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We present results for the Wigner distributions of the nucleon, which provide multidi-
mensional images of the quark distributions in the phase space and can be seen as the
mother distributions of the standard generalized and transverse-momentum dependent
parton distributions. We discuss the general features of these distributions within a light-
front constituent quark model, emphasizing the new information that can be deduced
about the spin-orbit correlations of the quarks in the nucleon.
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1. Introduction

A new way to explore the parton distributions in the nucleon has recently been
introduced through the Wigner-type quark and gluon distributions.1, 2 These func-
tions have a direct connection with the generalized parton correlation functions
(GPCFs) which were recently introduced in Refs. 3, 4 and further explored in
Refs. 5, 6. The GPCFs are the distributions that parametrize the fully unintegrated,
off-diagonal quark-quark correlator for a hadron. In the case of the nucleon and
after integration over the light-cone energy of the quark, one finds the so-called
generalized transverse-momentum dependent parton distributions (GTMDs). At
leading-twist there are 16 GTMDs which depend on the light-cone three-momentum
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of the quark and, in addition, on the momentum transfer to the nucleon ∆µ. After
two-dimensional Fourier transform from �∆⊥ to the impact-parameter space coor-
dinates �b⊥, in a frame without momentum transfer along the light-cone direction,
one obtains the Wigner distributions which are completely consistent with spe-
cial relativity. Although we did not yet identify a proper high-energy process to
access these functions, it is important to note that, in general, there exists no argu-
ment according to which, as a matter of principle, GTMDs cannot be measured.
In this context, model studies assume a crucial role to disclose which kind of infor-
mation are encoded in these functions. First model studies have been performed
within a relativistic light-front constituent quark model (LFCQM),7 and afterwards
have been also presented in a scalar diquark model of the nucleon,8 in the quark-
target model,8–10 in perturbative QCD for large transverse parton momenta8 and
in a light-front spectator model.11 Here we review a few results obtained within a
LFCQM.

2. Wigner Distributions

Following Refs. 1, 2, we define the Hermitian Wigner operators for quarks at a fixed
light-cone time z+ = 0 as followsa

Ŵ [Γ](�b⊥, �k⊥, x) ≡ 1
2

∫
dz− d2�z⊥

(2π)3
ei(xp+z−−�k⊥·�z⊥) ψ(y − z

2 )ΓW ψ(y + z
2 )

∣∣
z+=0

(1)

with yµ = [0, 0,�b⊥], p+ the average nucleon longitudinal momentum and x = k+/p+

the average fraction of nucleon longitudinal momentum carried by the active quark.
The superscript Γ stands for any twist-two Dirac operator Γ = γ+, γ+γ5, iσ

j+γ5

with j = 1, 2. A Wilson line W ≡ W(y− z
2 , y+ z

2 |n) ensures the color-gauge invari-
ance of the Wigner operator, connecting the points (y− z

2 ) and (y+ z
2 ). Note that�b⊥

and �k⊥ are not Fourier conjugate variables, like in the usual quantum-mechanical
Wigner distributions. Rather, if �ri⊥ (�rf⊥) and �ki⊥ (�kf⊥) are the transverse position
and momentum coordinates of the initial (final) quark operator ψ (ψ), one sees that

the average quark momentum �k⊥ =
�kf⊥+�ki⊥

2 is the Fourier conjugate variable of
the quark displacement �z⊥ = �ri⊥ − �rf⊥ and the momentum transfer to the quark
�∆⊥ = �kf⊥ − �ki⊥ is the Fourier conjugate variable of the average quark position
�b⊥ = �rf⊥+�ri⊥

2 . This can be easily seen by expressing the argument of the Fourier
exponential as �kf⊥ · �rf⊥ − �ki⊥ · �ri⊥ = �∆⊥ ·�b⊥ − �k⊥ · �z⊥. Even though �b⊥ and �k⊥
are not Fourier conjugate variables, they are subjected to Heisenberg’s uncertainty
principle because the corresponding quantum-mechanical operators do not commute

[�̂b⊥, �̂k⊥] �= 0.

aIntroducing two lightlike four-vectors n± satisfying n+ · n− = 1, we write the light-cone compo-
nents of a generic four-vector a as

ˆ
a+, a−, �a⊥

˜
with a± = a · n∓.
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We define the Wigner distributions in terms of the matrix elements of the Wigner
operators sandwiched between nucleon states with polarization �S as follows

ρ[Γ](�b⊥, �k⊥, x, �S) ≡
∫

d2�∆⊥
(2π)2

〈p+,
�∆⊥
2 , �S|Ŵ [Γ](�b⊥, �k⊥, x)|p+,− �∆⊥

2 , �S〉. (2)

As outlined in Ref. 7, such matrix elements can be interpreted as two-dimensional
Fourier transforms of GTMDs in impact-parameter space. Contrary to all the other
distribution functions, the GTMDs are in general complex-valued functions. How-
ever the two-dimensional Fourier transforms of the GTMDs are always real-valued
functions, in accordance with their interpretation as phase-space distributions.

2.1. Results and discussions

Considering all the possible polarizations of active quark and nucleon, we can have
16 configurations which can be written in terms of 16 independent combinations of
the GTMDs. To keep the discussion relatively simple, we focus on cases without
any transverse polarization. The Wigner distribution of quarks with longitudinal
polarization λ in a nucleon with longitudinal polarization Λ is obtained for Γ =
γ+ 1+λγ5

2 and �S = Λ�ez

ρΛλ(�b⊥, �k⊥, x) ≡ 1
2

[
ρ[γ+](�b⊥, �k⊥, x,Λ�ez) + λρ[γ+γ5](�b⊥, �k⊥, x,Λ�ez)

]
. (3)

We decompose it as follows

ρΛλ(�b⊥, �k⊥, x) =
1
2

[
ρUU (�b⊥, �k⊥, x) + Λ ρLU(�b⊥, �k⊥, x) + λρUL(�b⊥, �k⊥, x)

+ΛλρLL(�b⊥, �k⊥, x)
]
, (4)

where ρUU is the Wigner distribution of unpolarized quarks in an unpolarized
nucleon, ρLU is the distortion due to the longitudinal polarization of the nucleon,
ρUL is the distortion due to the longitudinal polarization of the quarks, and ρLL rep-
resents the distortion due to the correlation between quark and nucleon longitudinal
polarizations.

We will discuss the results for the Wigner distributions in Eq. (4) within
a LFCQM that has already been used for the description of the GPDs,12, 13

the transverse-momentum dependent parton distributions (TMDs)14–18 and elec-
troweak properties of the nucleon,19 giving a typical accuracy of about 30% in
comparison with available data in the valence region. For the calculation, we use the
general formalism developed in Ref. 6 for the overlap representation of the quark-
quark correlator in terms of quark light-front wave-functions. Therefore, we neglect
the contribution from gauge degrees of freedom, and in particular from the Wilson
line in the Wigner operator (1). Beside specific features related to the quark model
used for the discussion of the results, we try to sketch some general features about
the behavior of the quarks in the nucleon when observed in the �b⊥ plane at fixed
�k⊥, or in the �k⊥ plane at fixed �b⊥.
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We found that the Wigner distributions ρUU of unpolarized quarks in an unpo-
larized nucleon are not axially symmetric. This deformation can be explained with
naive semi-classical arguments, as a consequence of confinement which disfavors
the radial motion of the quark compared to its orbital motion. Furthermore, we
observed that the spread of the distributions is smaller for u quarks than for d
quarks, especially in the �b⊥ space, revealing that the u quarks are more concen-
trated at the center of the proton, while the d-quark distribution has a tail which
extends further at the periphery of the proton.

The function ρLU for unpolarized quarks in a longitudinally polarized nucleon
is particularly interesting because it allows us to calculate the phase-space aver-
age of the quark orbital angular momentum (OAM).7, 20–23 In this way, one can
relate the OAM to the GTMD F1,4, as denoted in Ref. 3. Depending on how one
chooses the path of the gauge link that makes the GTMD correlator gauge invari-
ant,22, 23 F1,4 provides either the (canonical) OAM of Jaffe-Manohar24 or the OAM
in the definition of Ji.25 (We also refer to Ref. 26 for a closely related discussion
and Refs.27, 28 for recent reviews on the decomposition of the nucleon spin.) The
connection between OAM and F1,4 could also make the canonical OAM accessible
to Lattice QCD.20

The function ρUL is related to the Fourier transform of the GTMD G1,1. The
GTMD G1,1 can be considered as the “partner” of F1,4 as it describes the correlation
between the quark spin and the OAM in the êz direction.7, 29 Neither F1,4 nor G1,1

survive the GPD-limit nor the TMD-limit. In some sense this makes these two
functions actually unique.

In the case of the distortion due to the correlation between the quark and nucleon
spins, the function ρLL allows us to study the distributions of the axial charge in
the phase space.

Finally, taking into account all the four contributions discussed above, we can
visualize the combined effects induced on the distributions by the longitudinal polar-
izations of the quarks and nucleon, corresponding to the Wigner distribution ρΛλ.
In Fig. 1, the transverse Wigner distributions of u and d quarks with polarization
λ =↑, ↓ in a proton with polarization Λ =↑ are shown in the impact-parameter space
with fixed transverse momentum �k⊥ = k⊥ êy and k⊥ = 0.3 GeV. The deformation
induced by the quark and nucleon polarizations is clearly visible in the sideway
shifts of the distributions in Fig 1. In particular, when the quark and nucleon polar-
izations are parallel (antiparallel) the shift is in the positive (negative) b̂x direction,
see upper (lower) panels.

We learned from ρLU and ρUL that the u-quark OAM tends to be aligned with
both the quark and proton polarizations. When the u quark has polarization par-
allel to the nucleon spin, the contributions ρLU and ρUL interfere constructively
resulting in a sideway shift in the positive b̂x direction. When the u quark has
polarization antiparallel to the nucleon spin, the contributions ρLU and ρUL inter-
fere destructively. Since the correlation between the OAM and the quark spin is
stronger than the correlation between the OAM and the nucleon spin, it results a
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Fig. 1. The transverse Wigner distributions of longitudinally polarized quarks in a longitudinally
polarized proton (Λ =↑ pointing out of the plane) in impact-parameter space with fixed transverse
momentum �k⊥ = k⊥ êy and k⊥ = 0.3 GeV. Upper panels: distributions of quarks with polariza-
tion parallel to the nucleon spin (λ =↑). Lower panels: distributions of quarks with polarization
antiparallel to the nucleon spin (λ =↓). The left (right) panels show the results for u (d) quarks.

sideway shift in the negative b̂x direction. For the d quark, we learned from ρLU and
ρUL that the OAM tends to be aligned with the quark polarization but antialigned
with the nucleon polarization. When the d quark has polarization parallel to the
nucleon spin, the contributions ρLU and ρUL interfere destructively. Once again, the
correlation between the OAM and the quark spin is stronger than the correlation
between the OAM and the nucleon spin, resulting in a sideway shift in the positive
b̂x direction. When the d quark has polarization antiparallel to the nucleon spin,
the contributions ρLU and ρUL interfere constructively resulting in a sideway shift
in the negative b̂x direction.

3. Summary

We presented a study of the quark Wigner functions which provide the full phase-
space description of the quark distributions in the nucleon. Using the light-front for-
malism, we derived the Wigner distributions as two-dimensional Fourier transforms
of the GTMDs from the transverse-momentum transfer �∆⊥ to the impact parame-
ter �b⊥. This derivation is not spoiled by relativistic corrections and provide us with
images of the nucleon in five dimensions, namely two position and three momentum
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coordinates. We focused on the distributions of unpolarized/longitudinally polar-
ized quarks in an unpolarized/longitudinally polarized nucleon. Furthermore, we
considered only the quark contribution, neglecting all the gauge-field degrees of
freedom. Beside specific features related to the quark model used for discussing the
results, we tried to emphasize the physical content of the Wigner distributions. In
particular, we pointed out the importance of two particular Wigner functions which
neither survive the GPD-limit nor the TMD-limit and play a particular role thanks
to their intimate connection to the OAM of partons. Those relations open up new
opportunities to study the spin/orbital structure of the nucleon. New insights in
this area could now be obtained through Lattice QCD, given the related pioneering
and encouraging studies of TMDs and other parton correlation functions.30–32
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