
A Collaborative Framework for Generating

Probabilistic Contracts

Fabio Martinelli, Andrea Saracino, Daniele Sgandurra

Istituto di Informatica e Telematica

Consiglio Nazionale delle Ricerche, Pisa, Italy

name.surname@iit.cnr.it

Alessandro Aldini

Dipartimento di Scienze di Base e Fondamenti

Università di Urbino Carlo Bo, Italy

name.surname@uniurb.it

Abstract—We propose a collaborative framework for gener-
ating probabilistic contracts for Android smartphones aimed at
detecting repackaged applications. To this end, a network of users
sends to the application server the sequences of actions that rep-
resent the usage profile of the application. Then, the application
server generates a contract from this set of traces. Contracts
are represented through clustered probabilistic automata. At
run-time, a monitoring system on the smartphone verifies the
compliance of the running application against the contract
through the Pearson’s Chi Squared test. In the preliminary tests,
the proposed framework has been able to detect repackaged
applications whose behavior is strongly similar to the original
application but hide malware.

Keywords—Collaborative Framework; Probabilistic Contract;
Android; Malware; Repackaging;

I. INTRODUCTION

Mobile markets distribute a plethora of applications for

mobile devices. Official and unofficial markets often provide

several versions of the same application. Unofficial markets, in

particular, may offer free versions of applications that on the

official markets have to be paid. Some malicious developers

exploit these channels to distribute malware, usually for open-

platform Smartphones such as Android. Usually, malware

applications are modified versions of genuine applications

that contain malicious code to performs bad operations. This

happens while the user normally exploits the genuine part of

the application only and, hence, the bad behavior passes unno-

ticed. These applications are called trojanized or repackaged

applications.

Repackaged applications can be identified verifying their

compliance with the contract built for the genuine version

of the application. A contract is a document that describes

the operations that an application can perform during its

execution. A repackaged application behaves in a way non-

compliant with the contract of the original application, hence

a misbehavior can be identified if a proper contract has been

generated for the original application.

In this paper we present a collaborative framework that ex-

ploits Android system call analysis and semantic clustering to

build probabilistic contracts. These dynamically-built contracts

are behaviorally-based and different behaviors of various users

This work has been funded by the European Union FP7 under grant no
256980 (NESSoS) and no 257930 (Aniketos) and PRIN Security Horizons.

are merged together to generate a contract that is representative

of the application. At run-time, i.e. after the contract has been

generated, the framework analyzes the behavior of untrusted

applications by matching their behavior against the associated

contract, to differentiate genuine applications from repackaged

ones. The system has been developed and tested on Android

smartphones.

The main contributions of this paper are:

• the description of a collaborative framework that collects

data from a group of collaborative users to build proba-

bilistic contracts;

• a verification mechanism based upon the probability

distribution of the longest execution paths;

• a method to test the probabilistic compliance of a behav-

ior against a contract based on Chi Squared test.

The remainder of the paper is organized as follows. Section

II discusses the collaborative framework to collect traces of

usage profile and the method to describe the applications’ be-

havior through probabilistic automata. Section III describes the

contract matching technique to detect misbehaviors and reports

some preliminary experiments to prove the effectiveness of the

proposed approach. Section IV reports some related works.

Finally, Sect. V concludes and proposes some extensions.

II. CONTRACT GENERATION

Before generating a contract, the framework requires several

traces of an application representing the usage profile. Then,

from the traces sent by a network of collaborative users, the

framework generates the probabilistic contract.

A. Contract

A contract is a document that describes the expected behav-

ior of an application. An application α is compliant with the

contract γ (α |= γ) when all the actions effectively performed

by the application are included in the contract. A contract

can be defined using information that can be computed either

statically or dynamically. In the static approach, the contract

can be built by learning some properties from, e.g., the source

code. However, it may be impossible to know in advance

some properties of the code, e.g. behavior of the application

that depends about some inputs. In the dynamic approach, a

contract can be defined by exploting the information learnt

from the application’s executions, e.g. by monitoring some

978-1-4673-6404-1/13/$31.00 ©2013 IEEE 139

executions to extract their behavior. Here, we will focus on

the dynamic approach, since it is more suitable to represent

those applications whose behavior depend upon user inputs.

Contracts defined using dynamically-generated behaviors

may be probabilistic and, since they are built upon execution

traces, it is possible to compute the probability that each

action is performed, including a quantitative information in

the contract. We say that an application α is compliant with a

probability threshold ξ to the probabilistic contract γ (α |=ξ γ)

if any action performed by α is in the contract and happens

with a probability greater or equal to θ = 1− ξ.

B. Collaborative Traces Acquisition

In the proposed framework, an application trace is a se-

quence of system calls. During its lifetime, a process issues

several system calls that composes a trace. If we transform

this trace into an oriented graph, where each system call is a

node, and edges represents the transition from a system call

into the next one, then it is possible to provide a signature of

the application behavior. To this end, we have developed an

application for Android devices that hooks the system calls

performed by an application and builds a sequence that is

sent to a central server. Then, the server applies the algorithm

(described in the next Subsection) and builds the execution

multi-graph representing a trace, and the automaton which

describes a partial contract.

If we only consider the traces recorded by a single user,

then the contract would be partial since a user rarely explores

all of the possible application states and this would not

be sufficient to generate a consistent contract. To generate

a proper contract, more traces generated by several users

need to be merged. For this reason, the framework exploits

a collaborative approach where each user that installs the

application sends the execution multi-graph of the app to the

central application server, which builds the contract for the

application by merging all the execution graphs.

A trace is recorded from the time when the application is

started and ends when the application is closed, or after a

sufficiently long time of the app’s execution. The resulting

multi-graph is sent to the central server, which holds a database

of applications and their contracts. To be more specific, when

a user sends a multi-graph, the server verifies if the application

is already in the database. If the application is missing, a

new record is added, and the probabilistic automaton, i.e. the

contract, is generated from the multi-graph and it is returned to

the user. If the application is already in the database, the multi-

graph is merged with the one already stored. The operation of

merging two multi-graphs G1 = (V1, E1) and G2 = (V2, E2),
returns a new graph G3 = (V3, E3) with V3 = V1 ∪ V2 and

E3 = E1 ∪E2. From the resulting graph G3 the probabilistic

automaton is recomputed and sent back to all the users that

participated in the contract generation or that simply own

the application. Notice that these operations can be clustered

and the updated contract may be re-sent to users on a daily

basis. The application installed on the device, which checks

the compliance of the contract, verifies the authenticity of the

contract by checking the signature of the server, whose public

key is shipped with the application. We assume that all the

traces used to generate the contract are trustworthy, i.e. the

users are not malicious and the applications they are analyzing

are not repackaged.

C. Traces Analysis and Contract Generation

To properly represent the contract using the traces produced

collaboratively, we exploit the notion of ActionNode (see [1]

for its detailed explanation), which is a cluster of related sys-

tem calls, i.e., the graph of system calls that are consecutively

issued in the trace and that are bound by some relation and

that form an action (a high-level operation). As an example of

ActionNode, consider the sequence of system calls: open(A)

- read(A) - close(A), where A is the filename. This

ActionNode represents at high level the action of reading data

from file A: this action requires that, firstly, the file has to be

opened, then data is read and, finally, the file is closed. In the

following, we consider only the system calls that act on files,

namely the open, read, write, close, ioctl.

Figure 1: From Multi-Graph to Probabilistic Automaton

Using this notion, the system call traces are represented by

a multi-graph of ActionNodes. Formally the multi-graph is a

directed graph G = (V,E), where V = {v1, v2, ..., vn} is

the set of ActionNodes that describe the high-level operations

performed by a specific application, and E is the set of edges

ei,j outgoing from the node i and entering the node j. Being

a multi-graph, there can be both multiple occurrences of each

edge ei,j and edges insisting on a same node, that is i = j.

Then, from the multi-graph an automaton is built (see, e.g.,

Fig.1). The automaton A = (V, T) contains the same nodes

V of the multi-graph, but multiplicities of edges are not taken

into account, that is, the edges ei,j , ei′,j′ where i = i′, j = j′

are collapsed into a single edge ei,j . On the other hand, multi-

plicities of edges are used to compute the related probabilities

in A. Formally, T ⊆ E×]0; 1] is such that:

(ei,j , pi,j) ∈ T iff ∃ei,j ∈ E ∧ pi,j =
mul(i, j)

mul(i)

where mul(i, j) is the multiplicity of ei,j in E and mul(i)
is the number of outgoing edges from vi in the multi-graph.

This transformation induces a probability distribution for each

node, i.e., ∀vi :
∑

vj∈V {pi,j | (ei,j , pi,j) ∈ T } = 1. Hence,

140

each edge in T departing from a given node vi is enriched

with the probability that it is traversed by taking into account

the number of occurrences of each edge in E departing from

the same node vi.

At run-time, the compliance of the application behavior with

the contract will be evaluated by measuring the frequency

of certain finite observations with respect to the probability

distributions that are associated with such observations in

the contract. The finite observations to which we associate

probability distributions are given by the finite longest acyclic

paths in the automaton. Given a node vi, the longest acyclic

paths starting from vi are all the paths that can be followed

from vi towards all the other nodes in the graph, without

traversing more than once each node in the path, except

possibly for the last one. Formally, a path is a sequence

vi1 . . . vin such that eij ,ij+1
∈ E with 1 ≤ j < n and a longest

acyclic path is a path vi1 . . . vin such that ∀vij , 1 ≤ j < n,

there does not exist k 6= j, 1 ≤ k < n, such that vij = vik .

As usual, the probability of a path vi1 . . . vin is computed as

the product of the probabilities pij ,ij+1
of the edges eij ,ij+1

(with 1 ≤ j < n) forming the path. Since we deal with

probability distributions and finite paths, for each node vi
extracted from the contract, we derive a probability distribution

over the set of longest acyclic paths starting from vi such that

the probabilities associated with all these paths sum up to 1.

In particular, we compute these probability distributions for

each node of the automaton that is not a traversing node, i.e.,

a node that has not ears (except the starting node). In the end,

the server builds and signs (with its private key), the contract,

which is a pair composed of the automaton and the probability

distributions.

III. CONTRACT COMPLIANCE AND TESTS

Once the contract has been built, it can be used to verify

the compliance of different versions of the same application on

distinct Smartphones where these versions have been installed.

A non-compliant application is an application that shows a

different behavior from the one declared in the contract. More

specifically, an application is non compliant when performs

one or more operations that are not included in the contract

or when an operation (or a sequence of operations) is not

compliant with the probability distribution described in the

contract.

Let C be the probabilistic contract of an application A.

We want to verify the compliance of A′, a different version

of A, against C. To this end, the framework monitors the

behavior of A′ by progressively building the ActionNodes

and extracting the occurrences of the longest acyclic paths.

Then, the framework uses the Pearson’s Chi Squared Test [2]

to test the consistency of the behavior of A′ with respect to

the probability distributions associated with C. The Pearson’s

Chi Squared Test is used in statistics to verify if a sample

is statistically consistent with respect to a known probability

distribution. In practice, given a realization belonging to a set

of events whose probabilities is known, the Chi Squared test

states if the realization is consistent or not with the probability

distribution. Hence, the events generated by A′ represent the

statistical sample, whilst the contract describes the known

distribution.

For each node vj of the contract of A that is not a traversing

node, all the longest acyclic paths are listed. Let us suppose

their number is nj . At run-time, the framework incrementally

builds the paths for A′ by recording the longest acyclic paths

and using the same algorithm described for generating the

contract. For each node, the framework keeps track of the

occurrences of the longest paths observed from this node

in order to compute the related probabilities Oi. Then, it

derives from the contract the expected probabilities Ei. Notice

that, a node with no probability distribution in the contract

clearly means that the behavior is non-compliant with the

contract. Then, the chi-squared score χ2 is computed, for each

starting node vj , according to the following formula χ2 =
∑nj

i=1
(Oi−Ei)

2

Ei
. To verify the chi-squared null hypothesis, i.e.,

the behavior of A′ has a distribution consistent with the one

described in the contract C, the test statistic is drawn from

a chi-squared distribution with one degree of freedom. If the

computed probability is higher than conventional criteria for

statistical significance the null hypothesis is not rejected, i.e.,

the behavior is compliant with the contract and the application

should not be considered repackaged.

A. Preliminary Tests

We report an example taken from some preliminary tests

that we have performed. Figure 2 shows the contract built

merging several traces of the application TicTacToe, a

sample application provided with the Android SDK. Table

I shows some longest acyclic paths, starting from node 5

and their probabilities. All the traces have been collected

from several different users, which tried to explore all the

functionalities of the application, to compute a representative

contract. Then, we have built a repackaged version of this

application by updating the application code by injecting into

it a piece of malware code to send an SMS message each time

the user opens the menu to change the game skin. Then, we

have run the modified program several times.

As an example, by computing the χ2 test on the distribution

of longest acyclic path outgoing from the node 5, which

is the action node read(A) - read(A), the observations

resulted non-consistent with the probability distribution. The

main issue has been given by the path 5-3-3, where 3 is the

action node ioctl(A) - ioctl(A), whose probability in

the contract is 4 ·10−4. Given a set of about 1000 observations

of path outgoing from node 5, with the repackaged version of

the app, we have found more than 120 occurrences of the

path 5-3-3, obtaining a model that strongly differs from the

expected probability distribution.

IV. RELATED WORK

System call analysis has been used in several system to

monitor and detect misbehaving. [3] proposes Crowdroid, an

IDS that is based on the number of system calls issued by an

141

Figure 2: Probabilistic Contract of TicTacToe

Table I: Some Longest Paths From Node 5

Path Probability

5-3-1-1 0.00005476

5-3-1-3 0.0002

5-3-1-5 0.000001

5-3-2-2 0.00188

5-3-2-3 0.0034

5-3-2-5 0.00002

5-3-3 0.0004

5-3-4-1 0.0000012

5-3-4-3 0.00014

5-3-4-4 0.000189

5-3-5 0.0031

5-3-7-3 0.0000156

application. Misbehaviors are identified by applying compu-

tational intelligence techniques. Another system that exploits

system calls and computational intelligence is presented in [4],

which is an anomaly-based intrusion detection system that,

differently from Crowdroid, monitors the system globally, but

it may not be able to detect some trojanized application if their

behavior faithfully represents the good ones. Some Android

security frameworks try to protect the system by monitoring

the communication level and defining security policies. One of

these systems is presented in [5], which allows the definition

of context based security policies. Analysis of system calls

with Markov Models have formerly been performed on other

operating systems. In [6] a scheme for intrusion detection

is proposed. This system exploits system calls and hidden

Markov models and is able to detect efficiently denial of

service attacks. [7] presents another system based upon system

calls and Markov models to detect intrusions. This system an-

alyzes the arguments of the system calls but is oblivious of the

system call sequence. System call sequence and deterministic

automata have been used in [8] to detect anomalies, which are

detected when system call sequences differ from an execution

trace known to be good. A model to capture reliability and

availability properties of stochastic systems using probabilistic

contracts has been presented in [9], [10]. Finally, the chi-

squared test has been used to detect anomalies in several field.

An application on network traffic analysis is presented in [11].

V. CONCLUSIONS

In this paper we have presented a collaborative framework

to build mobile application contracts. The framework exploits

system call analysis to create an automaton and statistical

inference to detect repackaged applications. We have built a

first prototype of both the application running on the device

and the collaborative framework and tested the effectiveness

of the method through some preliminary experiments.

We are planning as future work the inclusion of a distributed

reputation model to loosen the assumption that the collabo-

rative users are trustworthy when creating the contract. The

idea is to give a different probabilistic weight to the received

traces, based upon the user reputation and the similarity of

the received traces with those already stored on the server.

Finally, the prototype will be updated to improve its usability

and performances.

REFERENCES

[1] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra, “A framework for
probabilistic contract compliance,” Istituto di Informatica e Telematica,
CNR, Tech. Rep. IIT TR-03/2013, Feb 2013. [Online]. Available:
http://www.iit.cnr.it/sites/default/files/trpicard.pdf

[2] R. L. Plackett, “Karl Pearson and the Chi-Squared Test,” International

Statistical Review / Revue Internationale de Statistique, vol. 51, no. 1,
pp. 59–72, 1983.

[3] U. Z. I. Burguera and S. Nadijm-Tehrani, “Crowdroid: Behavior-Based
Malware Detection System for Android,” in SPSM ’11. ACM, October
2011.

[4] G. Dini, F. Martinelli, A. Saracino, D. Sgandurra, “MADAM: A Mult-
Level Anomaly Detector for Android Malware,” in 6th International

Conference on Mathematical Methods, Models and Architectures for

Computer Network Security, MMM-ACNS 2012, St. Petersburg, Russia,
vol. 7531 - 2012. Springer Verlag, October 2012.

[5] M. Conti, V.T.N. Nguyen,B.Crispo, “CRePE: context-related policy en-
forcement for android,” in ISC’10 Proceedings of the 13th international

conference on Information security . Springer-Verlag, 2010, pp. 331–
345.

[6] X.A. Hoang, J. Hu, “An efficient hidden Markov model training scheme
for anomaly intrusion detection of server applications based on system
calls ,” in 12th IEEE International Conferecence On Networks, ICON
2004, vol. 2. IEEE, November 2004, pp. 470 – 474.

[7] F. Maggi, M. Matteucci, S. Zanero, “Detecting Intrusions through
System Call Sequence and Argument Analysis,” IEEE Transactions on
Dependable and Secure Computing, vol. 7, no. 4, October-December
2010.

[8] A.P. Koresow, “Intrusion detection via system call traces,” Software,
vol. 14, no. 5, 1997.

[9] B. Delahaye, B. Caillaud, and A. Legay, “Probabilistic contracts: a
compositional reasoning methodology for the design of systems with
stochastic and/or non-deterministic aspects,” Formal Methods in System
Design, vol. 38, no. 1, pp. 1–32, 2011.

[10] A. L. B. Delahaye, B. Caillaud, “Probabilistic contracts : A composi-
tional reasoning methodology for the design of stochastic systems.” in
Proc. 10th International Conference on Application of Concurrency to
System Design (ACSD), Braga, Portugal. IEEE, 2010.

[11] N. Ye and Q. Chen, “An anomaly detection technique based on a
chi-square statistic for detecting intrusions into information systems,”
Quality and Reliability Engineering International, vol. 17, no. 2, pp.
105–112, 2001. [Online]. Available: http://dx.doi.org/10.1002/qre.392

142

