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1. Introduction 

Innovative advanced vehicles (AVs), including connected, automated, and autonomous vehicles, are fast 
developing and several prototypes are currently experimented in real urban areas. But, for several years mixed traffic 
including traditional vehicles (TVs) is expected, hence enhanced methods to support transportation project 
assessment and evaluation are needed (see for instance Cantarella and di Febbraro, 2017a). 

Methods for travel demand assignment to a transportation network are the basic tool for transportation system 
analysis, useful to compute the arc flow (and cost) pattern in any design scenario (see Cascetta, 2009 for a general 
review of these topics).  

For congested transportation networks, where arc flows depend on arc costs, equilibrium  assignment searches for 
mutually consistent arc flows and costs. Equilibrium  assignment was first introduced, under steady-state conditions, 
by Wardrop (1952), who named it User Equilibrium (UE), following what we may now call a deterministic utility 
approach to routing behaviour modelling. The UE assignment was analytically addressed by Beckmann et al. (1956) 
that formulate an optimization model and demonstrate the existence and the uniqueness of the solution.  

A more general kind of equilibrium assignment was introduced by Daganzo and Sheffi (1977) who named it 
Stochastic User Equilibrium (SUE), following a random utility approach, that is the user path choice behaviour is 
described through probabilistic choice models derived from Random Utility Theory (RUT), as introduced by 
Domencich and McFadden (1975). SUE (and UE) assignment was formulated as fixed-point problem in Daganzo 
(1983) through the inverse of the cost function.  

General fixed-point models for equilibrium assignment have been proposed in Cantarella (1997) by combining 
together the arc flow vector function, describing the assignment to an uncongested network, and the arc cost vector 
function; these models  can be easily extended to deal with several types of assignment. Sufficient conditions for 
solution existence and uniqueness can easily be stated, requiring mild assumptions, mainly continuity and 
monotonicity of the involved functions; weaker uniqueness conditions have also been stated, not available for 
optimization models and/or Wardrop UE.  

In a recent paper, Cantarella and Di Febbraro (2017b) showed how existing fixed-point models for stochastic 
equilibrium assignment can be extended to transportation networks where several types of vehicles compete for the 
same arcs and jointly participate to congestion.  

This paper proposes extensions to multi-vehicle assignment of existing solution algorithms for stochastic 
assignment uncongested and congested urban  networks, where paths likely overlap. Probit and Gammit path choice 
models, used in this paper, assume that path perceived utilities are distributed according to a MVNormal or 
MVGamma random variable respectively, they permit to properly model path overlapping through the perceived 
utility covariance matrix. But, in this case no closed form is available for choice probabilities, thus Montecarlo 
techniques based on Pseudo-Random Number Generator (PRNG) are commonly used. 

This paper is organized as follows: sections 2 and 3 present models and algorithms, respectively, for stochastic 
assignment, then section 4 reports some results of applications of the proposed approach to the well-known Sioux 
Falls network; in section 5 main results are commented and some research perspectives are reported. 

2. Models for stochastic assignment 

This section describes a modelling approach for stochastic assignment with multi vehicle types by extending the 
one in Cantarella and Di Febbraro (2017b). Stochastic assignment to uncongested networks is discussed below in 
sub-section 2.1; whilst Stochastic user equilibrium assignment to congested networks is discussed in the next sub-
section 2.2. 

Users are distinguished with respect to o-d pair they are travelling from/to, user category (users with common 
socio-economic and behavioural features) and type of used vehicle (traditional, connected, automated, autonomous, 
…). Demand flows are assumed constant and route choice is the only user choice behaviour affected by network 
performances, or more properly by congestion. Transportation supply is modelled through a flow network, say a 
graph with a transportation cost and a flow associated to each arc. A route connecting an Origin Destination pairs is 
described by a path. [Presented results still hold if more general definitions of routes are used, such as hyperpaths.] 
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2.1. Stochastic Assignment to Uncongested Networks 

The arc costs are generally different with respect to the vehicle type m (but not with respect to o-d pair i) to reflect 
different performances, and we assume that the arc cost per vehicle type are given by an affine transformation of the 
arc generic costs, thus: 

cm = m c + co,m  m (1) 

where (from right to left): 
co,m  0  is the arc specific cost vector for vehicle type m, such as monetary costs, ...; it is equal to infinity (that 

is a large value) for an arc not available for vehicle type m; 
c  0 is the arc generic cost vector, common to all vehicle types; 
m > 0  is a (dimensionless) vehicle type specific coefficient; 
cm  0 the arc total cost vector for vehicle type m. 
Under steady-state conditions the route costs for each combination of o-d pair i, user category j and vehicle type 

m can be obtained from the corresponding arc total costs through an affine transformation from the arc space to the 
route space defined by the transpose of arc-route incidence matrix: 

wijm = Bijm
T  cm + wo,ijm  i, j, m (2) 

where (from right to left): 
wo,ijm  0 is the vector of route specific or non-additive costs for o-d pair i, user category j, vehicle type m, such 

as fees, tolls, ... ; 
Bijm  is the arc-route incidence matrix for o-d pair i, user category j, vehicle type m, with entries bak = 1 if 

arc a belongs to route k, bak = 0 otherwise; 
wijm  0  is the vector of route total costs for o-d pair i, user category j, vehicle type m. 
All costs are assumed measured by a common unit, usually travel time or money, through duly homogenization of 

different attributes, if the case. 
The utility function for o-d pair i, user category j and vehicle type m is almost always specified through an affine 

transformation of costs both in research analysis and in practical applications: 

vijm = jm wijm + vo,ijm  i, j, m (3) 

where (from right to left): 
vo,ijm is the vector of route systematic utilities for o-d pair i, user category j, vehicle type m, independent of 

route costs; 
im > 0  is the utility scale parameter such that the term im  wijm is dimensionless to be consistent with 

utility; 
vijm is the vector of route total systematic utilities for o-d pair i, user category j, vehicle type m. 
Route choice behaviour for of o-d pair i, user category j and vehicle type m can be modelled by applying any 

discrete choice modelling theory. Let 
 pijm  0 be the vector of route choice proportions for o-d pair i, user category j, vehicle type m, with 1T pijm = 1; 
Route choice proportions depend on route utility through the choice function, which models user routing 

behaviour: 

pijm = pijm(vijm; jm, jm)   i, j, m (4) 

where jm  0 is the utility dispersion parameter and jm indicates any other parameter, to be calibrated against 
real data; these parameters are usually not distinguished per o-d pair.  
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Most often equation (4) is an application of Random Utility Theory (Domencich and McFadden, 1974), assuming 
that: (i) each user travelling between o-d pair i, belonging to user category j and using vehicle type m associates to 
each available route a perceived utility, (ii) chooses the maximum perceived utility route, (iii) the perceived utility is 
modelled as a continuous r.v. variable, with mean being the systematic utility, due to some sources of uncertainty. 

Thus the choice proportion of an alternative is given by the probability that its perceived utility is equal to 
maximum among all alternatives. When the perceived utility co-variance matrix is non singular, probabilistic route 
choice functions  are obtained.  

Demand conservation relation for o-d pair i, user category j, vehicle type m assures that flows of all connecting 
routes sum up to demand flow, say 1T hijm = dijm, it can be expressed as: 

hijm = dijm pijm  i, j, m (5) 

where (from right to left): 
dijm  0  is the demand flow for o-d pair i, user category j, vehicle type m, measured in users per time unit;  
hijm  0  is the route flow vector for o-d pair i, user category j, vehicle type m, measured in users per time unit. 
 
Under steady-state conditions the arc flows due to each combination of o-d pair i, user category j and vehicle type 

m can be obtained from the route flows through a linear transformation from the route space to the arc space defined 
by the arc-route incidence matrix: 

fijm = (m / mBijm  hijm   i, j, m (6.a) 

where (from right to left): 
m > 0  is the occupancy factor for vehicle type m, measured in users per vehicle, so that arc flows are 

measured in vehicles per time unit;  
m ≥ 0 is the equivalence coefficient measured in vehicles of type m per TV, so that all arc flows of any 

vehicle type are measured in TVs per time unit; 
fijm  0 is the arc total flow vector for o-d pair i, user category j, vehicle type m, measured in TVs per time 

unit. 
Having assumed that all arc flows are measured in TVs per time unit, the arc total flows are given by the sum 

over all o-d pairs, user categories, vehicle types of arc flows plus the arc base flows: 

f = ij  m fijm + fb  (6.b) 

where (from right to left): 
fb  0 is the arc base flow vector, arc flows not resulting by user choice behaviour; 
f  0  is the arc total flow vector. 
 
The arc-route flow consistency relation is given by combining equations (6.a) and (6.b): 

f = ij m (m / m Bijm  hijm + fb   (6.c) 

A relation between arc flows and (common) arc costs can be obtained by combining together equations 1 - 6 
leading to the arc flow function: 

f(c; d) = ij   m (m / m dijm Bijm  pijm(jm (Bijm
T  (m c + co,m) + wo,ijm) + vo,ijm) + fb  

where d  0 is the vector of demand flows, with entries dijm.  
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Without any loss of generality  
• the vector wo,ijm can be multiplied by parameter jm and included in the vector vo,ijm, 
• the ratiom / m can be considered as a single parameter m. 
This way the so-called standard arc flow function is obtained: 

f(c; d) = ij   m m dijm Bijm  pijm(jm Bijm
T  (m c + co,m) + vo,ijm) + fb  (7) 

Main input data of the arc flow function are arc costs, c and co,m, and demand flows, d, parameters m, jm, m, 
for each vehicle type m (to be calibrated against real data), and parameters of the choice function (4) - omitted for 
simplicity's sake - together with the vectors of systematic utilities independent from arc costs, vo,ijm, and of the arc 
base flows, fb. 

Let n be the number of arcs, the arc flow function gets values in the feasible arc flow set: Sf  ℝn
 ;+, which is 

non-empty (if the network is connected), compact (since closed and bounded, if only elementary paths are 
considered), convex. The arc flow function is continuous and continuous differentiable with respect to (common) arc 
costs if all the choice functions are continuous and continuously differentiable; moreover, it is monotone non 
decreasing with respect to (common) arc costs with symmetric (semi-definite negative) Jacobian if all the choice 
functions are monotone increasing with respect to systematic utility with symmetric (semi-definite positive) 
Jacobian. 

All usually adopted probabilistic choice functions give strictly positive probabilities, and are continuous and 
continuously differentiable with respect to systematic utility; moreover, if the parameters of the perceived utility pdf 
do not depend on systematic utility values, the resulting choice function, called invariant, is monotone increasing 
with respect to systematic utility with symmetric (semi-definite positive) Jacobian (Cantarella, 1997), and choice 
probabilities depend on differences between systematic utility values only. 

The arc flow function (7) is a general model of stochastic assignment to an uncongested network with multi-
vehicle types, or SUNv for short (after Cascetta, 2009, v denoting the extension to multi-vehicle types). 

2.2. Stochastic Equilibrium Assignment to Congested Networks 

For congested transportation networks, where arc flows depend on arc costs, equilibrium  assignment searches for 
mutually consistent arc flows and costs. Arc generic costs depend on the arc total flows through the arc cost 
function, which models user driving behaviour: 

c = c(f; , )  f (8) 

where  > 0 is the vector of arc capacities and  > 0 indicates the vector of any other parameter; they are 
omitted in the following for simplicity's sake. 

Equilibrium assignment can effectively be expressed by fixed-point models given by the arc flow function (7) and 
the arc cost function (8): 

f* = f(c*; d)   Sf  ℝn  (9) 

c* = c(f*)   c(Sf)  ℝn  (10) 

Other equivalent models can be formulated with respect to route variables. An equivalent formulation with 
respect to flows (or costs) only is often used in literature (Cantarella, 1997), which can be obtained by explicitly 
including equation (10) into equation (9): 

f* = f(c(f*); d)   Sf  ℝn  (11) 
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or vice versa equation (9) into (10): 

c* = c(f(c*; d))   c(Sf)  ℝn  (12) 

Existence is guaranteed if both the arc flow function and the arc cost function are continuous (and the network is 
connected), applying Brouwer theorem to model (11). With reference to model (9, 10) for a monotone decreasing arc 
flow function, if the arc cost function is monotone strictly increasing uniqueness is guaranteed. Uniqueness 
conditions can be weakened for strictly positive invariant probabilistic route choice functions only requiring that arc 
cost function is monotone increasing (but not necessarily strictly monotone). Anyhow uniqueness of arc flows also 
guarantees uniqueness of arc costs as well as route flows and costs, and of flows and cost per o-d pair, user category, 
vehicle type. Weaker (sufficient) conditions for uniqueness have been recently derived; a full discussion of this topic 
is out the scope of this paper, it suffices mentioning that monotonicity of the arc cost function is not needed to assure 
uniqueness. 

 

3. Solution algorithms for stochastic assignment 

This section describes a solution approach for stochastic assignment to transportation networks with multi vehicle 
types. Stochastic assignment to uncongested networks is discussed in sub-section 3.1; Stochastic equilibrium 
assignment to congested networks is discussed in the sub-section 3.2. 

3.1. Stochastic Assignment to Uncongested Networks 

The solution of the stochastic assignment with multi-vehicle types to uncongested networks based on Probit or 
Gammit choice models, say the computation of the arc flow function (7),  f(c; d), requires an enhancement of the 
well-known Montecarlo algorithm (after Sheffi, 1985). Some preliminary considerations need to be discussed before 
the main steps of the algorithm can be described. 

 
Specification of the Probit or Gammit choice models. Following the most common approach, for each 

combination of o-d pair i, user category j and vehicle type m the route perceived utility is described by a Multi-
Variate Normal or Gamma random variable specified through an affine transformation of arc perceived disutility 
independently distributed as Normal or Gamma random variables, with mean given by the known arc costs. Let 

ca   be the generic cost for arc a, an entry of vector c;  
xa   be the zero flow cost for arc a; 
   be the dispersion parameter; 
Ya   be the generic cost for arc a considered as a Normal or Gamma random variable with mean ca, and variance 

 xa; 
Y   be the arc generic cost random vector with entries Ya; 
Zm = m Y + co,m  be the arc cost random vector for vehicle type m; 
Uijm be the perceived utility random vector for o-d pair i, user category j, vehicle type m, with mean given by the 

systematic utility vijm and covariance matrix U. 
If random variables Ya are assumed pair wise independent Normal or Gamma random variables with mean ca, and 

variance  xa, Zm turns out a Multi-Variate Normal or Gamma random variable with mean vector cm = (m c + co,m) 
and diagonal co-variance matrix Z with entries  (m xa  + co,ma).  

Moreover, assuming vectors wo,ijm and vo,ijm null for simplicity's sake, combining together equations (1),  (2) and 
(3) yields: 

vijm =  jm Bijm
T  (m c + co,m) 

Therefore  
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Uijm =  jm Bijm
T  Zm  

is a Multi-Variate Normal or Gamma random variable with mean vector vijm and co-variance matrix U =  jm Bijm
T  

Z  Bijm; according to this result the variance of a route perceived utility is proportional to route (zero flow) cost and 
the covariance between two routes proportional to common (zero flow) cost. 
 

Specification of the enhanced Montecarlo algorithm. At each iteration k of the Montecarlo algorithm: 
1. an arc generic cost vector yk is generated as a pseudo-realization of random vector Y;  
2. for each vehicle type m arc: costs zm

k = m yk + co,m are computed; 
3. for each for o-d pair i, user category j: demand flows are assigned to shortest paths using arc costs zm

k leading 
to arc flows fijm

k; 
4. total arc flows for vehicle type m are computed: fm

k = m fijm;  
5. total arc flows are computed: fk = m fm

k;  
6. total arc flows fk are averaged with those of the previous iterations.  
The algorithm is stopped when a pre-fixed maximum number of iterations is reached. it provides an unbiased 

estimation of the arc flow pattern consistent with the Probit / Gammit route choice behaviour model as specified 
above. 

3.2. Stochastic Equilibrium Assignment to Congested Networks 

Algorithms based on the Method of Successive Averages (MSA) (Sheffi and Powell, 1982; Daganzo, 1983) are 
the most used ones to solve fixed-point models for SUE assignment, since they can accommodate any choice model 
from RUT, and are suitable for large scale applications. Their basic iteration requires the computation of the cost 
function (8) to get arc costs from arc flows and the computation of the arc flow function (7) to get arc flows from arc 
costs, as described in the above sub-section for Probit or Gammit choice models (algorithms are also available for 
other choice models).  

Generally MSA-based algorithms do not provide the equilibrium arc flows in a finite number of iterations, but 
only a succession of arc flow patterns; sufficient conditions for theoretical convergence of such a succession may be 
stated through Blum theorem. 

  
Applying the Method of Successive Averages (MSA) to model (11) the MSA-FA solution algorithm is obtained 

based on the recursive equation: 

 f k =  f k-1 + (1/k) [f (c( f k-1))   f k-1]  (13)  

it may be proved converging if the Jacobian of the arc cost function is symmetric Cantarella (1997).  
On the other hand applying the MSA to model (12) the MSA-CA solution algorithm is obtained based on the 

recursive equation: 

 ck = ck-1 + (1/k) [c( f(ck-1))  ck-1 ]  (14) 

it may be proved converging if the Jacobian of the arc flow function is symmetric as shown in Cantarella (1997). 
A convergence index often used to stop MSA-FA is the average absolute difference over flows: 

 (a | f(c(f k-1))a
k fa

k-1| / fa
k-1) / n 

where n is the number of arcs, to be compared with a given error threshold . A similar index, based on arc costs, 
may be defined for MSA-CA. Others indices may be defined based on the maximum difference, possibly excluding 
arcs with very low flows. 
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4. Numerical applications 

In this section some results of several experiments of solution of the SUE assignment problem are discussed 
considering the well known Sioux Falls test network, used in several works to test models and algorithms (source: 
http://www.bgu.ac.il/~bargera/tntp/, where input data, such as zero flow costs and demand flows are also reported). 
It consists of 24 nodes (assumed all as origin/destination nodes), 76 arcs and 552 origin/destination pairs, as shown 
in figure 1 below. 

In the applications discussed below one user class and two vehicles, 1 = TVs and 2 = AVs, are considered. Total 
demand flows are split between the two vehicle type according different proportions: 100%-0%, 90%-10%, 70%-
30%, 50%-50%, 30%-70%, 10%-90%, 0%-100%. Both Probit and Gammit choice models are considered. Other 
parameters are given in the following table 1 assuming AVs more effective regarding costs and effect on congestion, 
and with less choice dispersion. For simplicity's sake: jm = 1, vo,ijm = 0, and fb = 0. 

Table 1. Parameters per vehicle type 

m m m m 
1 1.0 1.0 50 
2 0.8 0.9 0.5 

 
The cost-flow function for each arc is specified by the separable polynomial BPR (1964) travel time function, 

with both parameters equal to 2. 

 

Fig. 1. Sioux Falls test network (Source: http://www.bgu.ac.il/~bargera/tntp/). 
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All results have been obtained assuming the number of iterations of Montecarlo algorithm equal to 60, and a 
threshold error = 0.01 for  MSA-FA (with maximum number of iterations equal to 500). 

Two main scenarios are considered: 
A) all arcs are open to both vehicle types, no arc specific cost is considered; 
B) arcs (10,16), (16,10), (10,17), (17,10), (16,17) and (17,16) are closed to TVs, thus corresponding arc 

specific costs are equal to infinity. 

4.1. Scenario A) analysis 

Table 2 shows convergence errors and MSA-FA iterations against TVs%-AVs% for the two choice models, 
Probit and Gammit. Convergence with an error of 0.010 or less is always reached, but one case where after 500 
iterations the MSA-FA reached an error 0.016. 

Figure 2 shows the percentage gain of total costs for TVs and AVs with respect to total cost with all TVs (1366 or 
1312 Msec for Probit and Gammit, respectively) against AVs%, with quite similar results for both choice models. 
Percentage gain values are computed scaling by the percentage of vehicle types and by parameter m for AVs to 
avoid any bias effect. As it may be expected introducing AVs benefits both vehicle types up to more than 25%, 
presumably due to reduction of congestion as modeled by parameter m. 

Graphs in Figure 2 (and in Figure 3 below) may be used to define the Minimum Penetration Rate (MPR) of AVs 
to guarantee a given percentage gain for TVs and AVs. For instance a 10% gain for both vehicle types is obtained 
with MPR = 30%, in this scenario. 

4.2. Scenario B) analysis 

Table 3 shows convergence errors and MSA iterations vs. TVs%-AVs% for the two choice models, Probit and 
Gammit. Convergence with an error of 0.010 or less is always reached, but three cases where after 500 iterations the 
MSA-Fa reached a maximum error equal to 0.016. 

Figure 3 shows the percentage gain of total costs for TVs and AVs with respect to total cost with all TVs (2231 or 
2189 Msec for Probit and Gammit, respectively) against AVs%, with very similar results for both choice models. As 
it may be expected, reserving some arcs to AVs only leads to greater benefit for them, still some benefits are 
observed for TVs too.  

 

5. Conclusions 

In this paper an approach to stochastic assignment with multi-vehicle types has been proposed, presenting models 
and algorithms for uncongested and congested networks. Vehicle types may be distinguished with respect to several 
parameters, to be calibrated against observed data, as well choice functions. Moreover, The proposed method allows 
us a consistent definition of AVs Minimum Penetration Rate for a given percentage gain. 

Numerical applications to a reference network show that the proposed approach leads to a method effective for 
practical applications. Application refers to two vehicle types only, TVs and AVs, but the proposed method can be 
applied for any set of vehicle types. Probit- or Gammit- based stochastic assignment show similar results, thus 
Gammit should be preferred in this case since no user perceives a positive utility for any paths. 

Several topics seem worth of further research effort: the effects of the number of Montecarlo iterations over 
convergence, the use of Sobol quasi-random numbers, the application of advanced MSA-based algorithms, as well 
as the discussion of real scale examples. 
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Table 2. scenario A: convergence vs. TVs % and AVs % 

TVs% AVs% choice 
models 

SUE 
iterations 

SUN 
iterations 

convergence 
error 

100% 0% PROBIT 155 9300 0,010 
GAMMIT 500 30000 0,016 

90% 10% PROBIT 126 7560 0,010 
GAMMIT 177 10620 0,010 

70% 30% PROBIT 210 12600 0,009 
GAMMIT 296 17760 0,010 

50% 50% PROBIT 107 6420 0,010 
GAMMIT 131 7860 0,008 

30% 70% PROBIT 121 7260 0,009 
GAMMIT 68 4080 0,009 

10% 90% PROBIT 167 10020 0,007 
GAMMIT 90 5400 0,009 

0% 100% PROBIT 221 13260 0,010 
GAMMIT 128 7680 0,008 

 

 

 

Figure 2. scenario A: total cost gain vs. Avs %-  
Squares: Probit, Circles: Gammit; Empty with dashed line: TVs, Full with continuous line: AVs. 
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Table 2. scenario A: convergence vs. TVs % and AVs % 

TVs% AVs% choice 
models 

SUE 
iterations 

SUN 
iterations 

convergence 
error 

100% 0% PROBIT 155 9300 0,010 
GAMMIT 500 30000 0,016 

90% 10% PROBIT 126 7560 0,010 
GAMMIT 177 10620 0,010 

70% 30% PROBIT 210 12600 0,009 
GAMMIT 296 17760 0,010 

50% 50% PROBIT 107 6420 0,010 
GAMMIT 131 7860 0,008 

30% 70% PROBIT 121 7260 0,009 
GAMMIT 68 4080 0,009 

10% 90% PROBIT 167 10020 0,007 
GAMMIT 90 5400 0,009 

0% 100% PROBIT 221 13260 0,010 
GAMMIT 128 7680 0,008 

 

 

 

Figure 2. scenario A: total cost gain vs. Avs %-  
Squares: Probit, Circles: Gammit; Empty with dashed line: TVs, Full with continuous line: AVs. 
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Table 3. scenario B: convergence vs. TVs % and AVs % 

TVs% AVs% choice 
models 

SUE 
iterations  

SUN 
iterations 

convergence 
error 

100% 0% PROBIT 375 22500 0,010 
GAMMIT 500 30000 0,016 

90% 10% PROBIT 500 30000 0,016 
GAMMIT 500 30000 0,014 

70% 30% PROBIT 116 6960 0,010 
GAMMIT 466 27960 0,009 

50% 50% PROBIT 94 5640 0,009 
GAMMIT 170 10200 0,009 

30% 70% PROBIT 144 8640 0,010 
GAMMIT 90 5400 0,010 

10% 90% PROBIT 154 9240 0,009 
GAMMIT 98 5880 0,009 

0% 100% PROBIT 197 11820 0,010 
GAMMIT 142 8520 0,009 

 
 
 

  

Figure 3. scenario B: total cost gain vs. Avs %-  
Squares: Probit, Circles: Gammit; Empty with dashed line: TVs, Full with continuous line: AVs. 
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