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Abstract

Disease processes are usually driven by several genes interacting in molecular
modules or pathways leading to the disease. The identification of such modules
in gene or protein networks is the core of computational methods in biomedical
research. With this pretext, the Disease Module Identification (DMI) DREAM
Challenge was initiated as an effort to systematically assess module
identification methods on a panel of 6 diverse genomic networks. In this paper,
we propose a generic refinement method based on ideas of merging and
splitting the hierarchical tree obtained from any community detection technique
for constrained DMI in biological networks. The only constraint was that size of
community is in the range [3, 100]. We propose a novel model evaluation
metric, called F-score, computed from several unsupervised quality metrics like
modularity, conductance and connectivity to determine the quality of a graph
partition at given level of hierarchy. We also propose a quality measure, namely
Inverse Confidence, which ranks and prune insignificant modules to obtain a
curated list of candidate disease modules (DM) for biological network. The
predicted modules are evaluated on the basis of the total number of unique
candidate modules that are associated with complex traits and diseases from
over 200 genome-wide association study (GWAS) datasets. During the
competition, we identified 42 modules, ranking 15t at the official false
detection rate (FDR) cut-off of 0.05 for identifying statistically significant DM in
the 6 benchmark networks. However, for stringent FDR cut-offs 0.025 and 0.01,
the proposed method identified 31 (rank 9) and 16 DMIs (rank 10) respectively.
From additional analysis, our proposed approach detected a total of 44 DM in
the networks in comparison to 60 for the winner of DREAM Challenge.
Interestingly, for several individual benchmark networks, our performance was
better or competitive with the winner.
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Motivation & background

A variety of genomic data has been used to construct biologi-
cal networks. Biological networks are scale free by nature' and
it is well-known that scale-free networks exhibit community like
structure’. Community like structure in networks is equivalent
to presence of a high degree of modularity’. In biological
networks, the modules often comprise of genes or proteins that
are involved in the same biological functions. Network module
identification methods, commonly known as community
detection™™ and graph partitioning methods'*~"*, attempt to reveal
these functional units*'*'* which is key to derive biological
insights from genomic networks'*~'®. However, the performance
of different community detection methods using diverse
parameter settings to uncover biologically relevant modules in
myriad networks remain poorly understood because there has
been no community effort to transparently evaluate module
identification methods on common benchmarks and across
diverse types of genomic networks. Thus, it is very difficult to
objectively compare the strengths and limitations of alternative
approaches. Evaluation of module identification methods
typically relied either on random graphs'?, which do not allow for
assessment of biological relevance of modules, or on pre-annotated
functional gene sets'® (e.g., gene ontology or molecular pathway
databases such as KEGG), which are still primarily incomplete
and biased towards well-studied pathways.

To address these issues, an open community DREAM challenge
enabling comprehensive and rigorous assessment of module
identification methods across a broad range of gene and protein
networks was initiated. The task in sub-challenge 1 was to identify
functional modules in 6 individual benchmark networks s.t.
the module size satisfied the constraint: 3 < modul esize < 100.
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The predicted modules were evaluated based on data from
disease-relevant genome-wide association studies (GWAS). GWAS
have successfully identified thousands of genetic loci
associated with a broad range of complex traits and diseases. The
variants are mapped to genes allowing to ask whether specific
network modules are enriched in these genes'”. The DREAM
challenge organizers employed a comprehensive collection of over
200 GWAS datasets, thereby, covering a broad spectrum of func-
tional units, many of which have not been annotated previously.

In this paper, we focus on sub-challenge 1 where the goal is to
predict functional modules for individual anonymized networks
across a broad range of gene and protein networks. Our
proposed pipeline requires a hierarchical tree from any state-of-
the-art hierarchical community detection technique as input. The
pipeline first identifies the optimal level of hierarchy using an
F-score comprising of quality metrics like conductance”,
modularity’ and connectivity'. Then it traverses the hierarchy
bottom-up from the optimal level allowing to merge smaller
communities based on the weighted connectivity criterion as long
as they fit the size constraint. Further, it splits giant connected
components (modulesize > 100).

For each giant connected component, we re-build the hierarchical
tree using a linkage based agglomerative hierarchical technique
and identify the optimal cut (number of clusters k) using the pro-
posed F-score criterion. Finally, we propose a metric to indicate
the confidence in each module among the final set of detected
modules and develop a method to automatically select the
right confidence threshold to prune less meaningful modules.
Figure 1 depicts the proposed pipeline for the constrained
disease module identification problem.
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Figure 1. Steps involved in proposed generic constrained disease module identification framework.
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Methods

Data

The disease module identification methods were evaluated using
6 benchmark networks. Details of the networks are provided
in Table 1.

Preprocessing

There are several preprocessing steps performed before the
input network can be processed by the pipeline. The node IDs
are mapped to a continuous set of integers starting from 1. If
the aforementioned procedure is not performed, the network
will end up with several isolated nodes and missing IDs. All the
edge-weights in each network are normalized between 0 and 1.
The input network are considered weighted and undirected in all
our pipeline.

We experimented with removal of edges with a weight lower
than a threshold ¢ = 0.05 but observed that the correspond-
ing results deteriorated. Hence, we recommend keeping all the
edges in the network.

Preliminary experiments

In the initial submission rounds, we ran several out-ofthe-box
state-of-the-art community detection techniques including Order
Statistics Local Optimization Method (OSLOM)*, Louvain’,
Multi-level Hieararical Kernel Spectral Clustering (MHKSC),
Dynamic Tree Cut” and METIS'. We also tried to use the results
obtained from these methods as input to consensus clustering
based method PCAgglo’' and ensemble clustering based method
Ensemble-Clue”” which are evaluated using complex traits and
disease modules in 76 European GWAS datasets.

OSLOM is based on the local optimization of a fitness func-
tion expressing the statistical significance of communities with
regards to random fluctuations, which is estimated with tools of
extreme and order Statistics. The Louvain method is a greedy
optimization method that attempts to optimize the modularity
of a network partition. MHKSC technique uses a kernel spec-
tral clustering formulation to random walk and exploits the
structure of the projections in the eigenspace to automati-
cally determine a set of increasing distance thresholds. It then
uses these distance thresholds in a test phase to obtain multiple
levels of hierarchy using principles of agglomerative hierarchical
clustering. Dynamic Tree Cut method implements novel dynamic

F1000Research 2018, 7:378 Last updated: 08 JUN 2018

branch cutting technique for hierarchical clustering where
it detects clusters in a dendogram depending on their shape.
They are capable of identifying nested clusters, can identify
clusters of various shape and are suitable for automation. METIS
is a set of serial programs for multilevel recursive partitioning
of the graph to produce fill reducing orderings for sparse matri-
ces. PCAgglo performs logistic PCA on the concatenated node
membership matrix formed from k different methods and then
agglomerative hierarchical clustering is performed on the prin-
cipal components. For METIS, Dynamic Tree Cut, PCAgglo
and Ensemble-Clue, we selected that level of hierarchy for
which the average module size was close to the best as per the
exploratory data analysis provided by the DREAM Challenge
organizers. The results that we obtained by direct application of
out-ofthe-box state-of-the-art community detection methods is
depicted in Table 2.

Insights gained

The Best of All result were not submitted during the preliminary
rounds of the Challenge because the Best of All method depicts
the maximum number of enriched modules that can be identi-
fied by a simple ‘max’ combination of these techniques at default
settings. However, as per our understanding the goal of the
challenge is to develop a method or a generic framework which
can optimally identify disease modules from various gene and
protein interaction networks at different parameter settings. We
gained several insights from these preliminary results including:

e Methods like OSLOM, MHKSC and PCAgglo generated
a set of clusters whose cluster size distribution is nearly
power law.

* For most of these methods there were several giant con-
nected components which were ignored due to the strict
upper bound constraint on the module size.

e For most of these methods nearly half of the nodes in each
network were part of giant connected components that were
removed due to size constraint.

* METIS generated uniform sized clusters and included
most of the nodes in each network, hence can’t be
optimized further.

* We didn’t get more enriched modules from a consensus
(PCAgglo) or ensemble (ensemble-clue) based clustering
methods.

Table 1. Description of 6 benchmark networks used for evaluation.

ID Directed #Nodes #Edges
1_ppi No 17,397 2,232, 405
2_ppi No 12,420 397, 309
3_signal Yes 5, 254 21, 826
4_coexpr No 12,588 1, 000, 000
5_cancer No 14,679 1,000, 000
6_homology No 10, 405 4, 223, 606

Protein-protein interaction network

Protein-protein interaction network

Connects genes essential for similar

Connects genes that are evolutionarily

Edge-Weight

Confidence score

Type

Confidence score
Signaling network Confidence score

Co-expression network Correlation

tumor types Correlation

Confidence score
related
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Table 2. Preliminary results using several state-of-the-art hierarchical module
identification techniques. Comparison of several out-of-the-box community detection
methods along with one consensus and one ensemble based clustering method for disease
module identification on 6 different biological networks. Here N represents total number of
candidate disease modules and n_ represents the number of significant/detected disease
modules in the 76 genome wide association study (GWAS) datasets. OSLAM - Order
Statistics Local Optimization Method, MHKSC - Multi-level Hieararical Kernel Spectral

Clustering.

Method N n, 1_ppi
OSLOM 842 28 6 1
Louvain 833 29 6 5
MHKSC 707 31 11 3
METIS 1209 30 8 8
QynamicTee 2118 24 9 4
PCAagglo 1803 24
Ensemble-Clue 756 21 9

Best of All - 48 11

Notations

Let G(V, E) be an undirected graph with n = |V| representing
number of nodes and m = |E| representing number of edges. Let
S be the set of modules (or a partition of the network), where n_
is the number of nodes in a module s € §; m_be the number of
edgesinsie m =|u,v) € E:ue s,ve s|and ¢, be the number
of edges on the boundary of si.e.c,=|(u,v)€ E:ue s,v¢ sl and
d(u) is the degree of node u.

Quality metrics
We provide summary of quality metrics used and definition of
proposed quality metrics below:

1. Modularity: Modularity is a global metric which takes
value between —1 and 1. It measures the density of links
inside communities compared to links between communi-
ties. For a weighted graph, modularity of a network parti-
tion is defined as: Q(S)—%E(mx —E(m,)), where m~E(m )

is the difference between rrf,s the number of edges between
nodes in s and E(m ), the expected number of such edges in
arandom graph with identical degree sequence. Modularity
value < 0 indicate that the corresponding partition behaves
worse than a random partition of the network. Modularity
score can only be obtained for graph partitions.

2. Conductance: Conductance is a local quality metric
which can defined for each individual community in
the network and takes values between O and 0.5. It is

defined as: CC(s)=—"%

. It measures the fraction of total
2m +c

volume of edges associated with the nodes in a module
s € S pointing outside the cluster. Conductance for a
partition S can be calculated by taking an average of the
conductance values for all modules s € S.

3. Connectivity: Connectivity is a sub-local quality met-
ric which can be defined for each individual node in the

2 ppi 3_signal 4 coexpr 5 cancer 6_homology

6 10 4 1
7 1 5 5
3 6 3
5 4 3 2
6 3 0 2
1 4 6

1 1

10 6 6

network and can be averaged for all the nodes in a module s
(considering connectivity to other nodes in the same com-
munity) to get local connectivity metric. It can be averaged
for all the modules s € S to obtain the global connectivity
CN(S) for a partition S. It was used in 1 to evaluate whether
genes perturbed by trait-associated variants are more
densely interconnected than expected in complex diseases
and generate connectivity enrichment curves. The
connectivity matrix K is defined as: g =(7+W)”; with

W= Df%WD%, where K is p-step random walk kernel used
to define pairwise connectivity between the nodes, I is
an identity matrix, W is the weighted adjacency matrix
and D is the weighted diagonal degree matrix. We set
p = 4 for our biological networks as it allows to capture
all meaningful interactions for paths of length < 4. The
connectivity of a node i is estimated as CN()=YK,.
connectivity of module s is cN(s)= 2%, and connect{vity
of partition S as CN(S)=29§%)- is Here |-| represents the
cardinality function. -

4. F-score: We need a quality metric which evaluates
the quality of a partition using modularity, conduct-
ance and connectivity. While modularity captures global
information, conductance and connectivity can capture

local information. The proposed quality metric is defined
0(8) + CN(S)

as: F(s)=cc(s) .
20(S)CN(S)

Higher value of modularity indicates better quality clusters, lower
value of conductance leads to good quality communities and
higher value of connectivity indicate better quality of modules.
We need to maximize modularity and connectivity while minimiz-
ing conductance. Hence, we take harmonic mean of modularity
and connectivity in the denominator of F-score metric to give
importance to both of the quality metrics. Thus, with conduct-
ance in the numerator, the minimum value of F-score corresponds
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to the partition S with best quality cluster. However, if modularity
value is < 0 then we set F-score to a very large value which
depicts the poor quality of the partition.

5.

Inverse Confidence: We need a metric to rank all the
modules generated from the proposed framework. We first
considered the average connectivity metric CN(s) for a
community s. However, the connectivity criterion prefers
smaller size modules which tend to be more cliquish than
bigger modules. We also considered using the conduct-
ance CC(s) of a community s to rank all the modules in
partition S. However, conductance value decreases as size
of the community increases due to larger volume of the
module (which is denominator of CC(-)). We propose an
inverse confidence metric to rank all the communities in

L C .
a partition S as: 1C(s) = © - We utilized the Inverse

CN(s)xng
Confidence metric in conjugation with modularity to

remove out less meaningful communities as illustrated

in Figure 2 and explained within the proposed framework.

We finally convert the inverse confidence valuelc?f) each
s

module into a confidence score as: Conf(s) =1- ————,
arg qmax(I/C(s))

where the denominator is used for normalization.

Proposed generic framework
We followed the steps indicated in Figure 1 to build the proposed
framework for constrained disease module identification.

1.

Given an input network we perform the preprocessing
step to create a modified input network where the node IDs
are monotonically increasing, edge weights are noramlized,
and the network becomes weighted and undirected.

Run a state-of-the-art hierarchical community detection
technique to generate the hierarchical tree structure.

F1000Research 2018, 7:378 Last updated: 08 JUN 2018

Estimate quality of each level of hierarchy using
modularity, conductance and connectivity.

Select that level of hierarchy for which the F-score is
minimum.

For communities of size > 100 go to Step 2 until either
the constraint exceeding communities cannot be split
further or modularity of resulting cluster memberships
becomes very poor.

In the merge step, we start with the partition (S) at the
best level of hierarchy and traverse the hierarchical tree
from that level in a bottom-up fashion. We iteratively
merge those communities whose weighted mean
connectivity score is less than the connectivity score for
a module at next level of hierarchy where the module
consists of those previous communities i.e.a. Here p an ¢
are modules at level 27 — 1 and s is community at level
h such that p, g € s. This results in an intermediate
partition set or a set of modules.

We then consider all the communities s s.t. n_ > 100.
For each such community s, we consider the sub-graph
comprising only the nodes from that community.
We transform the corresponding weighted adjacency
matrix ie. W = W(vi,vj), Vvi, v, € s into a distance
matrix D, = 1 — W. We then build the agglomerative
hierarchical tree using the linkage clustering with Ward’s
distance.

For each community s (n, > 100), once we obtain the
agglomerative hierarchical tree, we cut the tree for
different values of k i.e. the number of clusters. We

0.9 T

0]
0.8+

Inverse Confidence Threshold

=¥~ Modularity
Previous Best Modularity

0.4+ 1
0.3 =
0.2f 0 o 1
Oo o
o]
0.1} OOOOOO X:17
O 0o o _ ¥:0.03545
m
0 . ‘ . ® 00 g
0 5 10 15 20

Inverse Confidence Threshold Intervals

Figure 2. Figure 2 showcases the modularity values for different partitions obtained at various inverse confidence thresholds for
network 3_signal. Here we also highlight the optimal inverse confidence threshold value.
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evaluate each such partition using the F-score and select
that partition which has the minimum positive F-score.

9. Using Steps 67 on these bigger modules and the small
size communities which satisfy the size constraint, we
generate another set of intermediate clusters.

10. We rank this intermediate set of communities using the
inverse confidence score i.e. IC(s), Vs € S. Lower inverse
confidence corresponds to higher rank. We now remove
all modules whose size exceeds the size constraint i.e. 7,
< 3and n_2100.

11. In this final step, we propose a mechanism to select
the best set of modules for evaluation in an automated
fashion independent of the network. We can calculate
the maximum and minimum value of inverse confi-
dence (IC) from the inverse confidence (IC) scores of
all the communities in the intermediate partition S. We
iteratively decrease the inverse confidence threshold
from maximum to minimum thereby pruning clusters.
At each such threshold, we calculate the modularity of
the remaining set of partition using the subgraph cor-
responding to this partition S” i.e. GS’. We select the
threshold where the difference between Q(S’, 6) and
0, is minimum ie. arg, min|Q(S’, H)—me|. Here ||
represents the absolute value, Q| is the modularity of
the partition obtained at Step 2 and calculated in Step
3. For the final submission, we consider all the modules
in the optimum partition i.e. s € S’ obtained by pruning
communities whose IC (s) > 0.

Results

For our final submission, we utilized the method which is the
fastest and most suitable for hierarchical graph partitioning i.e.
Louvain method® as we were allowed to make only 1 submis-
sion. We formulated a recursive version of Louvain method
where communities of size greater than 100 were recursively

F1000Research 2018, 7:378 Last updated: 08 JUN 2018

partitioned. We also designed a constraint satisfying version of
MHKSC"’ and compared its performance with the recursive
Louvain method within the proposed generic framework. The
evaluation criterion used in the Challenge was the total number
of significant modules identified in the 6 benchmark networks
on a hold-out set of 104 GWAS datasets at the false discovery
rate (FDR) cut-off* of 0.05 for multiple testing. We compare
the results obtained from proposed generic framework using
both the Louvain and MHKSC methods with the winners of the
DREAM Challenge in Table 3.

From Table 3, we observe that the winners (Double Spectral
Clustering and Resolution Adjusted Clustering) perform far
better than Constrained Louvain method on the protein-protein
interaction networks (Networks 1 and 2) and homology network
(Network 6). However, for the signaling, co-expression and the
cancer networks (Networks 3, 4 and 5), proposed Constrained
Louvain method has comparable performance with the win-
ners of the challenge. To gain a sense of the robustness of the
ranking with respect to the final GWAS data, the challenge
organizers sub-sampled the hold-out set by drawing 76 GWASs
(same number as during the preliminary phase) out of the
104 GWAS datasets. They created 1, 000 subsamples of the
hold-out set. The methods were then scored on each subsample
(Sub-sampling was done here without replacement.)

The performance of each competing method ¢ for a given
network was compared to the highest scoring method across the
sub-samples by the paired Bayes factor B, i.e. the method with
the highest score on this network in the hold-out set (all 104
GWASs) was defined as reference. The score n (¢, b) of method
t in subsample b was thus compared with the score n (ref , b)
of the reference method in the same subsample b. The Bayes
factor B, is defined as the number of times the reference method
outperforms method ¢, divided by the number of times method ¢
outperforms or ties the reference method over all subsamples.
Methods with B, < 4 were considered a tie with the reference

Table 3. Final submission results comparing the winners with proposed generic framework. Here the
proposed generic frameworks are referred as Constrained Louvain and Constrained Multi-level Hieararical
Kernel Spectral Clustering (MHKSC) and we use * to represent the winners of the competition. Here N represents
total number of candidate disease modules and n_ represents the total number of significant disease modules
identified in the104 genome wide association study (GWAS) datasets. In the final round of the challenge, we
submitted the results corresponding to Constrained Louvain method.

Method FDR Cutoff N n,
Double Spectral

Clustering” 0.05 2407 60 16
Resolution Adjusted

Clustering* 0.05 2780 60 19
Constrained Louvain 0.05 1965 42 12
Constrained MHKSC 0.05 2108 37 5

1_ppi 2_ppi 3_signal

4_coexpr 5_cancer 6_homology

13 9 12 5 5
11 5 14 7 4
15 5
4 18 4
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method (i.e., method ¢ outperforms the reference in more than 1
out of 5 subsamples). For networks 3, 4 and 5, the Bayes factor
of proposed Constrained Louvain method was less than 4. This
indicates that the proposed generic framework, though not the
winner, is useful, generic and robust enough for identification of
statistically significant disease modules in biological networks.

With the availability of the de-anonymized version of the net-
works along with the scoring tools used during the competition,
we were able to perform additional experiments for the
Constrained Louvain method. After the challenge, we identified
an error in labeling the nodes in the significant disease modules
that we submitted for the homology network (Network 6) during
the competition. After correcting the labeling error, we identified
2 significant disease modules from Network 6.

Moreover, we performed additional analysis using 5 different
FDR cut-offs (multiple testing) for each of the 6 benchmark
networks to obtain the trends in the number of significant disease
modules identified by the proposed generic framework for these
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cut-offs. This result is depicted in Figure 3. The FDR cut-off
used as evaluation criterion during the competition was 0.05.

Discussion

The DREAM Challenge organizers made the GWAS datasets
along with de-anonymized networks available to the challenge
participants. This allowed us to further analyze our results. For
each benchmark network, we identified the proteins or genes
that make up the significant disease modules.

We investigated association of identified disease modules with
disease/trait of the provided GWAS datasets. We used the official
competition FDR cut-oft of 0.05 as significance threshold to iden-
tify disease modules for each benchmark network. Table 4-Table 9
provides a detailed analysis of the significant modules and their
corresponding associated disease (inferred from 104 hold-out
GWAS datasets) for Networks 1,2,3,4,5 and 6 respectively.
Each module is found to be associated with at least two
GWAS datasets of the corresponding disease/trait. Moreover,
many modules were found associated with multiple disease/trait

20
@ 15+ Networkld
3 @ 1_ppi
o)
= o\ 2 ppi
®
a 4 3 signal
O
é’ 101 + 4_coexpr
5 $X' 5_cancer
Zo -}lé 6_homology

-
- s e
- *
5- _a .= _-A L= K
-~ « * - - . *- -
r ’A - ‘- —‘- - . -‘ - - - -
7 . X°* —Hé'
- . .
‘ . e - . ’
of . e
0625 0650 0675 0.1'00
FDR

Figure 3. Number of disease modules identified by Constrained Louvain method for different false discovery rate (FDR) cut-offs for

6 benchmark networks.
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Table 4. Significant disease/trait modules identified for 1_ppi network by proposed Constrained Louvain method.

Module Disease/Trait

Id

19

54
56

57

145

154

157
174
176

184

211

251

252

(Number of GWAS
datasets)

Hip Circumference(3),
Human

Height(4), Waist
Circumference(3)
Ulcerative Colitis(2)
Coronary Artery
Disease(2)

Lipid Levels(2)

Coronary Artery
Disease(2)

Crohn’s Disease(2),
Rheumatoid
Arthritis(2),
Ulcerative Colitis(2)

Ulcerative Colitis(2)
Lipid Levels(2)

Narcolepsy(2),
Rheumatoid
Arthritis(2),
Ulcerative Colitis(2)

Lipid Levels(5)

HbA1C(2)

Psychiatric
Disorders(2)

Lipid Levels(2)

Genes/Proteins

Cbhorf24, LOX, FBN1, ADAMTSL2, ECM1, FBLN5, MFAP5, EFEMP2, MFAP3, ELN, LTBP2, FBN2, MFAP4,
ADAMTSLS5, PXDNL, MFAP2, FBLN1, PRSS35, LOXL1, FBLN2, EFEMP1, PXDN

AMIGO2, AMIGO1, AMIGO3
C170rf103, ADAMTSS, CST2, ADAMTS7, DSCR8, POFUT2, BSGALTL, ADAMTSL1, ADAMTSL4, CFP

NCAN, HPSE, APOE, BAGALNT4, IDUA, MSR1, CHST15, APOC4, NDST2, BSGAT3, LRPAP1, CHPF, TMCCS3,
B3GAT2, HS3ST6, CHSY1, B3GALT6, GPC2, CSPG4, CLEC2L, CSGALNACT1, GXYLT1, HS3ST2, VCAN,
PLD5, GPC3, B3GAT1, SDC4, CHST3, APOA4, CHPF2, CSGALNACT2, APOC2, SLAMF7, LRP8, PONS,
RBP1, LDLRAP1, KAL1, CHST13, GPR144, SLC35D2, BAGALT7, CHST11, CHST7, HS3ST4, HS3ST3B1,
APOB, GPR111, NDST1, CC2D1A, LRP1, BCAN, CSPG5, XYLT2, DSE, LACRT, SDC3, NKG7, SDC1,
HS6ST2, GLCE, GPC4, SNX17, TSPAN1, MTTP, HS6ST1, GPC5, ITGB1BP1, HS3ST1, HS3ST5, AGRN, IGSF9,
HSPG2, SDC2, GPC1, B4AGALNTS, EXT1, APOC3, CHSY3, CHST14, A2ML1, UST, MDK, GPR97, HPSE2,
GPC6, HS3ST3A1, XYLT1, LRP2, PTN, TMCC2, LDLR, CHST12, EXT2, TLL2

HSD3B1, STS, SOAT1, CYP27A1, CYP11A1, CYP11B2, SULT2B1, CYP3A7, DHCR24, LIPA, TM4SF4,
CYP11B1, CH25H, CYP46A1, CYP7B1, SUSD4, SOAT2, SLC27A5, CYP1A2, HSD3B2, ALS2CR12, CYP7AT,
CYP17A1, FDX1, FDX1L

IL24, IL26, LEPR, IFNAR1, OSMR, IL22RA2, IL23A, RELB, IL28B, IL20RB, CSF2, IFNK, IL7, IL10, CBLC,
IL21, IFNGR1, MPO, IL4, IL12RB1, IL19, TBX21, IL15RA, IL5RA, IL9R, IL2RA, SOCS4, SOCS7, CSH2, IL7R,
IL3, IL28A, IFNAR2, EPO, EPOR, IL28RA, OSM, IL10RA, IL9, IL3RA, LEP, IL5, IL13, IFNW1, CTF1, IL13RAT,
IL11, IFNA13, IL21R, IFNA1, JAK2, GH2, IL15, IL13RA2, IL10RB, CNTFR, IL20, CSF2RB, TSLP, IFNE, CSH1,
IL12A, IL12RB2, CNTF, DOK2, IL2RG, CSF3, IL11RA, IFNGR2, CLCF1, LIFR, IL23R, IL6R, IL20RA, CSF2RA,
IL2RB, IL29, IL6ST, IL2, CRLF2

PDCD1LG2, CD3D, CLEC2D, HLA-DRB1, CD274, SLA2, TREML2, PDCD1
PVRL4, CD226, PVRL1, CADM3, PVRL2, TIGIT, PARDS3, PVR, PVRL3, CD96

HLA-DQB1, HLA-DQA2, HLA-DMB, HLA-DPA1, HLA-DPB1, HLA-DRA, HLA-DQB2, HLA-DOA, MS4A1, HLA-
DMA, HLA-DQA1, HLA-DOB

TBL1X, NCOA1, HELZ2, TBL1XR1, NR1I3, GPS2, CARM1, POU1F1, G0S2, HMGCS1, GLIPR1, SMARCD3,
NCOAG, MED1, PPARA, NCOA2, TGS1, CTGF, CHD9, HMGCR, PEX11A, SULT2A1, GRHL1, NR1I2, NRBF2,
HMGCS2, FADS1, SREBF2, DLX2, PLIN2, CPT2, CPT1A, RGL1, APOA5, SLC27A1

SP110, RNF112, WDR73, TRIM73, SSRP1, TRIM17, CAPNS2, FN3K, HIST2H4A, ERMAP, PEF1, MLL5, GCA,
ZNF618, TRIM69, TRIM60, ATAD2B, KDM5A, TRIM66, TRIM6E8, SUPT16H, HIST1H4K, DIDO1, TRIM72,
SP140, FSD2, RFPL4B, SDR39U1, SLC20A1, TRIM58, HIST1H4I, SH3RF3, H3F3C, HIST2H3D, TRIM44,
TRIM31, TRIM49B, TRIM51, WDR76, TRIM39-RPP21, TRIML1, HIST1H4B, TRIM43, KDMS5D, TRIM49C,
TRIM74, TRIM34, HIST2H3A, SLC20A2, HIST1H3G, TRIM4, HIST1H4G, NHLRC4, HIST1H3F, SP140L,
RFPL1, CHD1, RNF39, PYROXD2, TRIM6-TRIM34, HIST1H3H, SRI, TRIM15, C16orf11, TRIM10, HIST2H3C,
HIST1H3I, TRIM49, TRIM40, TRIM26, PHF20L1, RNF186, BRD4, TRIM64C, TRIM7, MEFV, TRIM52,
HIST1H3B, RNF135, HAT1, SETD7, WDR59, ATAD2, KDM5C, FN3KRP, HIST1H4L, TRIM64B, TRIM48,
TRIML2, HIST4H4, TRIM41, RFPL2

DAPK2, MKNK2, CDKL1, MAPKAPK3, CAMK1G, TSSK4, CAMK1, CDK7, STK32C, STK32A, TSSK1B,
NEK3, STK16, TSSK6, MKNK1, PKMYT1, NEK7, CAMK1D, SBK1, MOS, PIM2, CDK10, STK33, NUAK2,
ITIH3, MAP2K2, CDK6, PTK6, PSKH1, CDKL2, PIM1, OXSR1, PIM3, STK17A, NEK6, NUAK1, PSKH2, ULKS,
CDKL4, PDIK1L, PNCK, SBK2, STK17B, PAK2

ANKRD61, ANKRD65, ANKRD39, ASB11, ASB9, ASB12, ASB7, ACBD6, ASB1, RFXANK, ASB13, ASB14,
ANKRD7, ANKRD49, ANKRD54, ASB4, ANKRD29, ASB3, CDKN2C, ANKRA2, CDKN2B, ANKRD30BL,
ANKDD1A, ASB8, ANKRD16, OSTF1, ASB10, FANK1, ANKRD23, ANKRD44, CDKN2D, ANKRD1, ANKK1,
ANKRD46, ANKRD22, ANKRD52, ASB5, GABPB1, BCL3, PPP1R27, NFKBID, ANKDD1B, ANKRD2

Table 5. Significant disease/trait modules identified for 2_ppi network by proposed Constrained Louvain method.

Module Disease/Trait (Number of Genes/Proteins
Id GWAS datasets)

81 Human Height(3), Waist NPPB, NPR1, NPR3, NPR2, NPPC, NPPA
Circumference(2)

109 Myocardial Infarction(2) SMPD1, GALK2, C12orf4, SLC7A5, GDAP2, MRPS33, RAB23, C70rf43, C140rf50,

DPEP2, CARS2, TMEMS50A, SRFBP1, PLBD2, LANCL2, C4orf29, MPND

144 Narcolepsy(2), CD74, TRBV7-9, CD3D, TRDV2, HLA-DMA, HLA-DPB1, HLA-DQB1, HLA-DQAT,
Rheumatoid Arthritis(2) HLA-DPA1, TRAV29DV5, CD3E, HLA-DOA, CD3G, TRBV19, HLA-DRB4, HLA-E,

TRAV8-4, TRBV12-2, TRAV19, CD247, HLA-DQA2
Page 9 of 17



F1000Research 2018, 7:378 Last updated: 08 JUN 2018

Table 6. Significant disease/trait modules identified for 3_signal network by proposed Constrained Louvain

method.

Module Disease/Trait (Number of GWAS datasets) Genes/Proteins

Id
1 Coronary Artery Disease(2), Lipid Levels(9), PCSK9, LDLR, APOB
Myocardial Infarction(2)
114 BMI(2), Weight(2) UBE3C, TLR2, TLR1, TLR10, SFTPA1, PSMD2, CYBB, NEU1,
TLR6, DHX36, TRAP1
162 Age-related Macular Degeneration(2) LTB, LTBR, TNFSF14, TNFRSF14
258 Age-related Macular Degeneration(2) C3, CD46, C3AR1, CFB, CR1, CFI, CFH
284 BMI(2) THPO, MPL, ATXN2L
331 Fasting Glucose(7) GCK, GCKR, DUSP12
337 BMI(2) BCL2, BCL2L1, CISD2, TMBIM6, TP53AIP1, ITM2B, SPNST,

HRK, BCAP31

Table 7. Significant disease/trait modules identified for 4_coexpr network by proposed Constrained Louvain method.

Module Disease/Trait (Number Genes/Proteins

Id
3

39

48

58]

56

92

99

104

107

of GWAS datasets)

Hip Circumference(4),
Neuroticism(2),
Psychiatric
Disorders(7), Waist
Circumference(2)

Lipid Levels(4)

Psychiatric Disorders(2)

Crohn’s Disease(2),
Rheumatoid Arthritis(3)

Rheumatoid Arthritis(3)

Lipid Levels(5)

Lipid Levels(4)

Lipid Levels(3)

Lipid Levels(5)

HIST1H2BE, HIST1H2BC, HIST1H3G, HIST1H4A, FLJ13224, HIST1H3A, OR2B6, HIST1H2BG,
HIST1H2BH, HIST1H1D, HIST1H2BI, HIST1H2BF, HIST1H4H, HISTIH2AG, HIST1H2BB, HIST1H2BL,
HIST1H2BN, HIST1H3H, HIST1H4E, HIST1H2AJ, HIST1H2BM, HIST1H2BO, HIST1H2BJ, HIST1H4F
HIST1H2AE, HISTIH2AK, HIST3H2A, HIST1H3J, HIST1H2AI, HIST2H2AA3, HIST1H4D, HIST2H2BE,
HIST1H4B

GLB1, C11orf75, VPS37C, CSF1R, TNFSF13, BLVRB, SH2B3, SCPEP1, NEU1, RNPEP, CFD, BLVRA,
MAN2B1, PION, M6PR, KIAA0930, PLEKHB2, NSMAF, FCGRT, LRPAP1, CAPG, SAMHD1, SIDT2,
MGAT1, FKBP15

COCH, BAGALT6, TCEAL4, S100A6, CHL1, TSPO, PIK3R3, CXXC4, CAPN2, PIP5K1B, YES1, GAS2,
TRIP6, SLC20A1, TUBB2B, C18orf1, ATP2A3, GLDC, ANXA2P2, HMHB1, ATP8A1, C200rf103,
ACAP1, LRRC59, ENPP4, CTNNAL1, ADAM9, CD200, EMID1, GSTM3, VEGFA, LAPTM4B, LIMAT,
FXYD2, GGA2, S100A4, DAPK1, S100A11, ITGAVY, PARM1, SIDT1, CYFIP1, MGAT3, CEBPB, REXO2,
KL, BAG2, IKZF2, WBP5, JAG1, QPRT, VAMP3, PLP2, NCALD, CNIH4, FCGR2B, MXRA7, ASCL1,
GNG7, TAX1BP3, PLS3, ARHGAP6, ANXA1, IPCEF1, REC8, BCL2, DMD, EPHB1, MT2A

DNAH17, IL2RA, IL3RA, ICOSLG, COL9A2, CIITA, GRAP, IL21R, TEC, TNFRSF4, POU2F2,

TCL6, PAOX, IKZF3, STOM, BTK, LILRB1, LILRB4, ADAM28, KMO, SLC2A5, GPR65, SH2D3C,
ST6GALNAC4, CD86, SLC15A2, PCMT1, UGT2B17, ABCB4, PTPN7, GATM, PPFIBP2, DOK3, KLK2,
VNN2, ADAM29, TLR7, STS, BTN2A2, TNFSF11, HLA-DRB4, SH3D21, LY9, FGD2, GH1, PHACTR1,
HSPA1A, HCG26, ALOX5, LOC100505650, HLA-DOA, SCARF1, LTA, TTN, DNASE1L3, CNR1,
CXorf21, ZNF318, PDE6G, TNFRSF9, P2RY10, OAT, RASGRF1, IL7, AKAPS, IGHV5-78, CXCRS,
SLC9A7, PEN2, IRF5, TRAF3, TNFRSF13B

FLT3LG, TXK, ACSL6, BACH2, ANKRD55, CDKN2D, CCR9, S1PR1, CCR5, HSPB1, ANGPT4,
LIME1, CD96, CD28, TNFRSF25, UBASH3A, GPR171, GPA33, CCR4, SIRPG, TNFSF8, XCL1, CD8B,
KLRD1, PVRIG, STAT4, TBX21, TRAV8-3, FASLG, TRD@, CD7, RORA, GFI1, CXCR6, SH2D1A,
LOC79015, CAMK4, LAGS, IL23A, LRRN3, SPINK2, TRAT1, KLRG1, IFNG, EMR1, SH2D2A, CD3G,
CHMP7, KCNAZ, CD6, MGST3, GZMM, ICOS, CD5, SLAMF1, PTPN4, CCR8, PDCD1, TRBC2,
LOC100507397, RCAN3, TRBV10-2, OCM2, SIT1, PRKCQ

SNTA1, DEXI, KLHDCS3, PHKB, EEF1A1, MID1IP1, SLC25A11, OGDH, VPS4A, GSTM2, MAP7D1,
SCN1B, CARM1, KEAP1, USO1, GSTM1, POLDIP2, PHKG1, VPS52, FAM89B, GPS2, TRIP10,
SLC2A4RG, FHOD1, CTDNEP1, ARL2, RNF123, UQCC, LRRC20

C9, F7, CRP, TMPRSS6, TAT, SLC17A2, HMGN2, LECT2, MASP2, C190rf80, TRMTS5, LIPC, ABCG5,
APOF, SPP2, CFHRS5, FGF21

CYP7A1, GCKR, CLEC4M, PKLR, CRYAA, PRG4, DDO, IGFALS, LPA, FTCD, FN3K, C14orf105,
SEC14L4, F13B, MASP1, CLDN16, CPN2, ART4, ADRA1A, FOLH1B, HGFAC, HAAO, FOLH1, MBL2,
SLC7A9, DNMT3L, MLXIPL, CA5A, ABCG2, FETUB, LPAL2, CYP3A43, CCL16, F11, GPER, SARDH,
HNF4A, GPLD1, CPS1-IT1, NAT8, SLC38A3, APOA4, ONECUT1, EPO, SHBG, HNF1A, SLC26A1,
MBNLS3, UPB1, NR1I3, ALDOA, RHBG, PON1, CPN1, CCNI, CYP2C19, PROZ, TTPA

C3orf32, SERPINAG, ADH6, SULT2A1, SERPINA4, C4ABPA, RGN, C8A, PLG, UGT2B4, SERPINF2,
PGC, SERPINA10, ITIH1, HPR, MTTP, PROC, ANGPTL3, AKR1D1, MAT1A, BHMT
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Module Disease/Trait (Number

Id
109
126

135

138

184

187

of GWAS datasets)
Psychiatric Disorders(2)
Leptin(2)

Waist Circumference(3)

Narcolepsy(2),
Rheumatoid Arthritis(3)

Obesity(2)

Crohn’s Disease(2)

F1000Research 2018, 7:378 Last updated: 08 JUN 2018

Genes/Proteins

ENDOU, IL37, WNT3, DNASE1L2, KCNK7, KRTAP2-4, KRTAP9-9, KRT83, KRTAP1-3, BPY2, KRT35

HSPB7, CCDC48, HSPB2, BAALC, CSPG4, SLC16A4, MAP1A, SGCA, CSDC2, DNAJB5, NFASC,
FHL5, PLEKHA4, STK32B, DAAM2, TRO, SPEG, ADAMTSL3, TMEM100, CLIP3, CACNA1C, TBX5,
GPC4, SLC26A10, GREM2, LTBP4, C8orf84, RRAD, EMILIN1, RAB23, HSPB6, HSPA12A, C7orf58,
TACR2, ADAMTSS, ITGA1, CYTL1, SLC2A10, SCN7A, ARHGAP24, GPM6EA, PRKG1, RAB40A,
NBLAO00301, SCRG1, HSPB3, SNAI1, AGTR2, IL17B, BEX1, SGCD, PER1, PKNOX2, CHRM2, FGF7,
PDE5A, SMAD9, ENOX1, PGM5, NDNF, HPSE2, ARNT2

TGFB1I1, FBLN1, TJP1, AXL, CAV2, COL5A1, TIMP3, FBN1, WWTR1, TPM2, UBE4A, LOXL2,
OLFML3, FAP, PCOLCE, NUPR1, CTGF, LTBP2, SEPT10, MFAP2, TNC, FN1, PRSS23, PXDN,
CDKN1A, CALD1, NID1, TMEM47, LOXL1, MRC2, PPAP2B, FBLNS5, PPIC, IL1R1, LARGE, MYO1B,
LHFP, MYL9, NID2, LOX, FLRT2, RASL12, C6orf145, OLFML2A, SNAI2, LAMB1, THBS1, PPAP2A,
EFEMP1, DSE, ENAH, MAP1B, IGFBP3, DKK3, F2R, ADAMTS1, FERMT2, ARHGAP29, CDH11,
MYLK, MYOF, COL1A1, NNMT, COL5A2

HLA-E, CTSC, KRT19, LAPS, LYZ, HLA-G, HCLS1, LCP1, HLA-DPA1, UCP2, TAPBP, RAC2, HLA-B,
GRB10, LYN, SH3BGRL, EIF2C2, LIPA, GRB14, CD74, CNDP2, HLA-F, LAPTM5, MYD88, DLG5,
HLA-DRB1, HLA-C, TRIM22, HLA-DPB1, CD53, SRGN, HLA-DMA, LGMN, IFI30

CINP, NDOR1, FAM158A, ZMATS5, HLCS, SURF2, KCTD2, LIN37, TELO2, C4orf10, ZNF408, CCDC22,
COQs6, BAD, C170rf59, RNF25, LIN7B, TBL3, TUG1, RPS6KB2, C21orf2, PIGH, SART1, BRF1,
TMEM110, AAGAB, AZI1, SSSCA1, ZNHIT2, NUDT2, PGP, TMEM104, ROM1, ARMC7, MKL1, AKIP1,
SUGP1, GTF3C5, E4F1, PPP2R2D, C2CD2L, ETV2, NADSYN1, NUBP2, LOC100129250, C11orf51,
WDR25, GPKOW, KCTD17, TMED1, BCL7C, THAP7, NOCA4L, TBCD, EXOC3, GNB1L, FAM3A,
KLHDC4, NKIRAS2, OPHNT1, PIN1, FAU, SNAP29, COMMD9, PUM2, C170rf90, FAM3C, C160rf42,
SHARPIN, BNIP1, TXNRD2, PIN1P1, ZNF839, CCDC101, DHRS7B, PANK3, PRMT7, WDR13, DDX49,
TMEM11, ASPSCR1, TSR2, ZFPLA1

ARFGAP1, PCGF3, TAF1C, RTEL1, MUS81, BRD9, CDK10, SH3BP2, INPP5E, C190rf54, ABCC10,
SPG7, MAN1B1, DOM3Z, RAD9A, CEP164, NFRKB, MST1, CLASRP, NELF, TUAP1, ASXL1, SLC35C2,
TXLNA, PLXNA3, SZT2, SFI1, ATG4B, ASAH1, INPPL1, FAM193B, CUL9, APBA3, RHOT2, SKIV2L,
MDC1, RBM14, PAQR6, SLC26A6, FAM193A, PIGO, HTT, MOGS, C9orf86, MFSD10

Table 8. Significant disease/trait modules identified for 5_cancer network by proposed Constrained Louvain method.

Module Disease/Trait (Number Genes/Proteins

Id
107

181

211
656
666

of GWAS datasets)

Neuroticism(2)

Hip Circumference(2)

BMI(2), Obesity(2)
Neuroticism(2)

BMI(4), Waist
Circumference(2)

ARSH, ATP2B4, CTSB, MYT1L, MMP21, LIM2, DCSTAMP, KCNT2, ZNF442, T, POC1B-GALNT4,
EXOC4, NFATC2, NOD2, SIM1, MYLIP, PGK2, C1orf109, FAAH2, ZNF436, TCF4, NEK1, CLIC2,
TMEM206, DIAPH1, CYP4F22, MNDA, CLDN17, GALNT4, HELT, GNPAT, CNGA2, ZGPAT, PPP1R16A,
HIVEP1, CSNK2A3, UQCRBP1, RUNX1T1, CYP24A1, ENPP6

NT5C1B-RDH14, ALDH8A1, ZNF155, GNA12, BSGAT2, SULT1B1, HHIP, AAGAB, TMEM119, RDH14,
DNAJA1

TACC2, BDNF, SLC16A3, AKAP10, PLS3, FAM19A3, PABPC5
LRRC37A4P, INPP5B, LRRC37A, VAMP3, LRRC37A2, LRRC37A3
SULT1A3, SULT1A2, SULT1A1, SLX1A, SLX1A-SULT1A3, SLX1B, SULT1A4, SLX1B-SULT1A4

Table 9. Significant disease/trait modules identified for 6_homology network by proposed Constrained Louvain method after
the challenge.

Module Disease/Trait (Number Genes/Proteins

Id
105

198

of GWAS datasets)

Coronary Artery
Disease(2)

Lipid Levels(4)

RNASE7, KDM2A, SLC24A1, ESRP2, ASNS, MARCH9, BZW1, EDDM3B, VPS13D, APPBP2,
NAA16, THAP4, VWA3B, CYP3A43, FABP2

SOCS3, NUDT19, AKR1C1, ZNF714, IGFBP6, CAT, ARHGAP32, PITPNC1, NFKBIL1, MAD2L2,
EIF1B, LPO, ZNF620, TMEM204, DANDS, ARHGAP25, KRCC1, SP1, FEZF1, LMNTD2, OOSP1,
TMED1, HOXA4, SLC36A4, FAM71F2, ASPM, FBXL20, OR5I1, HBG1, SFTPC, APOC4-APOC2,
HEXB, ZNF521, TRIM56, CHPT1, IFT20, MLXIP, AJUBA, IDE, GMIP
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of similar nature. For example, as shown in Table 4, module
19 in 1_ppi network is found to be associated with anthropometric
traits. This indicates that the identified modules correspond to
preserved biological functions of genes/proteins.

Data availability

The Challenge datasets for registered participants are available
at: https://www.synapse.org/#!Synapse:syn6156761/wiki/400659.
Challenge documentation, including the detailed description
of the Challenge design, overall results and scoring scripts can
be found at: https://www.synapse.org/#!Synapse:syn6156761/
wiki/400647.

Source code for the proposed framework is available from:
https://github.com/raghvendra5688/DMI/tree/DMI_v1.0
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In this paper, the authors describe a new pipeline for identifying disease modules from large-scale
biological networks in the DREAM challenge. The pipeline builds upon off-the-shelf hierarchical
community detection methods and first generates an initial partitioning of the network using a given
community detection algorithm. It then integrates multiple properties of the network including modularity,
conductance and connectivity into an F score to benchmark the partitioning at different levels of the
hierarchy and selects the best partitioning. Next the pipeline merges modules in a way that increases
connectivity, and resulting modules that exceed size threshold are partitioned again using hierarchical
clustering and split at a level corresponding to the F score minimum. After a second round of merging
similar to previous steps, a final set of modules are generated and ranked using a score termed inverse
confidence. Using known disease-gene associations obtained from GWAS datasets, the authors verified
the modules identified from their pipeline with multiple community detection algorithms, and compared
performance across difference networks with that of the top team in the challenge. The authors conclude
that despite the top performing team scoring highest overall, there are several cases where the number of
modules identified in this paper are at least comparable to that from the top scoring method. Additionally,
the authors claim that their pipeline is a generic framework for identifying statistically significant disease
modules from biological networks.

The methodology put forward in this paper seems novel. However, neither the utility of the module
identification pipeline nor its generalizability are adequately demonstrated. This is likely due to vagueness
in the description of methods and lack of theoretical justification and supporting computational
experiments to validate the procedures and scoring metrics devised by the authors. Specific comments
are listed in detail below.

1. The description of the module identification framework seems elusive and lacks detail, rendering it
unclear whether it is based on sound theoretical foundations. The framework works through a
series of merge-split-merge steps that seems to hint at an iterative procedure to refine network
partitioning. However, the method stops at the second merging step and discards all modules
whose sizes exceed thresholds. The authors need to provide a rationale for this — is this because
of empirical results that the modules identified from the pipeline do not change much after these
steps and thus do not require further iterations in general? In addition, the paper seems to switch
between methods and scoring schemes in different steps of the pipeline, for example the merging
step is performed using increasing connectivity as criterion, whereas the splitting step uses a
hierarchical clustering with minimum F score as partitioning criterion. At the final step, the authors
used minimal change in modularity score as the criterion for setting a cutoff for module
significance. These heuristics seem inconsistent with the idea of integrating multiple network
properties to assess quality of network partitioning. Without justification for such a design the

Page 13 of 17


http://dx.doi.org/10.5256/f1000research.15518.r34227

FIOOOResearch F1000Research 2018, 7:378 Last updated: 08 JUN 2018

framework it would not appear convincing enough to be a fair and generalizable pipeline for
module identification.

2. The paper only compares their results with that from the top scoring team in the DREAM challenge
and finds that there is a subset of networks where their performance is comparable to that of the
top scoring method. This is rather inconclusive in terms of the method of comparison as well as the
comprehensiveness of the datasets covered. Is the best scoring team’s method (not explained in
detail in the paper) applicable to the pipeline that the authors proposed? If so it would be more
convincing if the authors could see improvement over the best team’s method by refining modules
through their pipeline. Is a single comparison adequate? Can the pipeline improve results from
other teams that use hierarchical methods for module identification too? Answers to these
questions will help further verify the utility of the proposed pipeline.

3. The authors gained some insight by inspecting results from each of the off-the-shelf methods they
tested using their module identification pipeline — different methods behave very differently in terms
of module number and size distribution. A question that naturally arises from these observations is
what goes into a good module identification method? Instead of using real biological networks, the
authors may gain a better view of the performance of these algorithms by benchmarking them
against synthetic networks where modules are simulated under different generative models.
Because these methods, including the novel pipeline in this paper itself, only takes network
topology into consideration, it is important to test if they work well with different network models.

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
No

Competing Interests: No competing interests were disclosed.
Referee Expertise: Transcription regulation, network biology, cancer biology

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.
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In their paper, “An unsupervised disease module identification technique in biological networks using
novel quality metric based on connectivity, conductance and modularity”, Mall ef al present an approach
to identifying modules of genes from different types of networks, where their approach uses a novel
quality metric to evaluate the quality of the partitions based on a number of network metrics such as
modularity, conductance and connectivity. Through a series of steps defining the module detection
pipeline employed by the authors, they identify modules for the different types of networks and assess the
“truth” of the module using enrichment metrics based on GWAS findings as defined by the DMI Dream
competition in which the authors had submitted their approach and results.

The approach detailed by the authors seems reasonable, and the idea of the DMI to test a great variety of
methods against one another is excellent. The processing of networks to identify biologically meaningful
modaules is still an important area of research and competitions such as DMI have helped to assess
progress and identify best practices.

However, while the work presented is potentially interesting, as written the general DMI approach and
specific results are difficult to understand and so hard to evaluate in light of this (as detailed below in the
specific comments). Further, this paper represents a detailing of one of many approaches that were used
in the DMI challenge, and shows results only compared to the winner of the challenge. The approach
detailed apparently ranked 15t in the competition, and so was beaten by 14 other approaches. There is
no discussion around this, no discussion on why a reader should care to know about one approach that
ranked 15! compared to, say, the 19 other approaches that ranked in the top 20 (14 of which would have
beaten the described method). There is no motivation provided on why knowledge of the authors’
approach should be considered in light of 14 other approaches that beat it in the DMI competition. Do the
authors believe the DMI competition was the best way in which to assess module identification methods
and that the field should adopt the top-scoring methods for this as the state of the art? Do the authors
believe that for the type of networks such as coexpression where their approach was comparable to the
winners, that their approach has broader utility? Where the other top 13 methods similar with respect to
performance across network types?

Specific Comments:

1. The paper is somewhat oddly written in that the methods section contain some methods along with
some results and generally a failure to really describe the methods employed by DMI to compare
methods.Without this the only way to understand the results in the paper is to invest much time
going through the challenge description and the results, and so on. That is a huge burden placed
on the reader. The components necessary to understand the results given in the paper should be
described in the paper, and if there are references that describe fuller details, then that could be
summarized in the methods so that the reader understands what was done and where to go for
more details.(Further details on what is missing are given in the following comments.)

2. The authors given preliminary experiments done in the methods section, which ostensibly drove
some thinking and refining on the approach they ultimately settled on.The preliminary experiments
are not really methods, they are more results. And then there is an “insights gained” section in the
methods, which again is not really a method but rather detail learnings from these earlier results.
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3. While the authors do detail their own module identification process, the way in which the validity of
the modules were assessed is not clearly articulated.What were the criteria set forth by DMI?How
were the genes identified given a GWAS finding?There is error associated with identifying the vast
majority of genes associated with a GWAS finding, so how was this handled?Was an enrichment
score used for genes from GWAS being identified in the module?Was it per disease and combined
over all diseases?Did effect sizes come into play? Etc.There should at least be a summary of this
so that the reader can understand what it means to be able to count a module in the accuracy
score for the competition.But there is nothing on this. The results speak to the paired Bayes factor
that was used to compare methods, but you can’t really understand the appropriateness of that
without have an understanding of the above questions.

4. There is a link to the Synapse platform regarding the challenge, with many scores of pages of
material and then a paper posted on biorxiv that provides details on the challenge and the
findings.But it is not yet peer reviewed, it does not appear to be published yet, and so all of the
missing detail in this present paper simply points to other papers that are not peer reviewed.It’s
again a pretty tall order to ask a reviewer to sift through endless pages of material to understand
the context of a paper they have been asked to review and to then review on top of that papers
upon which the paper they were asked to review is based.

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
No

Competing Interests: | note that | am co-founder and a board member of Sage Bionetworks, the
institution that ran the challenge upon which the results of this paper are based.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.
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