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Motivated by the task of semantic parsing, we describe a transition system that generalizes
standard transition-based dependency parsing techniques to generate a graph rather than a tree.
Our system includes a cache with fixed size m, and we characterize the relationship between the
parameter m and the class of graphs that can be produced through the graph-theoretic concept
of tree decomposition. We find empirically that small cache sizes cover a high percentage of
sentences in existing semantic corpora.

1. Introduction

As statistical natural language processing systems have progressed to provide deeper
representations, there has been renewed interest in graph-based representations of
semantic structures, and in algorithms to produce them. Typically, these algorithms
behave very similarly to standard parsing algorithms for retrieving syntactic represen-
tations: they take as input a sentence, and produce as output a graph representation of
the semantics of the sentence itself.

At the same time, recent years have seen a general trend from chart-based syntactic
parsers toward stack-based transition systems, as the accuracy of transition systems has
increased, and as speed has become increasingly important for real-world applications.
On the syntactic side, stack-based transition systems for projective dependency parsing
run in time O(n), where n is the sentence length; for a general overview of these sys-
tems, see for instance the presentation of Nivre (2008). There have also been a number
of extensions of stack-based transition systems to handle non-projective trees; see for
instance (Attardi 2006; Nivre 2009; Choi and McCallum 2013; Gómez-Rodríguez and
Nivre 2013; Pitler and McDonald 2015).

Stack-based transition systems can produce general graphs rather than trees. Per-
haps the simplest way to generate graphs is to shift one word at a time onto the stack,
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and then consider building all possible arcs between each word on the stack and the next
word in the buffer. This is essentially the algorithm of Covington (2001), generalized to
produce graphs rather than non-projective trees. This algorithm was also cast as a stack-
based transition system by Nivre (2008). The algorithm runs in timeO(n2), and requires
the system to discriminate the arcs to be built from a large set of possibilities, potentially
leading to errors.

Traditional stack-based parsing, which is restricted to trees, and the Covington
algorithm as generalized to graph parsing can be thought of as two extremes, with a
wide set of possible intermediate approaches staking out different trade-offs between
expressiveness on the one hand, and time and the discrimination required of machine
learning components on the other. In this article, we mathematically explore this trade-
off and precisely characterize the relationship between parsing systems and the set of
graphs they can build. We describe a parsing system based on adding a working set,
which we refer to as a cache, to the traditional stack and buffer. With cache size two,
our algorithm can only build trees, while with unbounded cache, our algorithm can
build any graph, because it is then equivalent to the Covington algorithm generalized
to graphs. We speculate that small, fixed cache sizes provide a good trade-off for fast
and accurate string-to-graph parsing.

We analyze the class of graphs that can be successfully constructed by our parsing
system, making use of the graph-theoretic notion of treewidth. The treewidth of a graph
gives a measure of how tightly interconnected it is: trees have treewidth one, while fully
connected graphs on n vertices have treewidth n− 1. We show that the class of graphs
constructed by our parser is precisely characterized by treewidth: a transition system
of cache size m can produce graphs of treewidth m − 1. Our framework assumes an
input order of vertices, corresponding to the word order of the string, and we define
a concept of relative treewidth to characterize the set of graphs that the parser can
produce given a fixed input order of vertices. Finally, we develop an oracle algorithm
for our parsing system, and prove its correctness. We also provide an algorithm for
computing the minimal cache size needed to parse a given data set.

In general, a graph’s relative treewidth with respect to an input order may be
much higher than its absolute treewidth. However, if relative treewidth with respect
to the real English word order is low, and not significantly higher than the absolute
treewidth, this indicates that the word order provides valuable information about the
graph structure to be predicted, and that efficient parsing is possible by making use
of this information. We test this hypothesis with experiments on Abstract Meaning
Representation (Banarescu et al. 2013), a semantic formalism where the meaning of
a sentence is encoded as a directed graph. We find that, for English sentences, these
structures have low relative treewidth with respect to the English word order, and
can thus be parsed efficiently using a transition-based parser with small cache size. In
order to compare across a wider variety of the semantic representations that have been
proposed (Kuhlmann and Oepen 2016), we also experiment with three sets of semantic
dependencies from the Semeval 2015 semantic dependency parsing task (Oepen et al.
2015). With these datasets, which are generally closer to the surface string structure than
AMR, we find somewhat higher relative treewidth. In every dataset that we analyzed,
over 99% of sentences can be covered with a cache size of eight.
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2. Tree Decomposition and Treewidth

In this section we introduce and define the notions of tree decomposition and treewidth,
as well as a few related concepts which we will use throughout this article. As usual,
we denote an undirected graph as G = (V, E), where V is the set of vertices and E is the
set of edges. Each edge is represented as an unordered pair (u, v) with u, v ∈ V.

The theory developed in this article is based on the graph theoretical notion of tree
decomposition, which has been independently discovered in several areas of computer
science and discrete mathematics. In an application oriented perspective, tree decompo-
sition has proven very useful in discrete optimization and in the design of polynomial
time algorithms using dynamic programming techniques.

The intuitive idea behind the notion of tree decomposition can be explained as
follows. Below, we use the term “interconnection” in a rather informal way; the precise
meaning of this notion will be mathematically defined later. A tree is a special kind of
graph where the vertices are arranged in a hierarchical way, with the property that the
set of vertices in any subtree have only one interconnection with the set of the remaining
vertices. In contrast, for a general graph this is not possible, meaning that we cannot
group vertices in a hierarchical structure and pretend that there is a small number of
interconnections between vertices in any subtree and the remaining vertices. This is
apparent for a complete graph, that is, a graph where each vertex is connected with
every other vertex. More interestingly, this is also true for a grid-like graph, where any
hierarchical decomposition of the set of vertices will always lead to some subtree with
a number of interconnections with the remaining structure that is not bounded by a
constant. Note that, in contrast with a complete graph, where each vertex has a number
of neighbours that is not bounded by a constant, in a grid each vertex has at most four
neighbours. Still, the internal structure of a grid is unfavorable for the above type of
hierarchical arrangement. The notion of tree decomposition of a graph, and the related
notion of treewidth, provide us precisely with the above information: to what degree
is it possible to arrange the vertices of a graph into some hierarchical structure, with
the property that interconnections between vertices in any subtree and the remaining
vertices are kept to a minimum?

More precisely, a tree decomposition of a graph G is a type of tree having a subset
of G’s vertices at each node. To avoid confusion, when describing tree decompositions
we use the terms node and arc, and when describing graphs we use the terms vertex
and edge. In a tree decomposition T, the set of nodes is denoted I and the set of arcs
is denoted F. The subset of V associated with node i ∈ I is referred to as a bag, and is
denoted by Xi. Formally, a tree decomposition of a graph G = (V, E) is defined as a
pair ({Xi | i ∈ I}, T = (I, F)) where tree T satisfies all of the following properties.

r Vertex cover: The nodes of the tree T cover all the vertices of G:
⋃

i∈I Xi = V.r Edge cover: Each edge in G is included in some node of T. That is, for all
edges (u, v) ∈ E, there exists an i ∈ I with u, v ∈ Xi.

3



Computational Linguistics Volume xx, Number xx

A B

C

D

E F

G

H

I JK

L

M

N

O

P

Q R S

Figure 1
Graph G with vertex set V = {A, B, C, . . . , Q, R, S}.

r Running intersection: The nodes of T containing a given vertex of G form a
connected subtree. Mathematically, for all i, j, k ∈ I, if j is on the (unique)
path from i to k in T, then Xi

⋂
Xk ⊆ Xj.

The width of a tree decomposition ({Xi}, T) is maxi |Xi| − 1. The treewidth of a graph
is the minimum width over all tree decompositions

tw(G) = min
({Xi},T)∈TD(G)

max
i
|Xi| − 1

where TD(G) is the set of valid tree decompositions of G. We refer to a tree decomposi-
tion achieving the minimum possible width as being optimal.

In general, more densely interconnected graphs have higher treewidth. For in-
stance, any tree has treewidth one, while a graph consisting of a single cycle with
three or more vertices has treewidth two, and a fully connected graph of n vertices has
treewidth n − 1. Low treewidth thus indicates some treelike structure underlying the
graph. When certain properties of the graph must be checked, the tree decomposition
is often helpful in organizing computation; see for instance results of Courcelle (1990)
and Arnborg, Lagergren, and Seese (1991). Finding the treewidth of a graph is an NP-
complete problem (Arnborg, Corneil, and Proskurowski 1987).

Example 1
Consider the graph G in Figure 1 with vertex set V = {A, B, C, . . . , Q, R, S}. At first
sight, G’s structure seems rather intricate, with edges scattered all over the picture.
However, an optimal tree decomposition of G reveals that there is a tree-like structure
underlying G. An optimal tree decomposition T of G is displayed in Figure 2(a), where
we use grey circles to indicate the sets of vertices of G that represent the bags of T.
Since adjacent bags of T share some of their vertices, our grey circles partially overlap.
The tree-like structure underlying G is apparent from this overlapping. This tree de-
composition has bags of three vertices each, and thus the graph’s treewidth is 2. In this
representation, it is also apparent that there is a low number of interconnections among
vertices in a subtree of T and the remaining vertices of G.
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Figure 2
(a) An optimal tree decomposition of graph G in Figure 1; this is a set of overlapping clusters of
G’s vertices, arranged in a tree. (b) The high-level treelike structure of G becomes apparent when
it is drawn ignoring G’s edges.

An alternative representation of the same tree decomposition is shown in Fig-
ure 2(b), where we focus on the vertices and ignore the edges of the graph. It is easy
to see that the vertex cover and the edge cover conditions in the definition of tree de-
composition are both satisfied by T. As an example of the running intersection property,
note that the vertex S appears in three adjacent nodes of the tree decomposition.

While general tree decompositions are undirected trees, in this article we will work
with rooted, directed tree decompositions, in which one node is designated as the
root, and the children of each node are ordered. We say that a rooted, ordered tree
decomposition of graph G having width k is smooth if each bag contains exactly k + 1
vertices, and each bag contains the same vertices as its parent bag, with exactly one
vertex removed and one vertex added. The tree decomposition in Figure 2(b) is smooth.

The concept of smooth tree decompositions, for standard unrooted tree decompo-
sitions, was introduced by Bodlaender (1996). Throughout this article, we also require
that the root of a smooth tree decomposition contains k + 1 copies of the special symbol
$, with vertices of G being added one at a time in the bags below the root. It is easy to
see that the size of a smooth tree decomposition, i.e., the number of nodes of the tree, is
the number of vertices in the graph plus one.

Lemma 1
Any tree decomposition T of graph G can be transformed into a smooth tree decompo-
sition T′ of G of equal width.

Proof. Let k be the width of T. At each bag having fewer than k + 1 vertices, continue
adding vertices from adjacent bags until all bags have the same size. If two adjacent bags
B1 and B2 end up having the same vertices, collapse B1 and B2 into a single bag, and
merge the children of the two bags in a way that preserves their order. If two adjacent
bags B1 and B2 differ by more than one vertex in their contents, add intermediate bags
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adding vertices from B2 and removing vertices from B1 one at a time. Finally, choose a
bag B as the root of the tree constructed so far. Add a new root containing k+ 1 instances
of the special symbol $, and intermediate bags connecting the root to B adding one
vertex of B at a time, and removing instances of $.

As already discussed in the introduction, in natural language processing applica-
tions, we are not provided with a graph structure as input, and we are not asked to
recognize whether that graph belongs to some formal language. We are instead given
as input an ordered sequence of vertices of some graph, or a superset thereof, and we are
asked to retrieve the graph itself. While this latter problem is apparently more difficult
than the former, since the edges of the graph must be decoded, the input ordering of the
vertices plays an important role and can be used to restrict the search space, ultimately
ending up with a more efficient computation. This idea is at the basis of the algorithms
for graph parsing developed in this article. We therefore introduce below the notion
of relative treewidth with respect to a given order of the vertices of a graph, which is
original to this article.

Let G = (V, E) be some graph and let T be a smooth tree decomposition of G. We
define the vertex order π(T) of T to be the sequence of vertices produced by visiting
T in a preorder, left to right traversal and by listing the vertices newly introduced at
the visited bags. Each vertex of V will appear exactly once in π(T). We will analyze
the behavior of our parser when given a fixed input order over the vertices in terms
of a notion of relative treewidth with respect to the input order. We define the relative
treewidth of G with respect to an order π of G’s vertices to be the minimum width of
any tree decomposition of G whose vertex order is π. Formally, we write

rtw(G, π) = min
({Xi},T)∈TD(G),

π(T)=π

max
i
|Xi| − 1.

Example 2
Consider the chain-like graph G in Figure 3, with vertex set {1, 2, 3, 4}. In the top row, G
is presented in vertex order π = (1, 2, 3, 4), along with a tree decomposition T such that
π(T) = π. In the bottom row G is presented in vertex order π′ = (1, 2, 4, 3), with the
tree decomposition T′ achieving the minimum width such that π(T′) = π′. The order
π′ increases the relative treewidth: rtw(G, π) = 1, while rtw(G, π′) = 2.

We note that, for any graph G, there exists a vertex order achieving its optimal width

tw(G) = min
π

rtw(G, π).

This is because, by Lemma 1, any optimal tree decomposition of G can always be
converted to a smooth tree decomposition of equal width, which provides us with the
optimal order.

Although our notion of relative treewidth with respect to a vertex order is super-
ficially similar to the standard vertex elimination algorithm for finding a tree decom-
position (Bodlaender 2006), which also takes as input a vertex order, these orders are
in fact distinct. We will not make use of the vertex elimination algorithm in this article,
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Figure 3
A chain-like graph G, presented at top left in vertex order π = (1, 2, 3, 4) and at bottom left in
vertex order π′ = (1, 2, 4, 3). Tree decompositions with minimum relative treewidth with respect
to π and π′ are displayed at the right. We have rtw(G, π) = 1 and rtw(G, π′) = 2.

but we describe it briefly here for readers interested in the connection between these
two concepts. In the vertex elimination algorithm, vertices are processed in the input
order, by adding edges connecting the current vertex’s remaining neighbours and then
eliminating the current vertex. Each vertex along with its neighbours at the time of its
elimination form one bag of the tree decomposition. The order of the vertex elimination
algorithm corresponds to the order in which vertices are introduced in some outside-
in traversal of the tree decomposition, whereas the order of our concept of relative
treewidth corresponds to a pre-order traversal of a smooth tree decomposition.

3. Cache Transition Parser

In this section, we introduce a nondeterministic computational model for graph-based
parsing, which we call a cache transition parser. The model takes as input an ordered
sequence of vertices, reads it strictly from left to right, and incrementally produces a
graph as output. Our model is an extension of the transition-based parsing framework
described by Nivre (2008) for dependency tree parsing. We assume the reader is famil-
iar with such framework. We also provide a characterization of our cache transition
parsers using the notions of tree decomposition and width that have been introduced
in Section 2. Throughout this section, for integer m ≥ 1 we write [m] to denote the set
{1, . . . , m}.

Informally, a cache transition parser is a transition-based parser that processes input
vertices and produces an output graph. The graph is defined on the input vertices, or
on a subset thereof. Besides its stack and buffer, the parser also uses a cache. A cache
is a fixed-size array of m ≥ 1 elements and, along with the stack, represents the storage
of the parser. At any time during the computation, a vertex that is in the storage of the
parser is either in the cache or else in the stack, but not in both at the same time. The
graph vertices in the input buffer are shifted into the cache before entering the stack.
While in the cache, vertices can be directly accessed and edges between these vertices
can be constructed.

Since the cache has fixed size, in order to be able to read a new vertex from the
buffer and shift it into the cache, we need to make new room in the cache by moving
some other vertex v from the cache into the stack. Once v is in the stack, it is no longer
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accessible for the operations of edge construction. Typically, the parser moves v out of
the cache and into the stack when it predicts that, in the process of edge construction, v
does not need to be accessed for a while. For instance, this happens when v’s neighbours
that still need to be processed are all placed at a far distance in the buffer.

Crucially, the cache is not governed by a first-in first-out policy as in a queue: the
vertex v that we move out of the cache might not be the “oldest” vertex that has been
introduced in the cache itself. As a consequence, the choice of the vertex that is moved
out of the cache and into the stack at each step may considerably alter the original
ordering of the vertices in the input.

In addition to the above operation, it is also possible to pop some vertex from the
stack and put it back into the cache. Again, since the cache has fixed size, in order to
be able to do this we need to make new room in the cache. This time this is done by
permanently removing some vertex from the cache, meaning that this vertex is dropped
out of the parser storage. This happens when the parser decides that all of the edges
impinging on a vertex have been processed, and the vertex itself is no longer needed.
Going back to our running example about vertex v, when the far distance neighbours
of v will reach the foremost position of the buffer and will be shifted into the cache,
we can exploit the above operation, pop v from the stack, and move it back into the
cache, where it will be available for the construction of the new edges. Altogether, the
combination of the two operations above has the effect of repeatedly moving v back and
forth between the cache and the stack.

Formally, a cache transition parser consists of a stack, a cache, and an input buffer.
The stack is a sequence σ of vertices and integers, as explained below, with the topmost
element always at the rightmost position. The buffer is a sequence of vertices β contain-
ing a suffix of the input, with the first element to be read at the leftmost position. Finally,
the cache is a sequence of vertices η. The element at the leftmost position is called the
first element of the cache, and the element at the rightmost position is called the last
element.

Operationally, the functioning of the parser can be described in terms of configu-
rations and two transitions. Each transition is a binary relation defined on the set of
configurations. A configuration of our parser has the form:

c = (σ, η, β, E)

where σ, η and β are as described above, and E is the set of edges being built. The initial
configuration of the parser is ([], [$, . . . , $], [v1, . . . , vn], ∅), meaning that the stack and
edge set are initially empty, and the cache is filled with m occurrences of the special
symbol $. The final configuration is ([], [$, . . . , $], [], EG), where the stack and the cache
are as in the initial configuration and the buffer is empty. The constructed graph has set
of vertices {v1, . . . , vn} and set of edges EG.

The transitions of the parser are specified as follows.
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Figure 4
Graph for the semantic representation of the sentence “John wants Mary to succeed”. Vertex w
represents word token wants, vertex j represents John, vertex s represents succeed, and vertex m
represents Mary.

r push(i, C) is parameterized by a position in the cache i ∈ [m] and a set of
positions in the cache C ⊆ [m] \ {i}. It takes a configuration:

(σ, [v1, . . . , vi−1, vi, vi+1, . . . , vm], v|β, E)

and moves to a configuration:

(σ|i|vi, [v1, . . . , vi−1, vi+1, . . . , vm, v], β, E′)

E′ = E ∪ {(vk, v) | k ∈ C}

Here, we have shifted the next vertex v out of the buffer and moved it into
the last position of the cache. We have also taken the vertex vi appearing in
position i in the cache and pushed it onto the stack σ, along with the
integer i recording the position in the cache from which it came. Finally,
we have added some edges to the graph being built, where the new edges
connect the shifted vertex v with some subset of the other vertices in the
cache. This subset is specified by the parameter C.r pop takes a configuration:

(σ|i|v, [v1, . . . , vm], β, E),

and moves to a configuration:

(σ, [v1, . . . , vi−1, v, vi, . . . , vm−1], β, E)

Here we have popped a vertex v from the stack, along with the integer i
recording the position in the cache that it originally came from. We place v
in position i in the cache shifting the remainder of the cache one position
to the right, and discarding the last element in the cache.

9
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stack cache buffer edges resulting from action
[] [ $, $, $ ] [ j, w, m, t, s ] ∅ —
[ 1, $ ] [ $, $, j ] [ w, m, t, s ] ∅ push(1, ∅)

[ 1, $, 1, $ ] [ $, j, w ] [ m, t, s ] E1 push(1, {2})
[ 1, $, 1, $, 1, $ ] [ j, w, m ] [ t, s ] E1 push(1, ∅)

[ 1, $, 1, $, 1, $, 2, w ] [ j, m, t ] [ s ] E1 push(2, ∅)

[ 1, $, 1, $, 1, $ ] [ j, w, m ] [ s ] E1 pop

[ 1, $, 1, $, 1, $, 1, j ] [ w, m, s ] [ ] E2 push(1, {1, 2})
[ 1, $, 1, $, 1, $ ] [ j, w, m ] [ ] E2 pop

[ 1, $, 1, $ ] [ $, j, w ] [ ] E2 pop

[ 1, $, ] [ $, $, j ] [ ] E2 pop

[ ] [ $, $, $ ] [ ] E2 pop

Figure 5
Example run of the cache transition system constructing the graph of Figure 4. We have set E1 =
{(w, j)} and E2 = E1∪ {(w, s), (m, s)}.

Example 3
Consider the sentence “John wants Mary to succeed” and the associated semantic
representation displayed as a graph in Figure 4. Note that the graph, with vertices
in the order of the English sentence, corresponds to the graph at the bottom row of
Figure 3. When given the vertex sequence [j, w, m, t, s] as input, our nondeterministic
parser will be able to construct the above graph using the run displayed in Figure 5. For
instance, when the parser reaches the configuration ([1, $, 1, $, 1, $], [j, w, m], [s], E1),
the transition push(1, {1, 2}) pushes the vertex j from the cache into the stack, shifts the
vertex s from the buffer into the cache, and constructs the two new edges (w, s) and (m,
s). The resulting configuration is then ([1, $, 1, $, 1, $, 1, j], [w, m, s], [], E1∪ {(w, s), (m,
s)}).

We have described our transition system as producing undirected graphs with
unlabeled edges, but it can be easily extended to produce directed graphs and labeled
edges. Directed graphs can be produced by modifying the parameter C of the push

transition to be defined as a set of tuples, where each tuple consists of an integer k
and a binary variable that specifies whether to produce edge (v, vk) or edge (vk, v).
Similarly, labeled edges can be produced by adding a value to each tuple specifying the
edge’s label. Notice that the tuple representation could also be used to allow multiple
arcs between the same two nodes, with different directions and labels. These extensions
do not fundamentally change the set of graphs that can be produced with a given
cache size; a directed (or labeled) graph can be produced if and only if its undirected
(or unlabeled) counterpart can be produced. For this reason, we treat our graphs as
undirected (and unlabeled) in the remainder of this article.

We now show that, in our parser, each pop transition reverses the effect of some
previous push transition, in a sense that will be specified below. For s ≥ 1, consider a
sequence of 2s transitions γ = t1, . . . , t2s. We say that γ is minimal reversing if it consists
of s push transitions intermixed with s pop transitions, with the property that in any
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proper prefix of γ of the form t1, . . . , tk, k ∈ [2s− 1], the number of push transitions is
strictly greater than the number of pop transitions. It is not difficult to see that, if γ is
minimal reversing, t1 must be a push transition and t2s must be a pop transition.

Lemma 2
Let c be a configuration of the parser with stack σ and cache η. Let also γ be a minimal
reversing sequence of transitions. If we apply to c the transitions of γ in the given order,
we reach a configuration c′ with stack σ′ = σ and cache η′ = η.

Proof. Let γ = t1, . . . , t2s. We proceed by induction on s. If s = 1, γ must be composed
by a push followed by a pop. The definition of the pop transition exactly restores the
stack and the cache of the configuration c to which the push applied.

If s > 1, let γ′ = t2, . . . , t2s−1. It is not difficult to see that t2 must be a push transition
and t2s−1 must be a pop transition. However, a proper prefix of γ′ might now have a
number of push transitions which equals the number of pop transitions, making γ′ not
minimal reversing. If this is the case, we split γ′ exactly at that point, and apply the
same reasoning to the two subsequences, until γ′ is divided into subsequences that are
all minimal reversing. Assume now that c1 is the configuration obtained by applying t1
to c, and c2s−1 is the configuration obtained by applying γ′ to c1. Using the inductive
hypothesis on each of the minimal reversing subsequences of γ′, we obtain that the stack
and the cache of c1 and c2s−1 are equal. We have already observed that a pop transition
applied to c1 would restore the stack and the cache of c. Since the stack and the cache
of c1 and c2s−1 are the same, we conclude that the pop transition t2s applied to c2s−1
produces configuration c2s with exactly the same stack and cache as c.

Consider now a complete run of the parser, that is, a run starting at the initial
configuration for a given input, and ending in a final configuration. Lemma 2 suggests
that such run can be represented by means of some underlying tree structure, as de-
scribed in what follows. Each configuration of the cache reached at some timestep in
the run is a node of the tree. Each push transition descends from one node of the tree
to some of its children, and each pop transition returns to the parent node. We call this
underlying tree structure the derivation tree. The derivation tree represents the history
of the parsing process that produces the output graph, and it is possible to show that
the set of derivation trees associated with the runs of a cache parser on any input can
be generated by a context-free grammar. This follows from the fact that our parser is a
special kind of push-down automaton.1

Example 4
Consider again the run displayed in Figure 5. We represent this run by means of the
derivation tree displayed in Figure 6. Note that a walk through the tree that combines
a preorder and a postorder visit exactly provides the sequence with the content of the

1 The term derivation tree has been used in the literature to denote an underlying derivation process
associated with a generative grammar (a rewriting system); see for instance the definition of
tree-adjoining grammars (Joshi and Schabes 1997). Since we have a recognition device here, as opposed
to a grammar, we are making a slight abuse of terminology.
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•[$, $, $]

•[$, $, j]

•[$, j, w]

•[j, w, m]

•[j, m, t] • [w, m, s]

Figure 6
Derivation tree representing the run in Figure 5.

cache at each timestep in the original run. Observe that each subtree of the derivation
tree corresponds to a minimal reversing sequence within the run.

We now list some important properties of the derivation trees representing the
runs of a cache transition parser, which are used below. All these properties are direct
consequences of the definition of the push and pop transitions and are rather intuitive:
we therefore omit a formal proof.

1. The bag at each node contains the same items as its parent, with one vertex
removed and one vertex added.

2. Every edge of the graph being built by the run of the parser can be associated with
some bag that contains both of the edge’s endpoints, with one of the endpoints in
the m-th position of the cache.

3. The bags containing a vertex v form a connected subgraph of the tree. This is in
turn a subtree rooted at the bag where the vertex is first pushed into the cache (and
also eventually deleted from the cache), and having as leaves the bags where the
vertex is removed from the cache and pushed onto the stack (or equivalently, the
bags where the vertex is popped from the stack and pushed back into the cache).

We can now provide a characterization of the runs/derivation trees of a cache
transition parser in terms of the notions of tree decomposition and width of the graph
being constructed by the parser itself.

Lemma 3
Consider a cache transition parser with cache size m, and consider a run of the parser
with input a vertex sequence π and with output the constructed graph G. Let T be the
derivation tree representing the run. Then T forms a smooth tree decomposition of G
having width m− 1 and having vertex order π(T) = π.

Proof. Properties 1 to 3 above guarantee that T is a smooth tree decomposition of G.
Each bag is first created by a push transition which adds one vertex to the cache and
removes one vertex from the cache. Since the bags of T have size m, the size of the
cache, the width of T is m − 1. Recall that the vertex order π(T) is the sequence of
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vertices produced by visiting T in a preorder traversal and listing the vertices newly
introduced at the visited bags. Since the derivation tree T is constructed depth first by
pushing vertices from the input buffer into the cache, π(T) is exactly the order of the
vertices in π.

We can also prove the inverse of the previous lemma.

Lemma 4
Consider a graph G with a smooth tree decomposition T having width m− 1, and let
π(T) be the vertex order of T. Then T is a derivation tree of a cache transition parser
with cache size m, and G is constructed by the associated run given π(T) as input.

Proof. Let the cache transition parser take a sequence of transitions corresponding to
a depth-first traversal of T, pushing an element from π(T) into the cache each time it
descends one level in T, and popping each time it ascends. Let (u, v) be an edge of G.
Because T is a tree decomposition of G, there is a bag of T containing both u and v.
Without loss of generality, let u be the vertex that was introduced before v along the
path from the root of T to the bag containing both u and v. Let bv be the bag at which
v is introduced. Because v can only appear in bags in the subtree of T rooted at bv, this
bag containing both u and v must appear in this subtree. Furthermore, by the running
intersection property, since u appears in a bag at or below bv, and is introduced above
bv, u must appear in bv. Thus, because bags of T correspond to the cache at each step
of the parser, the parser’s cache will contain u at the step at which v is pushed into the
rightmost position of the cache. Therefore, the automaton can build each edge of G.

Combining Lemma 3 and 4 above, and using Lemma 1 from Section 2, we have the
following main result, which is a characterization of the relative treewidth of a graph
with respect to an ordering of its vertices.

Theorem 1
Let G be some graph and let π be some ordering of its vertices. The relative treewidth of
G with respect to π is m− 1 if and only if a transition parser with input π can construct
G using cache size m but not using cache size m− 1.

The computational problem of deciding whether a transition parser with cache size
m and with input π can construct G is treated in Section 4. Furthermore, the problem
of efficiently computing the smallest cache size m that allows a transition parser to
construct G from input π is treated in Section 5.

Similarly to Theorem 1, the following result provides a characterization of the
treewidth of a graph. Again, the result is a direct consequence of Lemmas 3, 4, and 1.

Theorem 2
A graph G has treewidth m− 1 if and only if a transition parser with cache size m can
construct G for some input ordering of G’s vertices, and for no ordering of G’s vertices
a transition parser with cache size m− 1 can construct G.
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4. Oracle Algorithm

A cache transition parser is a nondeterministic automaton: for a fixed vertex sequence π,
the parser could construct several graphs, all having tree decompositions with vertex
order π (see Lemma 4). Even for an individual graph G, there may be several runs of the
parser on π, each constructing G through a tree decomposition having vertex order π.
This is usually called spurious ambiguity.

In this section we develop an algorithm that can be used to drive a cache transition
parser with cache size m, in such a way that the parser becomes deterministic. This
means that at most one computation is possible for each pair of G and π. More precisely,
our algorithm takes as input a configuration c of the parser obtained when running
on π, and a graph G to be constructed. Then the algorithm computes the unique
transition that should be applied to c in order to construct G according to a canonical
tree decomposition of width m − 1 having vertex order π. If such tree decomposition
does not exist, then the algorithm fails at some configuration obtained when running
on π.

In the literature on transition-based parsing, algorithms of the above type are called
oracles (Nivre 2008). Oracles are used to produce training data for the parser out of gold
target structures. In our case, if we are given a dataset of vertex sequences paired with
gold graphs, an oracle can be used to provide a set of canonical transition sequences
for training a classifier to predict the best transition at each configuration. The oracle
algorithm can also be used to support Theorem 1 in computing the relative treewidth
of G with respect to some vertex order π. Finally, we will later use the oracle algorithm,
in Section 5, to compute the minimal cache size needed to parse a given dataset of gold
graphs.

Let EG be the set of edges of the gold graph G. The oracle algorithm can look into
EG in order to decide which transition to use at c, or else to decide that it should fail.
This decision is based on three mutually exclusive rules, listed below. Assume that c has
cache η = [v1, . . . , vm] and buffer β. The first rule is given by:

1. If there is no edge (vm, v) in EG such that vertex v is in β, the oracle chooses
transition pop.

This rule means that, as soon as we encounter a vertex in the rightmost position
of the cache with no forward-pointing edges (in the input sequence π) that are still
unprocessed, we go back to the stack and attempt to process other pending vertices.

In order to introduce the remaining rules, we need to develop some additional
notation. For j ∈ [|β|], we write β j to denote the j-th vertex in β. We choose a vertex
vi∗ in η such that:

i∗ = argmax
i∈[m]

min
{

j | (vi, β j) ∈ EG
}

. (1)

In words, vi∗ is the vertex from the cache whose closest neighbour in the buffer β

is furthest to the right in β. Ties in the min and argmax operators can be resolved
arbitrarily: in what follows we assume some fixed criterion for tie resolution, in order
to make the parser deterministic; since all of our results are independent of the specific
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Figure 7
Transformation of tree decomposition T (left) into T′ (right), eliminating a push transition at
node i ∈ I that violates Rule 1. Node i1 ∈ I is the rightmost child of i in T and is the immediate
right sibling of i in T′.

criterion we use, we do not further specify here our choice. We also adopt the convention
that the minimum of an empty set of natural numbers is infinity. In this way, if a vertex
in η has no edges pointing to vertices in β, that vertex can be selected. The main idea
here is that we want to process vertices by giving higher priority to those vertices with
closer forward neighbours. We therefore move out of the cache vertex vi∗ and push it
into the stack, for later processing.

Let us now construct the set of indices that would be needed if we decide for a push
transition in configuration c:

C = {i | i ∈ [m] \ {i∗}, (vi, β1) ∈ EG} . (2)

Then the remaining two rules are given by:

2. If Rule 1 does not apply, and there is no edge (v, β1) in EG such that vertex v is in
the stack or v = vi∗ , the oracle chooses transition push(i∗, C).

3. If Rule 1 and Rule 2 do not apply, the oracle fails.

Rule 2 checks that it is possible to construct all of the backward-pointing edges from
vertex β1 using the cache. If this is not the case, it means that G can not be produced
with the given cache size, and thus the parser rejects.

The restrictions on the transitions imposed by the oracle algorithm lead to certain
properties in the tree decompositions that a cache transition parser produces when
running in oracle mode. For a graph G we define an eager tree decomposition of G
to be a smooth tree decomposition T produced by the parser running on input π in
oracle mode, where π is some sequence of G’s vertices. We now show that the eager
tree decomposition is a normal form for tree decompositions of graphs, preserving both
the width and the vertex order.

Lemma 5
Any smooth tree decomposition T of graph G can be transformed into an eager tree
decomposition T′ of G of equal width. Moreover, we have π(T′) = π(T).
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Proof. Since T is a smooth tree decomposition, by Lemma 4 there exists a cache tran-
sition parser with cache size equal to the width of T plus one, such that a run of this
parser on π(T) produces T. If the transitions of this run do not violate Rules 1 to 3 in the
definition of our oracle, then T is also an eager tree decomposition. In case the run shows
some violations of the above rules, we change T in order to eliminate these violations
from the run, in a way that does not increase the width/cache size and preserves the
order.

Suppose that our run contains some push transition that occurs when the rightmost
vertex v in the cache η has no forward-pointing edge leading to some vertex in the
buffer. This represents a violation of Rule 1 of the oracle. Let I be the set of nodes of T,
and let i ∈ I be the node of T with rightmost vertex v in the cache, to which this push
transition applies; see Figure 7. If there are several push transitions out of node i, those
that represent a violation of Rule 1 must all be grouped at the right. We then choose the
rightmost one. Let i1 ∈ I be the node of T produced by this push transition, and let T1
be the subtree of T rooted at i1. The vertices of G that are pushed into the cache in the
run associated with T1 cannot contain any neighbour of v. Thus v is not needed in T1.
We can therefore reattach subtree T1 to the parent node of i, p(i), in such a way that
i1 becomes the immediate right sibling of i; see again Figure 7. Furthermore, we can
replace all occurrences of v in T1 with copies of the vertex introduced at p(i).

Let T′ be the tree resulting from the above transformation of T. Since our transfor-
mation has not changed the size of the bags of T, T′ is still a smooth tree decomposition
of G, with the same width as T. Since our transformation has moved T1 one level up in
T without “jumping over” any other subtree of T, we must have π(T′) = π(T). Note
that this transformation of T has removed from our run the alleged violation of Rule 1.

Suppose now that our run violates Rule 2 of the oracle. Since the run produces
G, this can only happen if the parser does not push into the stack the vertex from the
cache that will be needed furthest in the future. Let then v1 be the vertex that is pushed
onto the stack, and let v2 6= v1 be the vertex that is needed furthest in the future. Let
also i1 ∈ I be the node of T that is created at this step, and let T1 be the subtree of
T rooted at i1. Because v1 is removed from the cache when i1 is created, v1 does not
appear anywhere in T1, and none of the vertices that are pushed in T1 are neighbours of
v1 in G. If v1 is not a neighbour of the vertices that are pushed in T1, then v2 cannot be a
neighbour of these vertices either, since v2’s first neighbour occurs strictly after v1’s first
neighbour in β. Therefore, although v2 appears in subtree T1, it is never used there to
construct an edge of G. All occurrences of v2 in T1 can then be replaced by occurrences
of v1.

Let T′ be the tree resulting from the second transformation above. Again, tree T′

is a smooth tree decomposition of G, with the same width as T. Furthermore, the
replacement of v2 by v1 does not affect the bags of T where these nodes have been
introduced for the first time. Therefore we must have π(T′) = π(T). Note that this
transformation of T has removed from our run the alleged violation of Rule 2.

The two transformations above can be iterated until the resulting tree is a greedy
tree decomposition. From the above observations, this tree has the same width and
vertex order as T.
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We can now prove the correctness of our oracle. We say that a cache transition parser
running in oracle mode accepts its input if it reaches a final configuration.

Theorem 3
Let G be some graph and let π be some ordering of its vertices. Assume that the relative
treewidth of G with respect to π is m− 1. Then a cache transition parser with cache size
m running in oracle mode on input G and π will accept.

Proof. By Lemma 5, there exists a greedy tree decomposition T for G of width m− 1 such
that π(T) = π. By definition of greedy tree decomposition, a cache transition parser
with cache size m can run in oracle mode on input G and π, without any violation of
Rules 1 to 3. The parser will then accept.

We conclude this section with a computational analysis of the cache transition
parser running in oracle mode. Let G and π be the input to the parser, and assume
the cache size is m. Each pop transition can be carried out in constant time. Each
push transition involves the processing of m − 1 vertices from the cache, testing their
connection in G to the vertex shifted into the cache. This can be easily carried out in
total time O(m).

We now consider the computation of Rules 1 to 3 of the oracle at each step of the
parser. We preprocess G in such a way that, for each vertex v, we have an adjacency
list a(v) with all of v’s neighbours, sorted according to the left-to-right order in which
these vertices appear in π. All of the adjacency lists together can be computed in
time O(|G| log(d)), where d is the maximum degree of a vertex of G. The main idea,
explained in more detail below, is to remove from each a(v) the vertices as soon as the
associated edges are processed. In this way, at each timestep, each a(v) is an ordered
list of the unprocessed neighbours of v. These vertices must necessarily appear in the
buffer.

Assume the current configuration has cache [v1, . . . , vm]. The computation of the
oracle rules can be carried out as follows.

r To compute Rule 1, it suffices to check whether a(vm) is empty, since any
unprocessed neighbour of vm must necessarily be located in the buffer.
This takes time O(1).r To compute Rule 2, we consider each vertex vi in the cache. If a(vi) is
empty, we assign to vi a score of +∞. Otherwise, let v be the first vertex in
a(vi), and let iv be the index of v in π. We then assign to vi a score of iv.
According to (1), we can now compute index i∗ by finding the vertex in the
cache with the maximum score, arbitrarily solving any tie. This can be
done in time O(m).
Next, we need to compute set C as defined in (2). Let v be the first vertex in
the buffer. We check that the backward neighbours in a(v) are all in the
cache and do not include vertex vi∗ , as required by Rule 2. This again can
be done in time O(m).r Finally, Rule 3 trivially takes time O(1).
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To conclude our analysis, we need to consider the amount of time spent in the
updating of the adjacency lists. This is done right after each push transition, when a
vertex v is shifted from the buffer into the cache. We observe that, at this time, all of the
backward neighbours in a(v) must be in the cache, otherwise the push transition would
not be possible and the computation would fail by Rule 3. We can then remove these
backward neighbours from a(v) in time O(m). Symmetrically, for each vertex v′ that is
removed from a(v), we also remove v from a(v′). Note that v is always the first element
of a(v′), and can thus be removed in time O(1).

To summarize, at each step in the parsing process, we check Rules 1 to 3 of the
oracle, we perform the required transition, and we update all of the adjacency lists in
total timeO(m). The parser makes exactly one push and one pop transition for each arc
of the greedy tree decomposition of G given vertex order π. Since the number of arcs is
|π|, the processing time (excluding the initialization of the adjacency lists) is O(|π|m).

Combining the initialization and the processing time, we have the following result.

Theorem 4
Let graph G and vertex ordering π be the input to a cache transition parser with cache
size m, running in oracle mode. Let also d be the maximum degree of a vertex of G. A
run of the parser takes time O(|G| log(d) + |π|m).

As already discussed, the above computational result refers to the training phase, where
we use the oracle to map gold graphs and orderings into canonical transition sequences
for training a classifier that would choose the optimal transition when decoding strings
into graphs. As for the decoder itself, since there is no need to compute Rules 1 to 3
of the oracle or to initialize the adjacency lists, the running time will be O(|π|m) plus
some function that accounts for the time for the computation of the classifier, which we
do not deal with here.

As a second remark, in case we have a small value for the cache size m, the decoding
time O(|π|m) is very close to the linear time of a transition-based system for depen-
dency tree parsing. More precisely, when m = 2 our parser will only be able to build
trees (see discussion in Section 7.2). On the other extreme, when m = |π|, the parser will
become the transition-based implementation of the Covington algorithm (Nivre 2008)
generalized to graphs. This algorithm is able to parse arbitrary graphs, and will run in
quadratic time in the length of the input. In the next section we discuss an algorithm that
computes the minimal value of m for an input set of data. As we will see in Section 6,
on real data for English we get values of m that are very small. This suggests that the
graphs of interest for semantic representation of English sentences can be processed
almost as efficiently as their syntactic dependency tree counterpart, when the vertices
are provided according to the English order.

5. Computing Minimal Cache Size

We now examine the problem of computing the relative treewidth of a graph G with
respect to an order π. As already seen in Theorem 1, this provides the smallest cache
size needed by our parser in order to process π and produce G. This problem is also
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central in parsing applications: its solution will allow us to compute in Section 6 the
minimal cache size that guarantees a complete coverage of a given data set.

Let T1 and T2 be two smooth tree decompositions for the same graph G. We say that
T1 and T2 are m-equivalent if the following conditions both hold.

r T1 and T2 have the same branching structure, that is, T1 and T2 are the
same if we ignore the content of the bags at their nodes.r Corresponding nodes of T1 and T2 introduce the same vertex of G.

Intuitively, T1 and T2 are m-equivalent if they differ only in the choice of the vertices of
G that are dropped off at corresponding bags. As a direct consequence of the definition,
we have that if T1 and T2 are m-equivalent, then π(T1) = π(T2).

Lemma 6
Let G be a graph and let π be a vertex order for G. When running in oracle mode
on G and π, transition parsers with different cache sizes have associated greedy tree
decompositions that are m-equivalent.

Proof. We start by showing that, regardless of the size of the cache, when parsing in
oracle mode, the sequence of push and pop transitions is always the same, and at
corresponding timesteps of parsers with different cache size, the vertex in the rightmost
position of the cache is always the same. To do this, we use induction on the number
of moves, and we take advantage of the fact that, when parsing in oracle mode, the
sequence of push and pop transitions depends only on the rightmost vertex in the cache
and on the current position in the input buffer (see Rule 1 of our oracle).

Suppose that the first h − 1 moves for parsers of two different cache sizes, both
producing G, consist of the same sequence of push and pop transitions (although the
vertices chosen to be removed from the cache and pushed onto the stack may differ).
Assume also that the rightmost vertex in the cache is the same for each of the first h− 1
moves for both parsers. Because both parsers have pushed the same number of times,
both parsers will be at the same location in the buffer. Because the choice of push or pop
depends only on the rightmost vertex in the cache and the position in the buffer, the
choice of push or pop at step h will be the same for both parsers. If both parsers push,
they will both shift the same vertex from the buffer, and will place the same vertex in the
rightmost position of the cache. If both parsers pop, they will both return at timestep h to
the cache configuration that they had at some previous timestep i < h. By the induction
hypothesis, the cache configuration will have the same rightmost vertex.

Since parsers of any cache size running in oracle mode on G and π follow the
same sequence of push and pop transitions, for all these runs the associated derivation
trees and greedy tree decompositions have the same branching structure. Furthermore,
since corresponding nodes in these derivation trees have cache configurations with the
same rightmost vertex, corresponding nodes of the tree decompositions introduce the
same vertex of G. We thus conclude that the associated tree decompositions are all m-
equivalent.
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The next result shows an easy lower bound on the width of a smooth tree decom-
position.

Lemma 7
Let τ be a subtree of a smooth tree decomposition T of graph G, and let h be the number
of vertices of G introduced outside τ that are adjacent in G to vertices introduced
inside τ. Then the width of T is at least h.

Proof. Each vertex is introduced in the topmost node of T in which it appears, so vertices
introduced in τ appear only in τ. Each edge e of G incident on a node introduced inside
τ must be assigned to a bag of T inside τ. If the other endpoint of e is introduced outside
of τ, then the other endpoint must occur both inside and outside τ, and, by the running
intersection property of tree decompositions, must occur in the bag B at the root of
τ. If there are h such distinct endpoints, B must contain these h vertices and the vertex
introduced at B, for a total size of h+ 1 vertices. Therefore, the width of T is at least h.

The combination of Lemmas 6 and 7 leads to an efficient algorithm for finding the
relative treewidth of G with respect to π, reported below. In the algorithm we use the
following property. Let T be a smooth tree decomposition of G, and let τ be a subtree
of T. Let also v be a vertex of G that is introduced outside of τ and that is adjacent in G
to some vertex introduced inside τ. Then v must be introduced at some node of T that
dominates the root of τ. To see this, consider that v is introduced at the topmost node
of T in which it appears, since T is smooth. Furthermore, by the running intersection
property this node must dominate the root of τ.

Algorithm 1 Procedure for determining the relative treewidth of G with respect to π

1: procedure ORDEREDTREEWIDTH(G = (VG, EG), π)
2: Run in oracle mode on G and π a cache transition parser with cache size |VG|
3: Let T be the resulting tree decomposition, with I its node set
4: return maxi∈I |{u | (u, v) ∈ EG, u introduced above i,

v introduced at i or below i}|

The next result proves the correctness of Algorithm 1.

Theorem 5
Let graph G and vertex order π be the input to Algorithm 1. Then the algorithm returns
the relative treewidth of G with respect to π.

Proof. Assume that Algorithm 1 returns integer k. We start by showing that there exists
a greedy tree decomposition T of G such that π(T) = π and the width of T is k. Let Ta
be the greedy tree decomposition produced at Step 3 of Algorithm 1. We construct a tree
decomposition T′a by copying the branching structure of Ta and by editing each of the
bags of Ta as described in what follows.

Let i be a node of Ta and let Xi be the associated bag, introducing vertex vi of G. We
replace Xi with the bag

X′i = {vi} ∪ {u | (u, v) ∈ EG, u introduced above i, v introduced at i or below i} .
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It is not difficult to see that for each i ∈ I we have X′i ⊆ Xi.
We now argue that T′a is a valid tree decomposition of G. First, note that every vertex

of G is introduced at some bag of T′a. More precisely, if v is introduced at bag Xi of Ta, for
some i ∈ I, then v is introduced at the corresponding bag X′i of T′a. Furthermore, each
vertex v of G appears in a connected subtree of T′a. To see this observe that if v ∈ Xi
is dropped from X′i , for some i ∈ I, then v will not appear in any of the bags X′j for
nodes j that are dominated by i. Finally, each edge of G can be assigned to the bag
which introduces the lower of its two endpoints (as noted above, the node introducing
one endpoint must be an ancestor of the node introducing the other).

Since Ta and T′a have the same branching structure, and since vertices of G are
introduced at corresponding nodes in Ta and T′a, we have that π(T′a) = π(Ta) = π.
Note that each X′i is constructed following essentially the same condition at Step 4 of
Algorithm 1, which provides value k. Hence the largest bag of T′a has size k + 1 and T′a
has width k. By Lemma 1, T′a can be transformed into a smooth tree decomposition of
width k, preserving the order, and by Lemma 5 this smooth tree decomposition can in
turn be transformed into an eager tree decomposition of width k, again preserving the
order.

Let us now assume that the relative treewidth of G with respect to π is k′ < k. From
Theorem 3, we have that a cache transition parser with cache size k′+ 1 running in oracle
mode on G and π will accept. Let T′ be the eager tree decomposition associated with
the run of the parser, and let T be the eager tree decomposition at Step 3 of Algorithm 1.
By Lemma 6, T and T′ are m-equivalent.

Because corresponding nodes of T and T′ introduce the same vertex of G, we have
that Step 4 of Algorithm 1 would return the same value k when running on T′. We
can then apply Lemma 7 to T′, and conclude that T′ has width at least k. However,
by Lemma 3, T′ will have width at most k′ < k. Since this is a contradiction, it cannot
be possible for a tree decomposition of G to have order π and to have width smaller
than k.

We conclude this section with a computational analysis of Algorithm 1. Following
Theorem 4, Step 2 of the algorithm takes time O(|G| log(d) + |VG|2), where VG is the
set of G’s vertices (with |VG| = |π|). To compute Step 4, let I be the set of nodes of T.
For each i ∈ I we maintain a list of vertices introduced above i that are connected to
nodes introduced below i. This list can be computed in time O(|VG|) using the lists at
the children of i. The whole step then takes time O(|VG|2). We have thus shown the
following result.

Theorem 6
Let graph G and vertex order π be the input to Algorithm 1. Let also d be the maximum
degree of a vertex in G. Algorithm 1 can be implemented to run in timeO(|VG|2 log(d)).

6. Experiments

In this section we consider several families of graph-based representations of semantic
structures for natural language that are commonly used nowadays. We run experiments
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Figure 8
An example AMR graph for the sentence: John wants Mary to like him.
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Figure 9
The distribution of AMR relative treewidth.

on graph datasets for these representations, with the aim to assess the coverage that our
cache parser provides with different cache sizes.

We first evaluate our algorithm on Abstract Meaning Representation (AMR) (Ba-
narescu et al. 2013). AMR is a semantic formalism where the meaning of a sentence
is encoded as a rooted, directed graph. Figure 8 shows an example of an AMR graph
in which the nodes represent the AMR concepts and the edges represent the relations
between the concepts they connect. AMR concepts consist of predicate senses, named
entity annotations, and in some cases, simply lemmas of English words. AMR relations
consist of core semantic roles drawn from the Propbank (Palmer, Gildea, and Kingsbury
2005) as well as very fine-grained semantic relations defined specifically for AMR. We
use the training set of LDC2015E86 for SemEval 2016 task 8 on meaning representa-
tion parsing (May 2016), which contains 16,833 sentences. This dataset covers various
domains including newswire and web discussion forums.

For each graph, we derive a vertex order corresponding to the English word order
by using the automatically generated alignments provided with the dataset, which align
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data real string (gold) string reversed string (gold) reversed string random
LDC2015E86 1.52 - 2.80 - 3.08 4.84
hand aligned 1.43 2.61 2.68 2.79 2.90 4.81

Table 1
Relative treewidth statistics with respect to different vertex orders: “real” means the real
treewidth of the data, “string” means using the string order constraint, “gold” means using the
gold alignment.

Figure 10
The AMR subgraph representation for the substring c1, c2, . . . and cn.

tokens in the string to concepts or edges in the graph. We first collapse subgraphs of
named entities and dates to a single node on the graph side. For example, the subgraph
corresponding to “John” is collapsed to a single node “person+John”, and the same goes
for the subgraph for person name “Mary”. There are also some vertices in the graph that
are not aligned to any token. We want to linearize all vertices (concepts) in the graph in
such a way that the string side order is kept as much as possible (we call it string order).
We first sort the aligned vertices according to the position of their token side. We use
the first position in case a vertex is aligned to multiple positions. If an unaligned vertex
is the parent of an aligned vertex, we insert it right before the aligned vertex in the
sequence. Otherwise, for simplicity, we append the unaligned vertex to the end of the
vertex sequence, according to its relative order in the depth-first traversal of the graph.

After we have constructed the input vertices with vertex order π, we run Algo-
rithm 1 to determine the relative treewidth of each AMR graph with respect to the
vertex order π. Figure 9 shows the distribution of relative treewidth of AMR graphs
in the dataset. We can see that over 99% of the AMR graphs can be built using a cache
size of 8. As shown in Table 1, the average relative treewidth with respect to the string
order is 2.80. The average treewidth of this dataset, i.e. the average of minimum relative
treewidth of each AMR graph with respect to any vertex order, is 1.52. This shows
that using the string order as a constraint does not significantly increase the treewidth
statistics of the dataset.

In the worst case, the maximum relative treewidth of a graph can be 16, while the
maximum treewidth of the data is 4. This is because when using the string order as a
constraint for the vertex order, the string-to-vertex alignment does not always follow
the preorder traversal of vertices which is desirable in the width computation. The most
problematic case is the traversal of a node with many branches, with op’s structure
most significant in the AMR data. For example, in Figure 10, n different concepts
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data real string
AMR 1.52 2.80
DM 1.30 2.95
PSD 1.61 3.01
PAS 1.72 3.84

Table 2
Relative treewidth statistics for SemEval 2015 semantic dependency graphs.

are connected to the parent concept “and” with the opk (k = 1, · · · , n) relation. This
structure does not introduce high treewidth because we can put “and” and each ci
into a separate bag, forming a chain of bags of width 1. However, when we use the
string order as a constraint, we first introduce vertices c1, c2, . . . , cn−1, then we further
introduce “and” and cn. This would result in a chain structure of length (n + 1) in the
tree decomposition, where “and” is introduced at the n-th bag in the chain. According
to Algorithm 1, because c1, c2, . . . , cn−1 are all introduced above the bag that introduces
“and” and all connect to “and”, the relative treewidth is at least n − 1. In general, a
high-branching structure with most children introduced before the parent would result
in larger relative treewidth and distort from the real treewidth of the graph.

Another reason for high relative treewidth is the alignment errors from the auto-
matic alignments. When multiple instances of the same word align to multiple vertices
with the same concept labels, the automatic alignment usually can not distinguish them
and often creates a many-to-many alignment between instances of the word in the string
and instances of the concept in the graph. This results in a wrong traversal order of the
multiple vertices and a larger relative treewidth. Our worst-case sentence, with relative
treewidth of 16, is due to this type of error in the automatically generated alignments.

We additionally experiment on a smaller dataset of 200 hand-aligned AMR/English
sentence pairs by Pourdamghani et al. (2014). From Table 1, we can see that the average
relative treewidth of these AMR graphs with respect to the string order is 2.61 when
using the gold alignment, while the average treewidth is 1.43. If we use the automatic
alignment for these AMRs, the relative treewidth becomes 2.68. The maximum relative
treewidth for both cases are 6. This number is much lower than the maximum relative
treewidth of the LDC2015E86 training data because the maximum sentence length of
the smaller dataset is 54, while for the latter dataset the maximum sentence length can
be as large as 225. By comparison, we can also see that alignment errors can result in
higher relative treewidth, though not significantly.

We also evaluate the impact of different vertex order on the relative treewidth. We
can see from the table that if we reverse the vertex order (reversed string order), the
relative treewidth is 3.08. This number is slightly larger than using the string order. The
reason might be that English is more likely to have relation arcs going from left to right.
If we randomize the vertex order, the relative treewidth becomes 4.84.

We also evaluate the coverage of our algorithm on semantic graph-based represen-
tations other than AMR. We consider the set of semantic graphs in the Broad-Coverage
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Figure 11
The distribution of relative treewidth for SemEval 2015 semantic dependency graphs.

Semantic Dependency Parsing (SDP) task of SemEval 2015 (Oepen et al. 2015), which
uses three distinct graph representations for English semantic dependencies.r DELPH-IN MRS-Derived Bi-Lexical Dependencies (DM): these semantic

dependencies are derived from the annotation of Sections 00-21 of the WSJ
Corpus with gold-standard HPSG analyses provided by the LinGO
English Resource Grammar (ERG) (Flickinger 2000; Flickinger, Zhang, and
Kordoni 2012). Among other layers of linguistic analysis, this
representation also includes logical-form meaning representations in the
framework of Minimal Recursion Semantics (MRS) (Copestake et al. 2005).r Enju Predicate-Argument Structures (PAS): this dataset comes from the
HPSG-based annotation of Penn Treebank, which is used for training the
wide-coverage HPSG parser Enju (Miyao 2006). Enju can effectively
analyze syntactic/semantic structures of English sentences and output
phrase structures and predicate-argument structures with a wide-coverage
grammar and a probabilistic model trained on this data.r Prague Semantic Dependencies (PSD): the Prague Czech-English
Dependency Treebank (Hajic et al. 2012) is a set of parallel dependency
trees over the WSJ texts from the PTB, and their Czech translations. The
PSD bi-lexical dependencies have been extracted from what is called the
tectogrammatical annotation layer (t-trees). We experiment on the English
part of the treebank in this paper.

Differently from the case of AMR, in all of the above graph representations the vertices
are exactly the tokens from the input string. From Table 2 we can see that using English
word order as the vertex order, the average relative treewidth for the set of DM graphs
is 2.95, while the average real treewidth of the DM graphs is 1.30. The PSD and PAS
graphs have larger real treewidth in comparison with the DM graphs, while the relative
treewidth is also larger. We also observe that even though DM has smaller average real
treewidth in comparison with AMR, the relative treewidth is slightly larger. This is
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Figure 12
An HRG that generates cycles of any size. Squares indicate grammar nonterminals with
numbered ports. Number above vertices in a rule’s righthand side correspond to the ports of the
lefthand side nonterminal. An example derivation is shown in Figure 13.

because articles, prepositions and other non-content words appear as vertices in DM
graphs, while in AMR these words appear either as edges or not at all. Aritcles in
particular increase the relative treewidth, because the article appears as a left neighbor
of the head noun in the semantic dependency graphs, and the number of left neighbors
of a vertex is a lower bound on relative treewidth, as discussed above in relation to
conjunctions in AMR. We find that while most AMR graphs have relative treewidth of 2
or 3 (shown in Figure 9), most semantic graphs in the SDP datasets have slightly larger
relative treewidth (3 for DM and PSD, and 3 or 4 for PAS, shown in Figure 11). With
a cache size of 8, the coverage rate is 1.0 for DM and over 99% for PSD and PAS. In
practice, we can tune the cache size to optimize the trade-off between coverage and the
ease of prediction.

To summarize, we find that the relative treewidth of the analyzed semantic graph-
based structures, with respect to the English word order, is low enough to make efficient
parsing possible. Furthermore, the fact that the real word order gives lower relative
treewidth than random orders, or even the reverse order, indicates that the real English
word order provides valuable information that our parsing framework can exploit.

7. Comparison with Other Formalisms

In this section we compare our cache transition parser to existing formalisms that have
been used for graph-based parsing, as well as to similar transition-based systems for
dependency tree parsing.
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Figure 13
An example derivation of the HRG from Figure 12 (left), along with the corresponding tree
decomposition of the derived graph (right). Each bag of the tree decomposition corresponds to
one rule application in the derivation.

7.1 Connection to Hyperedge Replacement Grammars

Hyperedge Replacement Grammars (HRGs) are a general graph rewriting formalism
(Drewes, Kreowski, and Habel 1997) that has been applied by a number of authors to
semantic graphs such as AMRs (Jones et al. 2012; Jones, Goldwater, and Johnson 2013;
Peng, Song, and Gildea 2015). Our parsing formalism can be related to HRG through
the concept of tree decomposition.

HRGs contain rules which rewrite a nonterminal hyperedge into a graph fragment
consisting of a number of new nonterminal hyperedges and terminal edges (see ex-
ample grammar in Figure 12). The vertices that a nonterminal hyperedge connects to,
known as its ports, are also the points at which the rule’s righthand side graph fragment
is attached to the rest of the graph after the nonterminal is rewritten. An HRG derivation
of a graph can be viewed as a derivation tree, with a grammar rule at each node, where
the rule expanding a nonterminal hyperedge is a child of the rule that introduced the
nonterminal in its righthand side. This derivation tree provides a tree decomposition of
the derived graph. More precisely, the tree decomposition has the same nodes and the
same branching structure as the derivation tree, and each bag in the tree decomposition
contains all the vertices that appear in the righthand side of the rule.

In the other direction, it is possible to extract HRG rules from a tree decomposition
by treating each bag as a rule. Nonterminals in the extracted rules correspond to the
arcs of the tree decomposition. For an arc (i, j) of the tree decomposition, let Xi and Xj
be the bags at nodes i and j, respectively. The set of vertices Xi ∩ Xj, known as the arc’s
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separator, are the vertices to which the corresponding HRG nonterminal was connected
before being rewritten.

Example 5
An HRG generating graphs consisting of a single cycle of any size is shown in Figure 12.
An example derivation of this grammar along with the corresponding tree decomposi-
tion is shown in Figure 13. Cycles have treewidth two, as seen from the fact that the
largest bag in the figure has size three, and the grammar rules involve at most three
vertices.

Because each run of our parser corresponds to a smooth tree decomposition, it is
possible to describe a corresponding HRG. This HRG will have a number of specific
properties. Because our tree decompositions are smooth, the HRG rules will always
introduce exactly one new vertex in their righthand side. Because the separators of
a smooth tree decomposition of treewidth k all contain k vertices, the nonterminals
of the derived HRG all have exactly k ports. The branching factor of a node in our
tree decomposition corresponds to the number of righthand side nonterminals in the
corresponding HRG rule, and is potentially unlimited.

In general, the branching factor of the tree decompositions produced by our parser
is not bounded by a constant, while any fixed HRG has a maximum number of right-
hand side nonterminals in its rules. This implies that, while it is possible to extract an
HRG corresponding to one run of our parser, it is not always possible to produce an
HRG whose derivations correspond to all possible runs of a parser. We emphasize that
the above observations apply to the derivations of the HRG rather than to the language
of graphs produced. It is an open question whether all the graphs of fixed relative
treewidth with respect to a vertex order can be generated by a fixed HRG.

7.2 Connection to Existing Transition-Based Systems

As already mentioned in the introduction, transition systems using a stack data struc-
ture have been very successful in dependency tree parsing, and several proposals can
be found in the literature. In this section we compare some of these systems with our
cache transition parser.

We have already mentioned that when we use a cache with size two, we can only
construct graphs that are trees. This follows from the fact that any graph with at least
one cycle has relative treewidth larger than one, and thus cannot be parsed with cache
size two, by Theorem 1. When the cache size is bounded by two, the edge construction
operations that are available to the parser resemble the left-arc and the right-arc transi-
tions of the arc-standard parser described by Nivre (2008), if we disregard the fact that
these transitions remove the dependent vertex from the stack. However, this similarity
is only superficial and the two parsers are incomparable, as explained below.

The arc-standard parser can construct trees in which the root is at the rightmost
position of the input string, and all of the remaining tokens are left children of the root.
As already discussed in Section 6, such trees have relative treewidth proportional to the
length of the string. By Theorem 1, these trees cannot be parsed with cache size of two.

28



Gildea, Satta, and Peng

v1 v2 v3 v4

•[$, $]

•[$, v1]

•[v1, v2]

•[v1, v3] • [v2, v4]

Figure 14
Non-projective tree G (left), and derivation tree of a parser with cache size two constructing G
(right).

In the opposite direction, when using cache size of two we can construct non-
projective trees, something that is not possible with an arc-standard parser. As a simple
example, consider the non-projective dependency tree G shown in the left part of
Figure 14, where we have disregarded the edge directions. The derivation tree in the
right part of Figure 14 displays a run of a parser with cache size two constructing G.
When vertices v1 and v2 are in the cache for the first time, the parser constructs the
edge (v1, v2). It then pushes v3 into the cache, moving v2 out of the cache and into the
stack and constructing the edge (v1, v3). It then pops v3 from the cache, moving back to
the configuration with cache content v1, v2. Next, the parser pushes v4 into the cache,
moving v1 into the stack and constructing the edge (v2, v4). Afterward, it pops v4 from
the cache, again moving back to the cache content v1, v2. Two more pops conclude the
computation.

The fact that we can build non-projective trees, even with the minimum cache size
of two, is explained by the capability of our parser to use the cache to “reorder” vertices
with respect to their original ordering in the input. In the above example, for instance, at
some step in the computation we have v2 in the stack and v1, v3 in the cache, in the given
order. This reordering of the input tokens is somehow reminiscent of the parsing model
proposed by Nivre (2009), where a special transition called swap is used to reorder the
input tokens and to construct non-projective dependency trees.

An alternative model for parsing non-projective dependency trees has been pro-
posed by Attardi (2006). This parser constructs edges by connecting vertices in the stack
that are not at adjacent positions, using special transitions called left-arck and right-
arck, for arbitrarily large values of integer k > 0. More precisely, left-arck and right-arck
create an edge between the top-most vertex in the stack and the vertex at position k + 1.
(In the original formulation of the parser, the two vertices involved are the first vertex
in the buffer and the vertex at position k in the stack. If we consider the first element
of the buffer as an additional stack element sitting on the top of the top-most stack
symbol, the two formulations are equivalent.) The left-arck and right-arck transitions
are superficially similar to the operations for edge construction that we exploit in our
cache, since both operations connect vertices that are not at adjacent positions. However,
the two models present two substantial differences, as discussed below.
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First, the left-arck and right-arck transitions remove the dependent vertex from the
stack, while vertices in the cache are retained after edge construction. This feature allows
us to create loops in the produced graphs, or edge re-entrancies in case we produce
directed graphs. Second, and most important, in the cache parser there is an interplay
between the stack and the cache which allows us to reorder vertices in the stack with
respect to their original ordering in the input, as already observed. This is not possible
in Attardi’s parser. In different words, the cache should not be regarded as a finite size
window at the top of the stack, as the case of Attardi’s parser might suggest: in the cache
parser we can pick up any vertex from the cache and move it into the stack. Hence the
stack is effectively used to “delay” the processing of vertices, if these vertices are not
needed in the current branch of the computation.

The cache transition parsing proposed in this article can also be related to the two-
register transition system of Pitler and McDonald (2015), for non-projective dependency
parsing. In addition to the buffer and the stack, a two-register transition system uses two
registers to store input vertices and to create edges involving these vertices and vertices
in the stack. Since the stack and the registers are manipulated independently one of the
other, this technique basically alters the input order of the tokens, making it possible to
produce non-projective trees. The cache parser can then be viewed as a generalization
of the two-register transition systems. This is because in a cache parser one can move
tokens in and out of the cache repeatedly, as already discussed. This is not possible in
a register transition system. It would be interesting then to explore the use of our cache
parsers for non-projective dependency grammars.

We conclude this section with a discussion of other transition-based systems ex-
plicitly designed for graph parsing, as opposed to tree parsing. Sagae and Tsujii (2008)
have possibly been the first authors to extend the stack-based transition framework
for dependency tree parsing to directed acyclic graphs, with the motivation of repre-
senting semantically motivated predicate-argument relations and anaphoric references.
This is done by dropping the constraint of a single head per word, and by using
post-processing transformations that introduce non-projectivity. Titov et al. (2009) and
Henderson et al. (2013) present a transition system for synchronous syntactic-semantic
parsing, with the motivation of modeling the syntax/semantic interface. On the seman-
tic side, their system mainly captures the predicate-argument structure and semantic
role labeling. Their model has then been adapted by Du et al. (2014) for semantic-only
parsing.

Later on, Wang, Xue, and Pradhan (2015) have proposed a transition system for
AMR parsing. Unlike traditional stack-based transition parsers that process input
strings, this system takes as input a dependency tree and processes its edges using a
stack, applying tree-to-graph transformations that produce a directed acyclic graph.
Similarly to Sagae and Tsujii (2008), the system presented by Damonte, Cohen, and
Satta (2017) extends standard approaches for transition-based dependency parsing to
AMR parsing, allowing re-entrancies. Similar extensions of transition-based systems to
AMR parsing also appear in Zhou et al. (2016) and Ribeyre, de La Clergerie, and Seddah
(2015).

All of the above approaches are based on the idea of extending the transition
inventory of standard transition-based dependency parsing system, in order to produce
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graph representations. On a theoretical perspective, what is missing from the above
proposals is a mathematical characterizaton of the set of graphs that can be produced
and, with few exceptions, a precise description of the oracle algorithms that are used
to produce training data from the gold graphs. Furthermore, all of the above proposals
still retain the stack and buffer architecture of the transition-based dependency parsing
system they extend. In contrast, the proposal in this article introduces the novel idea
of using a cache component in stack-based transition systems. As we have already
discussed, the specific interplay between the stack and the cache allows the system to
split the computation into different branches, and for each branch to reorder the input
tokens in a way that allows edge processing locally to the cache, even in cases where the
involved vertices are at a long distance in the input sequence. We have also provided a
mathematical characterization of the graphs that can be constructed in this way, in term
of the novel notion of relative treewidth, and we have specified and analyzed an oracle
algorithm to produce training data from the gold graphs.

8. Concluding Remarks

Our transition system is motivated by the task of semantic parsing of natural language
sentences, and we now proceed to discuss some of the issues that still need to be
addressed in developing a practical system based on our framework. The primary
task is to develop a machine learning system for predicting the parser’s next action
at each step. The optimal cache size will need to be determined empirically, as it may
be beneficial to trade off coverage of the small number sentences requiring large cache
size in order to make the prediction of parser actions more accurate. We speculate that
it will be desirable to decompose the push action into steps that first make the decision
of whether to push or pop, and then whether to build each of the potential arcs within
the cache individually, in order to reduce the space of predictions at each step. In the
literature on dependency grammar parsing, models of this type are called arc-factored
models and are frequently used. Further experimentation will be required to determine
the best set of features and the best architecture for the machine learning component.

A possible extension of our framework is the development of a dynamic pro-
gramming algorithm to allow efficient exploration of the space of possible runs of a
parser on an input string. Intuitively, different runs on the same string might share
common subparts. These subparts can be computed only once, and then “shared”
among different runs using dynamic programming techniques. Dynamic programming
algorithms for transition-based dependency parsing have been proposed by Huang
and Sagae (2010) and Kuhlmann, Gómez-Rodríguez, and Satta (2011). These algorithms
could be extended to our system, which is also fundamentally stack-based. Dynamic
programming algorithms simulating transition-based parsers have proven useful in
the realization of so-called dynamic oracles (Goldberg, Sartorio, and Satta 2014) for
transition-based parsers, improving parsing performance with respect to static oracles,
that is, oracles of the type discussed in Section 4. Furthermore, dynamic programming
algorithms are at the basis of the development of methods for unsupervised learning,
as for example the inside-outside algorithm (Charniak 1993).
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While we have treated the input buffer as an ordering of the vertices of the final
graph, this is a simplification of the problem setting of semantic parsing for NLP. Given
as input a sequence of English words, the parser must also predict which words corre-
spond to zero, one, or more vertices of the final graph, and possibly insert vertices not
corresponding to any English word. This could be accomplished either by preprocessing
the input string with a separate concept identification phase (Flanigan et al. 2014), or by
extending the actions of the transition system to include moves inserting new vertices
into the graph. While we have not included moves inserting new vertices, in order to
simplify our exposition, such moves would not fundamentally alter the correspondence
between parsing runs and tree decompositions described in this article.

The correspondence between runs of our parser and tree decompositions of the
output graph allows for a precise characterization of the class of graphs covered, as
well as simple and efficient algorithms for providing an oracle sequence of parser
moves, and for determining the minimum cache size required to cover a dataset. We
find experimentally that semantic graphs have low relative treewidth with respect to
English word order, indicating that our parsing approach provides a practical method
of exploiting the word order in semantic parsing. Our concept of relative treewidth
with respect to a vertex order appears to be new in the graph theory literature, and may
have applications outside of natural language processing. Our transition system was
primarily motivated by these theoretical considerations, and many other definitions
are possible. In particular, our decision that vertices can only be popped from the
rightmost position in the cache simplifies our analysis. Theoretical characterization
of, and experimentation with, the set of other possible transition systems for building
graphs is a promising area for future research.
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