F2 actuations

VIII. CONCLUSIONS

This paper addressed the problem of robust takeoff and

landing control of a quadrotor UAV. A controller was de-

signed that presents a solution to the takeoff and landing

problem and achieves robustness to external disturbances

and uncertainties, in both the environment and the vehicle

dynamics. Robustness to measurement noise in the detection

of the operating mode of the hybrid model was also achieved

by the proposed controller. Simulation results were presented

to assess the performance of the proposed controller.
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