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Abstract
An analytical expression of diffraction line profiles of spherical hollow nanocrystals (NCs) is derived. The particular
features of the profile lines, enhanced peak tail intensity, are analyzed and discussed as a function of the NC size para-
meters (outer and inner radius, shell thickness). The explicit formula for the integral breadth, the Fourier particle size, and
the Scherrer constants are also obtained and discussed in detail. The diffraction line profiles of hollow CdS NCs of
zincblende and wurtzite crystallographic structure are calculated and compared with Debye scattering profiles. The
diffraction profiles of both approaches exhibit an enhanced peak tail intensity that can be considered as a fingerprint of the
hollow NC structure.
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Introduction

Recently, hollow NCs are attracting an increased scientific

and technological interest due to their intriguing optical,

electronic, electro- and photochemical, and catalytic prop-

erties that may find use in potential applications in diverse

fields such as nanoscale encapsulation and drug delivery,

photocatalysis and plasmon photonics, energy storage

(anode material in Li-ion batteries), and nanoreactors. Dif-

ferent synthesis approaches for the fabrication of nanoscale

hollow structures are reported: Kirkendall cavitation pro-

cess,1–3 template-free hydrothermal method,4 template-

engaged replacement reactions,5 galvanic replacement

reaction by combining colloidal synthesis and solid state

chemistry,6 aminothermal synthesis,7 and solvothermal

method.8

By these synthetic routes, metallic (Co, Au, Ag, Pt),2,5,6

semiconductor compound (CoS, CoSe, CdS, SiAlPO),2,7

metal oxide (CoO, CuO, TiO2),2,4,8 and carbon-based9 hol-

low NCs were successfully fabricated. However, the crys-

talline structure may depend on the process parameters

yielding either polycrystalline or monocrystalline hollow

nanostructures.3 On the other hand, some synthetic

routes3,5,7 allow a high control of the NC shell thickness

by tuning the process parameters properly.

In order to visualize the hollow nanostructure morphol-

ogy and to determine the microstructural properties (size,

shape, crystallinity, etc.), high-resolution transmission

electron microscopy techniques (HRTEM, STEM) have

been successfully used.1–9 However, as for polycrystalline

materials, NCs, and colloids, X-ray diffraction methods
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may also be suitable for the microstructural characteriza-

tion of hollow NCs.

In fact, X-ray scattering methods are experimental tools

frequently used to investigate the structural properties and

to determine morphological and structural parameters and

to evaluate the ordering and architecture of nanoscale mate-

rials.10 In particular, for nanocrystalline materials, X-ray

diffraction is a very powerful and nondestructive evalua-

tion tool that provides useful information for a better com-

prehension and understanding of the functional properties

of nanocrystalline materials and that allows to optimize

fabrication processes and synthesis procedures.11,12

In most cases, the interpretation of the experimental

data is achieved only by modeling of the diffraction pro-

files. Here it is fundamental to use the correct model for

the data analysis. The line shape and width (breadth) of

the diffraction peaks depend on several parameters and

factors like crystallite shape and size, microdefects, strain,

and so on.13 In many cases, nanocrystalline particles exhi-

bit a geometrical structure (shape) that reflects their crys-

tallographic structure; the diffraction line profile and

breadth are related to the size and shape of the nanocrys-

tallites. Analytical formulae for some particle shapes

(spheres, cubes, cylinders, octahedral, tetrahedra) were

found and are frequently used.14,15

Therefore, X-ray diffraction is a very powerful method

in characterizing quantitatively the shape and size of crys-

talline nanoparticles (nanopowders, colloidal nanoparti-

cles, nanocomposites, etc.), and the microstructural

parameters can be extracted from X-ray diffraction line

profiles by pattern decomposition that is still a very fre-

quently used data analysis approach.13,16

In this work, we derive an analytical formula that

describes the diffraction (line profile) on hollow spheres,

that is, spherical shell NC. In addition, the analytical

expressions for integral breadth and Fourier apparent size

are derived; as well known, these parameters are usually

employed in the pattern decomposition method.13,16,17 The

diffraction line profile features are discussed as a function

of the microstructural parameters (size), and the line profile

calculated by the analytical kinematical formula is com-

pared with calculations based on the Debye equation.

Diffraction on hollow spherical
nanocrystals

Diffraction line profile

The intensity diffraction line profile of a crystallite of

dimension D can be expressed as14,15

Iðks;DÞ ¼ 1

V0

Zþt
�t

Vðt;DÞ � e�2pikst dt ð1Þ

with ks ¼ k � k0 ¼ 2
l � ð sinq� sinq0Þ, where q0 is the

Bragg angle and q is the scattering angle. V(t, D) is the

common volume function of the crystallite and the “ghost”

crystallite shifted by distance t parallel to the diffraction

vector; t is the value for which V(t, D) ¼ 0. V(t, D) is an

even function and the common volume function has the

boundary conditions

lim
t!0

Vðt;DÞ ¼ V0 and lim
n!+t

Vðt;DÞ ¼ 0

where V0 is the volume of the crystallite. In order to solve

equation (1), the volume function V(t, D) must be known.

For spherical shell structures, with internal radius r and

outer radius R, first the solution of the volume function V(t, r,

R), that is, the common volume function of the shell crystal-

lite and the “ghost” crystallite shifted by distance t parallel to

the diffraction vector, has to be found. This function has

been derived and is given in Appendix 1. Figure 1 shows

the function V(t, r, R) for a spherical shell with R ¼ 15 nm

and r ¼ 3, 8, and 13 nm, respectively (for comparison, the

function of a full sphere of radius R ¼ 15 nm is also given).

As a consequence of diffraction in the far-field approx-

imation, the diffraction intensity profile corresponds to the

Fourier transform of the crystallite. It follows that the Four-

ier transform of a crystallite, V(t, D), represents the crystal-

lite size broadened and shape-dependent line profile.

Generally, the shape of crystalline objects is defined geo-

metrically only by the outer surface. Of course, this is not the

case of hollow structures that are geometrically defined by

an inner surface too. In the case of spherical crystals, the

geometrical shape is defined simply by their inner and outer

radius (or diameter). Hence, solving equation (1) for sphe-

rical shell structures, with inner radius r and outer radius R,

we obtain the normalized peak profile function

Figure 1. Common volume function V(t, r, R) as a function of the
displacement t of a hollow sphere of outer radius R ¼ 15 nm and
of different inner radius values r. For comparison, the common
volume function of a solid sphere with R ¼ 15 nm is also shown
(black line).
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Iðks; r;RÞ ¼
1

ðR3 � r3Þ � ð2p � ksÞ4
�
X5

j¼1

Tjðks; r;RÞ ð2Þ

where the terms Tj(ks, r, R) are given by

T1 ¼ 6ðpksDRÞ2 1� 2ðpksDrÞ2 ln
Dr

DR

� �
�

Z2pksDR

2pksDr

cosðtÞ � 1

t
dt

0
B@

1
CA

2
64

3
75

T2 ¼ 3 ð cosðpksDRÞÞ2 � ð1þ 2ðpksDrÞ2Þ � ð cosðpksDrÞÞ2 � ð1þ 2ðpksDRÞ2Þ
h i

T3 ¼
3

2
sinð2pksRÞ2 þ sinð2pksrÞ2
h i

T4 ¼ 3pks DR � 1� 2ðpksDrÞ2
h i

� sinð2pksDRÞ � Dr � 1� 2ðpksDRÞ2
h i

� sinð2pksDrÞ
h i

T5 ¼ �3pks½r � sinð4pksrÞ þ R � sinð4pksRÞ�

with Dr ¼ R� r and DR ¼ Rþ r.

The diffraction profile patterns of hollow nano-

spheres calculated with equation (2) exhibit peculiar

features. Figure 2 shows the diffraction line profiles

for a hollow nanosphere of outer radius R ¼ 15 nm

and different inner radius values r ¼ 3, 8, and 15

nm, for both linear (Figure 2(a)) and logarithmic (Fig-

ure 2(b)) scale. For comparison, the diffraction profile

of a full sphere with radius R ¼ 15 nm (r ¼ 0 nm) is

also shown (black line). No appreciable difference is

observed between the diffraction profiles of the full

sphere and the hollow sphere with r ¼ 3 nm. However,

with increasing inner radius, the maximum peak inten-

sity decreases as expected (decrease of the scattering

volume), while the intensity of the tails increases with

increasing hole radius. In particular, for hollow spheres

of thin shells, a pronounced broadening and tail inten-

sity enhancement is observed. The central peak width

remains essentially the same for full and hollow

spheres indicating that the main parameter that

Figure 2. Calculated diffraction profiles of hollow spheres of outer radius R ¼ 15 nm and inner radius r ¼ 3 nm, 8 nm, and 13 nm,
respectively (linear (a) and logarithmic scale (b)). The diffraction profile shape changes with the inner radius r. The peak intensity is
reduced while the tails are increased in intensity, and in addition the profile shape exhibits characteristic features that became more
pronounced for thin shells (greater inner radius). The profiles for r ¼ 0 nm correspond to the full sphere diffraction pattern.
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determines the peak width (FWHM) is the outer radius

value R, while the intensity decay of the diffraction

peak tails is determined by the inner radius r.

The high frequency intensity oscillations (labeled as

“h”) close to the peak maximum are due to the whole

dimension of the sphere, that is, the periodicity is

related to the outer radius R. In contrast, the low fre-

quency oscillations (labeled as “s”) and their periodi-

city are related to the inner radius r of the hollow

sphere, more precisely the periodicity is related to the

shell thickness (R � r). From the experimental point of

view, in most cases, it will be difficult to observe the

intensity oscillations in the diffraction profile curves.

But the low frequency oscillations could be observed

experimentally similarly to the oscillations of spherical

crystallites.

The development of the diffraction profile pattern as a

function of the inner radius r (hole) is shown in Figure 3.

The outer radius of the hollow sphere is kept constant at R

¼ 15 nm, while the inner (core) radius values r vary

between 0 nm and 13 nm. The diffraction profile patterns

are plotted in linear (Figure 3(a)) and logarithmic scale

(Figure 3(b)) since some features are more pronounced in

the low intensity range, particularly the intensity decay of

the intensity tails.

Crystallite size definitions (integral breadth and
Fourier size)

General considerations. The diffraction line profile and

peak width depend on the crystallite size. In general,

the peak broadening increases with decreasing crystal-

lite size. Pattern decomposition approaches usually

employ the integral breadth as a measure of dispersion

of the intensity diffraction profile and is defined as the

width of a rectangle having the same area and height as

the line profile.15,18 The integral breadth due to size

effect is given by

b ¼
Zþt
�t

V0

VðtÞ dt ð3Þ

here, for a spherical shell structure with outer diameter D

(¼2 R), t ¼ D. The integral breadth apparent size eb is

defined as the reciprocal of the integral breadth, that is,

eb ¼ b�1. Hence, the integral breadth apparent size is a

volume-weighted size

eb ¼ hDV i ¼
Zþt
�t

VðtÞ
V0

dt ¼ 2

V0

�
Z2R

0

VðtÞ dt ð4Þ

hDVi is an “apparent” thickness (volume average thick-

ness) of the crystallite along the diffraction vector direc-

tion, that is, perpendicular to the diffraction planes.

Crystallite size broadening can also be described in

terms of the Fourier coefficients, A(t) in the range t2{0,t},

given as

AðtÞ ¼ Vðt; r;RÞ
V0

ð5Þ

The area-weighted apparent size, or Fourier apparent

size, is defined as15,16

ek ¼ � 1

V0

� dAðt; r;RÞ
dt

� ��1
�����
t¼0

¼ � V0

V 0ð0Þ ð6Þ

where V0/V0(0) is the reciprocal of the initial slope (t ¼
0) of the Fourier transform of the diffraction line profile

(equation (1)). The Fourier apparent size can be inter-

preted as the total area of projection of unit volume of

the crystallites onto the reflection planes, that is, the

apparent “thickness” (area-weighted size) of the

Figure 3. Calculated diffraction profile of a hollow sphere of outer radius R ¼ 15 nm. The diffraction profiles are calculated, in
accordance with equation (6), as a function of the inner (core) radius values r that vary between 0 nm and 13 nm. The diffraction profile
patterns are plotted in linear (a) and logarithmic scale (b).
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crystallite in the direction of the diffraction vector. The

Fourier apparent size does not represent the physical

dimension of the crystallite.

Both quantities, eb and ek, are referred to as appar-

ent sizes and are related to the actual physical dimen-

sion t (thickness) of the crystallite along the

diffraction vector by the Scherrer constant that must

be determined. In general, eb and ek are smaller than

the actual size t and are not equal, that is, the ratio eb/

eF 6¼ 1, but in some cases can be as high as 2 depend-

ing on the crystallite shape.16

It should be also recalled that the second derivative of

the Fourier transform V(t, D), namely V00(t, D), is propor-

tional to the distribution of the thickness parallel to the

direction of the diffraction vector.14

Integral breadth and Fourier apparent size of spherical hollow
NCs. Considering equations (1) and (A9), the integral

breadth apparent size (in reciprocal units) due to size

effect of a spherical shell with inner radius r and outer

radius R can be determined from equations (4) and

(A10) as

eb ¼ 3

4

ðR� rÞ2

ðR3 � r3Þ ðRþ rÞ2 � 2� ln
R� r

Rþ r

� �
� 2rR

� �
ð7Þ

From equation (6), the Fourier apparent size of a hollow

spherical crystallite can be obtained

ek ¼ 4

3

ðR3 � r3Þ
ðR2 þ r2Þ ð8Þ

Here, it is interesting to note that the equations of the

hollow spherical crystallite yield as limiting case for r! 0

the known relations of a full spherical NC. In fact, if the

inner radius approaches 0, r ! 0, that is, we consider the

limiting case of a full sphere, the well-known expressions

of spherical crystallites are obtained for the integral breadth

and Fourier apparent size

ebðr! 0Þ ¼ lim
r!0

3

4

ðR� rÞ2

ðR3 � r3Þ ðRþ rÞ2 � 2� ln
R� r

Rþ r

� �
� 2rR

� �( )
¼ 3

2
R ð9Þ

and

ekðr! 0Þ ¼ 4

3
� R ð10Þ

As already mentioned, generally the values of integral

breadth eb and Fourier apparent size eF of a crystallite are

not equal and the differences depend also on the crystallite

shape. Here, it is interesting to note that the ratio eratio¼ eb/

ek of hollow spheres depends strongly on the ratio between

inner and outer radius (r/R) and the difference between the

area-weighted (ek) and volume-weighted (eb) apparent

sizes is particularly pronounced for hollow spheres of very

thin shells. Figure 4 shows the ratio eratio of the integral

breadth eb and Fourier apparent size ek of the hollow sphere

parameters as calculated by equations (7) and (8) and used

in Figure 5(a) and (b).

Scherrer constants of spherical hollow NCs. The “true” size p,

defined as the cube root of the mean crystallite volume

(p ¼
ffiffiffiffiffiffi
V0

3
p

), is related to the apparent size through Scher-

rer’s equation; p ¼ Kb � eb or p ¼ Kk � ek for the integral

breadth or Fourier apparent size, respectively. Kb and Kk
are the Scherrer constants and are dimensionless numbers.

As pointed out by Langford,16 the concept of “true” size

has little physical significance and Scherrer’s approach

has been replaced by modern procedures and data

analysis.

Figure 4. Ratio eratio of the integral breadth eb and Fourier
apparent size ek of the hollow sphere with the same parameters
used in Figure 5.

Figure 5. The integral breadth eb (a) and Fourier apparent size ek
(b) of a hollow sphere dependence on the outer radius R (range:
13–15 nm) and inner radius r (range: 0–13 nm).
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Nevertheless, in the following, we report the analytical

expressions for the Scherrer constants obtained by the pro-

cedure described in15

Kb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
pðR3 � r3Þ3

q
3

4

R�r

ðRþrÞ2�r�R

h
ðRþ rÞ2 �

�
2� ln

R�r

Rþr

	
� 2rR

i ð11Þ

and

Kk ¼
ffiffiffiffiffiffi
9p
16

3

r
R2 þ r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 � r3Þ23

q ð12Þ

These expressions are very complex if compared to the

Scherrer constants of other crystallites of various shape and

depend on crystallite size parameters (here, r and R), simi-

larly to rectangular parallelepiped,15 cylindrical,17 and hex-

agonal19 crystallites. It can be easily verified that for r ¼ 0

(full spherical NC), the Scherrer constants Kb and Kk in

equations (11) and (12) take the known expressions 4
3
�
ffiffip
6

3
p

and
ffiffiffiffi
9p
16

3

q
, respectively.15

Diffraction intensity profiles: A
comparison with Debye diffraction

For a comparison of diffraction intensity profiles and pow-

der patterns, we consider a CdS spherical shell NCs of both

zincblende (zb) and wurtzite (w) crystallographic structure.

Figure 6 shows a schematic representation of the hollow zb

and w CdS NCs.

The whole diffraction pattern (powder pattern) that

includes all the (hkl) diffraction peaks can be written, con-

sidering equation (2), as

I0ðks; r;RÞ �
X
hkl

L � mhkl � jFhklj2 � Iðks; r;RÞ ð13Þ

where Fhkl and mhkl are, respectively, the structure and

multiplicity factors of the hkl reflection. L contains the

Lorentz and polarization factors.

For small crystal structures, the calculation of the inten-

sity I(s), with the scattering vector s ¼ 2p � k, can be also

performed considering direct crystalline space, using the

Debye scattering equation20–22

IðsÞ ¼
XN

i;j¼1

fiðsÞ fjðsÞ
sinðs � rijÞ

s � rij

ð14Þ

where rjk is the distance between the ith and jth atoms. In

order to obtain the intensity for given values of momentum

transfer, the atomic scattering factors fi(s) are calculated by

using the known relation23

f ðsÞ ¼
X4

i¼1

aie

�bis2

16p2

� 	
þ c ð15Þ

with the corresponding coefficients ai, bi, and c for Cd and

S atoms, respectively.

First, in order to calculate the Debye diffraction pattern

(equation (14)), unrelaxed spherical CdS clusters with zb and

w phase were built (Figure 6)24; a first cutoff radius R from

the center of the crystal defines the external size whereas a

second cutoff radius r corresponds to the internal radius of the

hollow cluster. For the spherical NCs of both the crystallo-

graphic structures, an outer radius R ¼ 3.60 nm has been

considered, while an inner radius of r ¼ 2.00 nm and r ¼
1.95 nm for the zb and w crystallographic structure, respec-

tively, is considered in order to fulfill the requirements to have

a hollow NC constituted by an integer number of atoms.

The whole (powder) diffraction patterns in the range of k

¼ 13 nm�1 and 52 nm�1 of a hollow w CdS NC calculated

by the Debye scattering equation (curve A) and equation

(13) (curve B) are shown in Figure 7 The Miller indices of

the diffraction peaks are reported in correspondence of

Figure 7. Whole diffraction patterns of hollow CdS NC of w
structure calculated with the Debye scattering formula (A) and
equation (13) of this work (B). w: wurtzite.

Figure 6. Constructed CdS hollow NC of zb (a) and w structure
(b) used for the Debye diffraction calculation; Cd and S atoms are
in blue and yellow color, respectively. Here, for a better visuali-
zation of the hollow structure (labeled h) of the CdS NCs, part of
the shells are removed (labeled s). zb: zincblende; w: wurtzite.
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curve B. The diffraction peak positions and relative inten-

sity ratios in curve B are in accordance with the data of

ICCD n.80-000625 of bulk w CdS. For some diffraction

peaks, particularly for (100), (110), (112), and (211), the

Debye scattering pattern shows a noticeable discrepancy in

the relative intensity ratios.

Similarly, the diffraction patterns of hollow zb CdS NC

(Figure 8) also show a discrepancy of relative intensity

ratios between Debye scattering (curve A in Figure 8) and

the scattering curve calculated by equation (13) (curve B in

Figure 8). Also here, the diffraction peak positions and

relative intensity ratios of curve B are in good agreement

with the data of ICDD n.80-001925 of bulk zb CdS.

The intensity ratio differences may be related to the fact

that Debye scattering considers the real atomic ordering

and configuration on the NC surface (in the case of hollow

nanocrystals, also the interior surface must be taken into

account). On the contrary, the approach used for deriving

equation (13) considers the structure factor of the crystal-

lographic unit cell and the specific form factor of the NC;

the structure factor is “smeared out homogeneously” over

the whole nanocrystal structure and surface effects cannot

be taken into account. Similar observations are reported in

literature also for full NCs and are particularly noticeable

for small-sized NCs (<10 nm),26–29 for larger sized NC

structures this effect may become negligible.

The most striking features in the diffraction patterns of

Figures 8 and 9 are the observed intensity modulations at

the peak tails (tail intensity enhancement) that are particu-

larly observable at “isolated” diffraction peaks. The tail

intensity enhancement, as discussed above and shown in

Figure 2, is a fingerprint of line diffraction profiles of hol-

low NCs. Figure 9(a) shows the diffraction line profiles of

the (220) peak in Figure 8 for the Debye scattering (blue

solid line) and the model of this work, equation (13), (red

circles). A perfect correspondence of the line profiles is

observed. The enhanced tail intensity on both sides of the

peak is well pronounced and is notably evident if compared

with the diffraction line profile of full NCs (Figure 9(b))

calculated with both approaches by taking r ¼ 0 nm.

Conclusions

An analytical expression of the diffraction line profile of sphe-

rical hollow NCs, with outer and inner radius R and r, respec-

tively, has been derived using Wilson’s approach. In addition,

formulae for the integral breadth and Fourier particle size and

the Scherrer constants are derived. For r¼ 0, all the formulae

lead to the known expressions of full spherical NCs and are

discussed as a function of the geometrical (size) parameters.

The diffraction line profiles of spherical hollow NCs

exhibit an enhanced intensity at the tails of the diffraction

peaks that can be considered as a fingerprint of the hollow

nanostructure. For comparison, the diffraction profiles of

spherical hollow CdS NCs of zb and w crystallographic

structure were compared with the diffraction curves calcu-

lated using the Debye scattering equation. Generally, a good

correspondence and the same features of enhanced peak tail

intensity were observed; differences of some peak intensity

ratios (more pronounced at very small particle size <10 nm)

are interpreted as a consequence of the atomic ordering and

configuration at NC surface that is better and more realisti-

cally described in Debye scattering. The analytical expres-

sions derived could be helpful for correct interpretation and

quantitative analysis of diffraction data of hollow NCstruc-

tures of particle size in the range between 10 nm and 100 nm.
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Appendix 1

Calculation of the common volume function of a
spherical shell

The calculation of the common volume function V(t) has

been performed according to the procedure adopted and

described by Wilson.14 Here, V(t) is calculated by solid

of revolution method and a washer method that is particu-

larly indicated in the case of hollowed objects.30 As shown

in Figure A1, it is convenient to calculate the common

volume of a spherical hollow crystal and its “ghost” shifted

by t considering the appropriate integration regions, that is,

limits of integration. Depending on the magnitude of the

inner r and outer radius R of the spherical shell, there are

two cases that can be considered: r < R < 3r and 3r < R. It

is obvious that the first case holds for very thin shells, that

is, the magnitudes of the inner and outer radius values are

very close, while the second case describes spheres with

thicker shells (i.e. relatively small hole). For the two cases,

integration regions with different integration limits have to

be considered. However, the final results are identical as

can be easily demonstrated.

In the following, we report for the two cases the expres-

sions of the common volume function for the different

integration regions as well as the integration of the common

volume function over t, that is,
R

VðtÞ dt that is related to

the apparent size of the crystallite (equation (4)).14,18

For the definition of the appropriate integration limits, it

is convenient to determine the intersection point x0 between

the outer radius R of the 0-sphere and the inner radius r of

the translated t-sphere (“ghost” crystal) for the translation t

along the translation axis x

x0 ¼
R2 � r2 þ t2

2 � t

i) First, we consider the case of thin shells (r < R < 3r)

as schematically shown in Figure A1(a)).

Integration region 1: t 2 ½0;R� r�

V1ðtÞ ¼ 2p
ZR

t

2

ðR2 � x2Þ dx�
Zrþt

t

2

�
r2 � ðx� tÞ2

	
dx

2
664

3
775

¼ p
6
� ½8ðR3 � r3Þ � 6tðR2 þ r2Þ þ t3�

ðA1Þ

the integration of the volume in the overlapping region 1

yields

v1 ¼
ZR�r

0

V1ðtÞ dt ¼ p
8
ðR� rÞ2ð7r2 þ 10r þ 7R2Þ ðA2Þ

Integration region 2: t 2 ½R� r; 2r�

V2ðtÞ ¼ 2p
Zx0

t

2

ðR2 � x2Þ dx�
Zx0

t

2

�
r2 � ðx� tÞ2

	
dx

2
664

3
775

¼ p
2
� ðr

2 � R2Þ2

t

" #

ðA3Þ

with

v2 ¼
Z2r

R�r

V2ðtÞ dt ¼ p
2
ðR2 � r2Þ2 � ln

2r

R� r

� �
ðA4Þ

Integration region 3: t 2 ½2r;Rþ r�

Figure A1. Common volume function calculation with the
integration regions for the two possible cases depending on
the inner and outer spherical hollow clusters: r < R < 3r (a)
and 3r < R (b).
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V3ðtÞ ¼ 2p
Zx0

t

2

ðR2 � x2Þ dx�
Zx0

t�r

�
r2 � ðx� tÞ2

	
dx

2
664

3
775

¼ p
12
� 6ðR2 � r2Þ2 þ 4tr2ð3t � 4rÞ � t4

t

" #

ðA5Þ

with

v3 ¼
ZRþr

2r

V3ðtÞ dt

¼ p
48
ðR� rÞ2 24ðRþ rÞ2 � ln

Rþ r

2r

� �� �
� R2 � 6rRþ 7r2

� �
ðA6Þ

Integration region 4: t 2 ½Rþ r; 2R�

V4ðtÞ ¼ 2p
ZR

t

2

ðR2 � x2Þ dx�
Zrþt

t

2

�
r2 � ðx� tÞ2

	
dx

2
664

3
775

¼ p
6
� ½8ðR3 � r3Þ � 6tðR2 þ r2Þ þ t3�

ðA7Þ

with

v4 ¼
Z2R

rþR

V4ðtÞ dt ¼ p
48
ð7Rþ rÞðR� rÞ3 ðA8Þ

In summary, for case r < R < 3r, the common volume

function V(t, r, R) for the four integration regions is

V ðt; r;RÞ ¼

p
6
� ½8ðR3 � r3Þ � 6tðR2 þ r2Þ þ t3� if t 2 ½0;R� r�

p
2
� ðr

2 � R2Þ2

t

2
4

3
5 if t 2 ½R� r; 2r�

p
12
� 6ðR2 � r2Þ2 þ 4tr2ðt � 4rÞ � t4

t

2
4

3
5 if t 2 ½2r;Rþ r�

p
6
� ½8ðR3 � r3Þ � 6tðR2 þ r2Þ þ t3� if t 2 ½Rþ r; 2R�

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ðA9Þ

and its integration along t in the scattering direction, v, is

v ¼
X4

j¼1

vj ¼
p
2
ðR� rÞ2 � ðRþ rÞ2 � 2� ln

R� r

Rþ r

� �� �
� 2rR

� �

ðA10Þ

For the case of thick shells (3r < R), as schematically shown

in Figure A1(b), we obtain for the total common volume

function V(t, r, R) and v, that is, the integration of V(t, r, R)

along t in the direction of scattering, the following expressions:

For integration region 1: t 2 ½0; 2r�

V1ðtÞ ¼ 2p
ZR

t

2

ðR2 � x2Þ dx�
Zrþt

t

2

�
r2 � ðx� tÞ2

	
dx

2
664

3
775

¼ p
6
� 8 R3 � r3

 �

� 6t R2 þ r2

 �

þ t3
� 

ðA11Þ

with the integration of the volume in the overlapping

region

v1 ¼
Z2r

0

V1ðtÞ dt ¼ 2pr
4

3
R3 � 2r3 � rR2

� �
ðA12Þ

Integration region 2: t 2 ½2r;R� r�

V2ðtÞ ¼ 2p
ZR

t

2

ðR2 � x2Þ dx�
Ztþr

t�r

�
r2 � ðx� tÞ2

	
dx

2
664

3
775

¼ 2p � 2

3
R3 � t

2
R2 þ t3

24
� 4

3
r3

� �
ðA13Þ

with

v2 ¼
ZR�r

2r

V2ðtÞ dt ¼ p
48
ðR� 3rÞ � ð41R3 � 25rR2 þ 3r2R� 123r3Þ

ðA14Þ

Integration region 3: t 2 ½R� r;Rþ r�

V3ðtÞ ¼ 2p
Zx0

t

2

ðR2 � x2Þ dx�
Zx0

t�r

�
r2 � ðx� tÞ2

	
dx

2
664

3
775

¼ p
12
� 6ðR2 � r2Þ2 þ 4tr2ðt � 4rÞ � t4

t

" #

ðA15Þ

with

v3 ¼
ZRþr

R�r

V3ðtÞ dt

¼ p
6

3ðR2 � r2Þ2 � ln
Rþ r

R� r

� �
� rð16r3 � 11r2Rþ R3Þ

� �
ðA16Þ

Integration region 4: t 2 ½Rþ r; 2R�
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V4ðtÞ ¼ 2p
ZR

t

2

ðR2 � x2Þ dx ¼ p
12
� ðt þ 4RÞ � ðt � 2RÞ2

ðA17Þ

with

v4 ¼
Z2R

rþR

V4ðtÞ dt ¼ p
4

1

12
ð7R4 � r4Þ þ rR � 3rR

2
� 5R2 þ r2

3

� �� �

ðA18Þ

Finally, for case 3r < R, the common volume

function V(t, r, R) for the four integration regions is

Vðt; r;RÞ ¼

p
6
� ½8ðR3 � r3Þ � 6tðR2 þ r2Þ þ t3� if t 2 ½0; 2r�

2p �
�

2

3
R3 � t

2
R2 þ t3

24
� 4

3
r3

�
if t 2 ½2r;R� r�

p
12
� 6ðR2 � r2Þ2 þ 4tr2ðt � 4rÞ � t4

t

2
4

3
5 if t 2 ½R� r;Rþ r�

p
12
� ðt þ 4RÞ � ðt � 2RÞ2 if t 2 ½Rþ r; 2R�

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ðA19Þ

and the integration of V(t, r, R) along t in the direction of

scattering is

v ¼
X4

j¼1

vj ¼
p
2
ðR� rÞ2 � ðRþ rÞ2 � 2� ln

R� r

Rþ r

� �� �
� 2rR

� �

ðA20Þ

Figure A2 shows for comparison the common volume

function V(t, r, R) for different NC shell thickness. The

outer radius R ¼ 3.6 nm is the same for both cases, r ¼
2.0 nm (dashed lines) with r < R < 3r (corresponds to

the example shown in Figure 8) and r ¼ 1.1 nm with 3r

< R (solid line); the different colors indicate the various

integration regions. For comparison, also the common

volume function of a full spherical NC with radius R

¼ 3.6 nm is shown (grey solid line). The deviation of

V(t) from a full NC increases with reduced shell thick-

ness and, as expected, the difference is more pronounced

at small translation t and reaches 0 for t ¼ 2 R.

Figure A2. Common volume function V(t, r, R) for spherical
hollow NCs with outer radius R ¼ 3.6 nm and different NC shell
thickness, that is, r < R < 3r (dashed lines) with r ¼ 2.0 nm (shell
thickness 1.6 nm) and 3r < R (solid line) with r ¼ 1.1 nm (shell
thickness 2.5 nm). The different colors indicate the various inte-
gration regions. The grey solid line refers to the full spherical NC
with radius R ¼ 3.6 nm.

Burresi and Tapfer 11



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


