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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Modern manufacturing demands are characterized by high fluctuations with negative impact on resource efficiency. In this 
framework, Industry 4.0 key enabling technologies such as cloud manufacturing enable the sharing of distributed resources for 
effective use at industrial network level. In this work, an intelligent cloud manufacturing platform is proposed to increase resource 
efficiency in a manufacturing network through dynamic sharing of manufacturing services, including computational, software as 
well as physical manufacturing resources, that can be offered on demand according to a service-oriented paradigm. The cloud-
based platform includes a database module where user input data are collected, an intelligent module for data processing, 
optimization and feasible solutions generation, and a decision support module for solutions evaluation and comparison. A case 
study demonstrates technical and economic advantages for industrial resource efficiency improvement. 
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1. Introduction 

Modern manufacturing industry is exposed to high 
competitiveness at global scale and largely variable demands, 
which negatively affect manufacturing resource efficiency.  

The efficient use of manufacturing resources can be 
effectively promoted by Industry 4.0 key enabling technologies 
(KETs) like Cloud Manufacturing (CM). The latter represents 
an extension of cloud computing with the aim to provide on-
demand manufacturing services to several industrial users 
according to a service-oriented paradigm [1, 2]. At the 
industrial network level, the full-scale sharing and on-demand-
use of distributed computational, software, digital and physical 
manufacturing resources via cloud manufacturing allows to 
create smart manufacturing networks with improved resource 
efficiency, higher productivity and utilization rates [2, 3].  

 

Through the cloud, users can get ubiquitous access to smart 
machines, production systems, as well as big amounts of data 
generated by different sources, including other users, sensor 
systems and intelligent computation [3]. 

However, to realize the cloud manufacturing paradigm, 
there are still open research gaps including the development of 
cloud-based platforms, proper interfaces for production 
systems/users, service-oriented delivery of automation utilities. 

In the recent literature, innovative cloud manufacturing 
solutions have been proposed for a wide range of applications 
such as production planning, monitoring, control, management 
and design [4–6]. In [7], based on the use of sensor networks 
on the shop floor, information fusion technique and data 
communication through the internet, a cloud-based approach is 
employed for assigning jobs to the available CNC machines. A 
service-oriented cloud-based approach is proposed in [8] for 
adaptive process planning based on the collection and 
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and design [4–6]. In [7], based on the use of sensor networks 
on the shop floor, information fusion technique and data 
communication through the internet, a cloud-based approach is 
employed for assigning jobs to the available CNC machines. A 
service-oriented cloud-based approach is proposed in [8] for 
adaptive process planning based on the collection and 



234	 Alessandro Simeone  et al. / Procedia CIRP 79 (2019) 233–238
 A. Simeone et al. / Procedia CIRP 00 (2018) 000–000 

processing of data on machine tools status, specifications and 
availability. In [9], a web-based service-oriented system is 
developed for distributed machining process planning in a 
decentralized and dynamic manufacturing environment   
characterized by unpredictable shop-floor changes and 
network-wide accessibility to manufacturing services.  

In the present work, an intelligent cloud manufacturing 
platform is proposed to realize a smart manufacturing network 
with increased resource efficiency, allowing the dynamic 
sharing of manufacturing services. The latter can be offered on 
demand according to a service-oriented paradigm, so that 
convenient sharing of a variety of distributed manufacturing 
resources is realized in a dynamic way based on the actual user 
needs. In this framework, different users are enabled to search 
and request from the manufacturing cloud the services needed 
to fulfill the required manufacturing tasks and dynamically 
assemble them into a manufacturing service solution. Via 
cloud, both physical and computational resources are offered in 
the network, including physical machine tools, data storage and 
intelligent computation algorithms for decision-making.  

The employment of such cloud manufacturing platform 
represents an advantage for manufacturing service customers, 
that will get access to a wider resource network with many 
solutions for their tasks, as well as for manufacturing service 
suppliers, that will be able to get new jobs and increase their 
resource efficiency. A case study involving the implementation 
of the cloud manufacturing platform to sheet metal cutting 
services is employed to demonstrate the technical and economic 
advantages for industrial resource efficiency improvement.  

2. Cloud Manufacturing Framework 

The cloud manufacturing framework developed in this 
research work to enable the sharing of distributed resources for 
effective use at industrial network level is illustrated in Fig. 1. 

Distributed manufacturing resources offered by different 
suppliers within the manufacturing network are dynamically 
shared with users connected via Internet to the cloud platform. 

 

 
Fig. 1. Cloud manufacturing framework for smart manufacturing networks. 

Fig. 2. Cloud platform modules and tasks. 
 

 
Fig. 3. Customer instance data entry GUI. 

 
The cloud platform collects the manufacturing services 

requests from customers and the offers from suppliers and 
processes them via intelligent decision-making algorithms to 
find the best manufacturing solution according to the user 
needs. To perform these tasks, the platform includes a database 
module where user input data are collected, an intelligent 
module for data processing, optimization and feasible solutions 
generation, and a decision support module for solutions 
evaluation and comparison (Fig. 1).  

To collect the information from the users into the database, 
a cloud user interface is provided. The tasks carried out at the 
cloud user interface level, the cloud compatibility assessment 
and optimization module and the cloud decision-making 
support module level are illustrated in Fig. 2. The cloud 
platform presented here refers to sheet metal cutting services. 

3. Cloud User Interface  

A graphic user interface (GUI) is created to enable users to 
create a personal profile and entry instance data into the cloud 
platform. Two types of instances can be provided to the cloud: 
customer instance and supplier instance. A screenshot of the 
GUI for customer instance data entry is shown in Fig. 3. 

In the proposed system, based on cloud technology, each 
user will have a “personal” space secured by a personal and 
unique certificate (SSL). The certificate will be created during 
the account process and the certificate key will be sent to the 
user automatically and not kept on the system. If the key gets 
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lost, no one will have access to the data. The system is 
characterized by a double authentication, i.e. Certificate, 
Login/Password and Confirmation code. From the personal 
space, all aggregated information will be transferred to the 
system according to an internal ID number with encrypted user 
personal details (e.g. location, technology, part details, etc.).  

3.1. Customer Instance 

A generic customer instance is made of the following fields: 

𝐶𝐶𝑖𝑖 = {𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐, 𝑄𝑄𝑐𝑐𝑐𝑐, 𝑡𝑡𝑐𝑐𝑐𝑐, 𝑚𝑚𝑐𝑐𝑐𝑐, 𝑇𝑇𝑐𝑐𝑐𝑐 , 𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐, 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐, 𝐿𝐿𝑐𝑐𝑐𝑐} (1) 

where 𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐  is the unique instance identification number, 
generated automatically by the system, 𝑄𝑄𝑐𝑐𝑐𝑐  is the batch quantity 
(units), 𝑡𝑡𝑐𝑐𝑐𝑐  is the thickness (mm), 𝑚𝑚𝑐𝑐𝑐𝑐  is the material (chosen 
from a drop-down list), 𝑇𝑇𝑐𝑐𝑐𝑐 is the cutting technology (from a 
drop-down list, with the option of choosing none), 𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐  is the 
customer deadline (dd-mmm-yyyy date format), 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐  is the 
CAD file (in .dxf format) containing geometrical information 
(size and shape) as well as tolerances, and 𝐿𝐿𝑐𝑐𝑐𝑐  is the customer 
location. The system will select the most severe tolerance: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐 = min
𝐶𝐶𝐶𝐶𝐶𝐶

(𝑇𝑇𝑇𝑇𝑇𝑇(𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐)) ⁡ (2) 

3.2. Supplier Instance 

A generic supplier instance is made of the following fields: 

𝑆𝑆𝑖𝑖 = {𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠, 𝑄𝑄𝑠𝑠𝑠𝑠, 𝑀𝑀𝑠𝑠𝑠𝑠, 𝑚𝑚𝑠𝑠𝑠𝑠, 𝑡𝑡𝑠𝑠𝑠𝑠, 𝐴𝐴𝑠𝑠𝑠𝑠, 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠, 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠, 𝐿𝐿𝑠𝑠𝑠𝑠} (3) 

where 𝑀𝑀𝑠𝑠𝑠𝑠  represents a specific machine tool, including 
information on the machine model, technology, tolerance, 
power consumption, cutting parameters, kerf width, 
availability factor and scrap rate. 𝐴𝐴𝑠𝑠𝑠𝑠  is the metal sheet size 
([Width (W), Height (H)], mm), 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 is the CAD file (.dxf 
format) of supplier Jobs to be carried out by the deadline and 
𝐿𝐿𝑠𝑠𝑠𝑠 is the supplier location. 

Fig. 4. Compatibility assessment flow chart 

4. Cloud Intelligent Assessment and Optimization Module 

The objective of the cloud platform is to assess the 
compatibility of customer and supplier instances and generate 
a number of suitable solutions using an intelligent optimization 
algorithm as illustrated in Fig. 4. In this section, the functional 
and geometrical compatibility and optimization engines are 
discussed, and the various cost functions are presented. 

4.1. Functional compatibility Engine 

Customer and supplier instances created via cloud user 
interface are subject to a first matching procedure to evaluate 
their compatibility. The Functional Compatibility indicator 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 between a single Customer Instance 𝐶𝐶𝑖𝑖 and a single 
Supplier Instance 𝑆𝑆𝑗𝑗 is a Boolean variable defined as: 

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = {0 Non⁡compatible
1 Compatible  (4) 

The functional compatibility is assessed by verifying a 
number of conditions to be satisfied simultaneously:  

 Deadline: the supplier deadline should not succeed the 
customer deadline: 𝑖𝑖𝑖𝑖⁡𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 ≻ 𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐 → 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 0 

 Material and thickness: the customer instance material 
and thickness should be equal to the supplier ones: 
𝑖𝑖𝑖𝑖⁡𝑚𝑚𝑐𝑐𝑐𝑐 ∨ 𝑡𝑡𝑐𝑐𝑐𝑐 ≠ 𝑚𝑚𝑠𝑠𝑠𝑠 ∨ 𝑡𝑡𝑠𝑠𝑠𝑠 → 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 0 

 Technology: when specified by the customer, it should 
match exactly the technology offered by the supplier: 
𝑖𝑖𝑖𝑖⁡𝑇𝑇𝑐𝑐𝑐𝑐 ≠ 𝑇𝑇(𝑀𝑀𝑠𝑠𝑠𝑠) → 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 0 

 Tolerances: the technological characteristics of the 
Supplier instance should satisfy the tolerances defined 
by the Customer: 𝑖𝑖𝑖𝑖⁡𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠 > 𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐 → 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 0 

When the customer does not specify the technology (𝑇𝑇𝑐𝑐𝑐𝑐 =
∅), a technology compatibility assessment is carried out using 
materials, thickness and tolerances. In all other cases 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 1. 

4.2. Geometrical compatibility and optimization Engine 

Once the functional compatibility has been verified, the 
compatible pairs of instances are inputted to the Geometrical 
compatibility and optimization engine. In this step, the 
objective is to generate a number of suitable solutions based on 
the geometrical requirements. This procedure is configurable 
as a cutting stock problem (CSP) [10], where the problem input 
is given by a set of item sizes (products) and demands, and by 
a set of master metal sheets of given dimensions. The task is to 
define a cutting pattern in order to minimize the total number 
of master metal sheets used to produce the required items [11]. 

The cloud platform utilizes a Genetic Algorithm (GA) based 
optimization system [12, 13]. The genetic algorithm aims at 
finding a solution in terms of number of items to be placed in 
each metal sheet and their rotation. The items are subsequently 
arranged within the metal sheet so as to avoid fragmenting the 
available remaining surface to allow for a better utilization 
[14].  

In this respect, the adopted strategy is the finite bottom-left 
(FBL) [15]. The algorithm initially sorts the items by non-
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processing of data on machine tools status, specifications and 
availability. In [9], a web-based service-oriented system is 
developed for distributed machining process planning in a 
decentralized and dynamic manufacturing environment   
characterized by unpredictable shop-floor changes and 
network-wide accessibility to manufacturing services.  

In the present work, an intelligent cloud manufacturing 
platform is proposed to realize a smart manufacturing network 
with increased resource efficiency, allowing the dynamic 
sharing of manufacturing services. The latter can be offered on 
demand according to a service-oriented paradigm, so that 
convenient sharing of a variety of distributed manufacturing 
resources is realized in a dynamic way based on the actual user 
needs. In this framework, different users are enabled to search 
and request from the manufacturing cloud the services needed 
to fulfill the required manufacturing tasks and dynamically 
assemble them into a manufacturing service solution. Via 
cloud, both physical and computational resources are offered in 
the network, including physical machine tools, data storage and 
intelligent computation algorithms for decision-making.  

The employment of such cloud manufacturing platform 
represents an advantage for manufacturing service customers, 
that will get access to a wider resource network with many 
solutions for their tasks, as well as for manufacturing service 
suppliers, that will be able to get new jobs and increase their 
resource efficiency. A case study involving the implementation 
of the cloud manufacturing platform to sheet metal cutting 
services is employed to demonstrate the technical and economic 
advantages for industrial resource efficiency improvement.  

2. Cloud Manufacturing Framework 

The cloud manufacturing framework developed in this 
research work to enable the sharing of distributed resources for 
effective use at industrial network level is illustrated in Fig. 1. 

Distributed manufacturing resources offered by different 
suppliers within the manufacturing network are dynamically 
shared with users connected via Internet to the cloud platform. 

 

 
Fig. 1. Cloud manufacturing framework for smart manufacturing networks. 

Fig. 2. Cloud platform modules and tasks. 
 

 
Fig. 3. Customer instance data entry GUI. 

 
The cloud platform collects the manufacturing services 

requests from customers and the offers from suppliers and 
processes them via intelligent decision-making algorithms to 
find the best manufacturing solution according to the user 
needs. To perform these tasks, the platform includes a database 
module where user input data are collected, an intelligent 
module for data processing, optimization and feasible solutions 
generation, and a decision support module for solutions 
evaluation and comparison (Fig. 1).  

To collect the information from the users into the database, 
a cloud user interface is provided. The tasks carried out at the 
cloud user interface level, the cloud compatibility assessment 
and optimization module and the cloud decision-making 
support module level are illustrated in Fig. 2. The cloud 
platform presented here refers to sheet metal cutting services. 

3. Cloud User Interface  

A graphic user interface (GUI) is created to enable users to 
create a personal profile and entry instance data into the cloud 
platform. Two types of instances can be provided to the cloud: 
customer instance and supplier instance. A screenshot of the 
GUI for customer instance data entry is shown in Fig. 3. 

In the proposed system, based on cloud technology, each 
user will have a “personal” space secured by a personal and 
unique certificate (SSL). The certificate will be created during 
the account process and the certificate key will be sent to the 
user automatically and not kept on the system. If the key gets 
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lost, no one will have access to the data. The system is 
characterized by a double authentication, i.e. Certificate, 
Login/Password and Confirmation code. From the personal 
space, all aggregated information will be transferred to the 
system according to an internal ID number with encrypted user 
personal details (e.g. location, technology, part details, etc.).  

3.1. Customer Instance 

A generic customer instance is made of the following fields: 

𝐶𝐶𝑖𝑖 = {𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐, 𝑄𝑄𝑐𝑐𝑐𝑐, 𝑡𝑡𝑐𝑐𝑐𝑐, 𝑚𝑚𝑐𝑐𝑐𝑐, 𝑇𝑇𝑐𝑐𝑐𝑐 , 𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐, 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐, 𝐿𝐿𝑐𝑐𝑐𝑐} (1) 

where 𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐  is the unique instance identification number, 
generated automatically by the system, 𝑄𝑄𝑐𝑐𝑐𝑐  is the batch quantity 
(units), 𝑡𝑡𝑐𝑐𝑐𝑐  is the thickness (mm), 𝑚𝑚𝑐𝑐𝑐𝑐  is the material (chosen 
from a drop-down list), 𝑇𝑇𝑐𝑐𝑐𝑐 is the cutting technology (from a 
drop-down list, with the option of choosing none), 𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐  is the 
customer deadline (dd-mmm-yyyy date format), 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐  is the 
CAD file (in .dxf format) containing geometrical information 
(size and shape) as well as tolerances, and 𝐿𝐿𝑐𝑐𝑐𝑐  is the customer 
location. The system will select the most severe tolerance: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐 = min
𝐶𝐶𝐶𝐶𝐶𝐶

(𝑇𝑇𝑇𝑇𝑇𝑇(𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐)) ⁡ (2) 

3.2. Supplier Instance 

A generic supplier instance is made of the following fields: 

𝑆𝑆𝑖𝑖 = {𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠, 𝑄𝑄𝑠𝑠𝑠𝑠, 𝑀𝑀𝑠𝑠𝑠𝑠, 𝑚𝑚𝑠𝑠𝑠𝑠, 𝑡𝑡𝑠𝑠𝑠𝑠, 𝐴𝐴𝑠𝑠𝑠𝑠, 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠, 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠, 𝐿𝐿𝑠𝑠𝑠𝑠} (3) 

where 𝑀𝑀𝑠𝑠𝑠𝑠  represents a specific machine tool, including 
information on the machine model, technology, tolerance, 
power consumption, cutting parameters, kerf width, 
availability factor and scrap rate. 𝐴𝐴𝑠𝑠𝑠𝑠  is the metal sheet size 
([Width (W), Height (H)], mm), 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 is the CAD file (.dxf 
format) of supplier Jobs to be carried out by the deadline and 
𝐿𝐿𝑠𝑠𝑠𝑠 is the supplier location. 

Fig. 4. Compatibility assessment flow chart 

4. Cloud Intelligent Assessment and Optimization Module 

The objective of the cloud platform is to assess the 
compatibility of customer and supplier instances and generate 
a number of suitable solutions using an intelligent optimization 
algorithm as illustrated in Fig. 4. In this section, the functional 
and geometrical compatibility and optimization engines are 
discussed, and the various cost functions are presented. 

4.1. Functional compatibility Engine 

Customer and supplier instances created via cloud user 
interface are subject to a first matching procedure to evaluate 
their compatibility. The Functional Compatibility indicator 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 between a single Customer Instance 𝐶𝐶𝑖𝑖 and a single 
Supplier Instance 𝑆𝑆𝑗𝑗 is a Boolean variable defined as: 

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = {0 Non⁡compatible
1 Compatible  (4) 

The functional compatibility is assessed by verifying a 
number of conditions to be satisfied simultaneously:  

 Deadline: the supplier deadline should not succeed the 
customer deadline: 𝑖𝑖𝑖𝑖⁡𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 ≻ 𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐 → 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 0 

 Material and thickness: the customer instance material 
and thickness should be equal to the supplier ones: 
𝑖𝑖𝑖𝑖⁡𝑚𝑚𝑐𝑐𝑐𝑐 ∨ 𝑡𝑡𝑐𝑐𝑐𝑐 ≠ 𝑚𝑚𝑠𝑠𝑠𝑠 ∨ 𝑡𝑡𝑠𝑠𝑠𝑠 → 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 0 

 Technology: when specified by the customer, it should 
match exactly the technology offered by the supplier: 
𝑖𝑖𝑖𝑖⁡𝑇𝑇𝑐𝑐𝑐𝑐 ≠ 𝑇𝑇(𝑀𝑀𝑠𝑠𝑠𝑠) → 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 0 

 Tolerances: the technological characteristics of the 
Supplier instance should satisfy the tolerances defined 
by the Customer: 𝑖𝑖𝑖𝑖⁡𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠 > 𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐 → 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 0 

When the customer does not specify the technology (𝑇𝑇𝑐𝑐𝑐𝑐 =
∅), a technology compatibility assessment is carried out using 
materials, thickness and tolerances. In all other cases 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 1. 

4.2. Geometrical compatibility and optimization Engine 

Once the functional compatibility has been verified, the 
compatible pairs of instances are inputted to the Geometrical 
compatibility and optimization engine. In this step, the 
objective is to generate a number of suitable solutions based on 
the geometrical requirements. This procedure is configurable 
as a cutting stock problem (CSP) [10], where the problem input 
is given by a set of item sizes (products) and demands, and by 
a set of master metal sheets of given dimensions. The task is to 
define a cutting pattern in order to minimize the total number 
of master metal sheets used to produce the required items [11]. 

The cloud platform utilizes a Genetic Algorithm (GA) based 
optimization system [12, 13]. The genetic algorithm aims at 
finding a solution in terms of number of items to be placed in 
each metal sheet and their rotation. The items are subsequently 
arranged within the metal sheet so as to avoid fragmenting the 
available remaining surface to allow for a better utilization 
[14].  

In this respect, the adopted strategy is the finite bottom-left 
(FBL) [15]. The algorithm initially sorts the items by non-
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increasing width. The current item is then packed in the lowest 
position of any initialized bin, left justified; if no bin can 
accommodate it, a new one is initialized [16]. 

Additional constraints are applied to the items spacing, 
specifically: the distance between the metal sheet edge and 
each item is equal to the kerf width related to the machine in 
consideration. The space between two items is equal to 2 x kerf 
width (the kerf width is provided as a machine tool attribute). 

If the GA is not able to find a solution, it means that the 
current Customer Instance 𝐶𝐶𝑖𝑖  doesn’t have enough available 
surface for the current Supplier Instance 𝑆𝑆𝑗𝑗, hence the instances 
are not compatible. If the GA converges to a solution, it will 
generate a number of geometrical configurations of metal 
sheets that allow for the realization of the customer batch of 
items 𝐶𝐶𝑖𝑖 within the supplier batch 𝑆𝑆𝑗𝑗.  

Each generated configuration is characterized by a Surface 
Utilization Rate, 𝜂𝜂𝑖𝑖𝑖𝑖, defined as the ratio of the utilized area and 
the total metal sheets area, as reported in Eq. 5 

𝜂𝜂𝑖𝑖𝑖𝑖 =
∑(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠) + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐))

∑𝐴𝐴𝑠𝑠𝑠𝑠 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛⁡𝑜𝑜𝑜𝑜⁡𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (5) 

The Surface Utilization Rate should be maximized to reduce 
the scrap surface related to the metal cutting instance. Solutions 
are ranked in a descending order according to 𝜂𝜂𝑖𝑖𝑖𝑖. 

A limitation to this approach is represented by the locality 
of the optimum solution [11]. To tackle this issue, it is possible 
to empirically set the algorithm parameters as well as adopt a 
parallel algorithm strategy [17, 18]. 

 
4.3. Energy consumption cost function 

The energy consumption cost 𝐸𝐸𝑖𝑖𝑖𝑖  is calculated based on 
unitary energy cost, machine average power and cutting time.  

To estimate the cutting time, the cutting speed, 𝑣𝑣𝑐𝑐 , is 
calculated based on the machine tool type. As regards the laser 
cutting speed, it is computed on the basis of the experimental 
curves, available from the database, which are a power function 
of the workpiece thickness, expressed as follows [19]: 

𝑣𝑣𝑐𝑐 = 𝛼𝛼𝑡𝑡𝑠𝑠𝑠𝑠𝛽𝛽 (6) 

Where 𝛼𝛼 and 𝛽𝛽 depend on the laser type (e.g. CO2, Fiber, 
etc.) and power (e.g. 3000 W, 5000 W, etc.) as well as on the 
workmaterial (e.g. stainless steel, carbon steel, copper, etc.) 
and their values will be available in the cloud database. 

As regards the waterjet cutting speed, it is calculated based 

on workpiece material and thickness, water pressure, orifice 
size, focus tube diameter, abrasive material and rate [19]. 

The Cutting Time is then computed as the ratio of the total 
cutting length, i.e. the length of the path required to cut the part 
geometry, and the cutting speed, taking into account the 
machine availability factor as shown in Eq. 7. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶⁡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇⁡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶⁡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⁡ × 𝑣𝑣𝑐𝑐

 (7) 

Hence, the energy consumption is calculated by multiplying 
the average machine power by the cutting time, and the final 
energy consumption cost is obtained by multiplying the energy 
consumption by the local unitary energy cost. 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈⁡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸⁡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸⁡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.× 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶⁡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (8) 

4.4. Distance cost function 

The transportation costs can be modelled by introducing a 
distance related cost 𝐷𝐷𝑖𝑖𝑖𝑖, to be calculated for each instance pair 
based on the customer and supplier locations 𝐿𝐿𝑠𝑠𝑠𝑠  and 𝐿𝐿𝑐𝑐𝑐𝑐  
(utilizing a distance cost coefficient 𝛿𝛿𝐷𝐷 ). The distance 
computation, along with an estimation of costs can be obtained 
using third party modules [20, 21]. Solutions are ranked in a 
descending order according to 𝐷𝐷𝑖𝑖𝑖𝑖 . 

𝐷𝐷𝑖𝑖𝑖𝑖 = 𝛿𝛿𝐷𝐷‖𝐿𝐿𝑠𝑠𝑠𝑠 − 𝐿𝐿𝑐𝑐𝑐𝑐‖ (9) 

4.5. User rating  

Customers and Suppliers can be endowed with a score, 
respectively 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑗𝑗, related to their reputation and historical 
quality feedback. Each solution can be weighted according to 
the supplier rating and therefore ranked in descending order. 

5. Cloud Decision-Making Support Module 

The Cloud Decision-Making Support Module provides final 
recommendations for users to identify an appropriate match for 
the realization of the desired products. The compatible 
solutions generated at the cloud level are ranked according to 
total utilization rate (%), energy consumption cost (CNY), 
distance (km) and rating. 

 
Table 1. Case study suppliers table 

 Suppliers 
 𝑺𝑺𝟏𝟏 𝑺𝑺𝟐𝟐 𝑺𝑺𝟑𝟑 
Model TruLaser 3030 3200 W Flow Mach 500 TruLaser 3040 4000 W TruLaser 3030 fiber 4000 W 
Technology Laser  Waterjet Laser Laser 
Laser Type CO2 - CO2 Fiber 
Laser Power (W) 3200 W - 4000 W 4000 W 
Max Dimension (mm) 1500 x 3000 1500 x 3000 2000 x 4000 1500 x 3000 
Power (kW) 29 35 31 14 
Materials SST CS Al SST CS Al Cu Brass SST CS Al SST CS Al Cu Brass 

Thickness (mm) Min 0.5 0.5 0.5 2.5 2.5 2.5 2.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Max  12.7 20 8 300 300 300 300 300 26 20 10 20 25 20 8 8 

Kerf width (mm) 1 1.2 1 1 
Availability (%) 90 90 90 90 
Scrap rate (%) 5 5 5 5 
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The solutions report is organized in a summary table for ease 
of use, where the rows represent the compatible solutions and 
the columns represent the various parameters listed above. 

The users will select the best solution according to their 
requirements and an instance match is created upon the 
agreement by both parts on price and delivery details. 

The outcome will be sent directly to the cloud user 
according to a preferred path (i.e. email, SMS or Web Service). 

5.1. Instance agreement and new users  

Once both users have agreed on an instance match, the 
platform will update 𝑆𝑆𝑗𝑗  with the inclusion of the 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐  data. 
The updated 𝑆𝑆𝑗𝑗is then stored in the cloud database. 

Starting from the agreement date, and until the deadline date 
𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 , there can exist new user(s) who can fit their 𝐶𝐶𝑖𝑖  in the 
updated 𝑆𝑆𝑗𝑗 as illustrated in the loop in Fig. 3. 

In this scenario, the potential final surface utilization rate 
will be increased given the higher initial 𝜂𝜂𝑖𝑖𝑖𝑖, on the other hand, 
there will be less probability to geometrically compatible as the 
new available area will be smaller. 

6. Case Study 

To exemplify the proposed framework, a case study 
including a single customer and three suppliers is reported. 

The machine details specified by the suppliers and stored in 
the cloud database are reported in Table 1. The allowed metal 
sheet materials include Stainless Steel (SST), Carbon Steel 
(CS), Copper (Cu), Aluminum (Al) and Brass. The customer 
and suppliers’ instances are reported in Tab. 2-3, respectively. 

Table 2. Customer Instance 

𝑰𝑰𝑰𝑰𝒄𝒄𝒄𝒄, 𝑸𝑸𝒄𝒄𝒄𝒄 𝒎𝒎𝒄𝒄𝒄𝒄 𝒕𝒕𝒄𝒄𝒄𝒄, 𝑻𝑻𝒄𝒄𝒄𝒄, 𝑫𝑫𝑫𝑫𝒄𝒄𝒄𝒄 𝑳𝑳𝒄𝒄𝒄𝒄 𝑪𝑪𝑪𝑪𝑪𝑪𝒄𝒄𝒄𝒄 

C1 600 Al 6 Laser 28-
Jun 

2018 

Shantou  
(China) 

 

Table 3. Suppliers Instances  

𝑰𝑰𝑰𝑰𝒔𝒔𝒔𝒔, 𝑸𝑸𝒔𝒔𝒔𝒔 𝑴𝑴𝒔𝒔𝒔𝒔 𝒎𝒎𝒔𝒔𝒔𝒔 𝒕𝒕𝒔𝒔𝒔𝒔, 𝑨𝑨𝒔𝒔𝒔𝒔, 𝑫𝑫𝑫𝑫𝒔𝒔𝒔𝒔 𝑳𝑳𝒔𝒔𝒔𝒔 𝑪𝑪𝑪𝑪𝑪𝑪𝒔𝒔𝒔𝒔 

S1M1 1500 TL3030 Al 8 1500 
x 

3000 

29-
Jun 

2018 

Shenzhen 
(China) 

 

S1M2 2000 FM500 Brass 10 1500 
x 

3000 

10-
Jul-

2018 

Shenzhen 
(China) 

 

S2M1 1000 TL3040 Al 6 2000 
x 

3000 

25-
Jun 

2018 

Jieyang 
(China) 

 

S3M1 1200 TL3030 Al 6 1500 
x 

3000 

21-
Jun 

2018 

Chaozhou 
(China) 

 

 

For this case study, the following assumptions were 
considered: 
 All the items are represented by rectangles and no 

complex geometries are involved. 
 All the suppliers have the same rating, to equalize the 

rating ranking. 
 All tolerances defined by the customer are perfectly 

compatible with the tolerances provided by the suppliers’ 
machines. 

 The metal sheets availability is to be considered 
unlimited for all the suppliers. 

 The energy cost was set to 0.8901 CNY/kWh for all the 
suppliers [22]. 

 In the deadline formulation, the transportation and 
delivery time was not taken into account. 

With reference to the customer instance C1, the functional 
compatibility engine rejected the supplier instance S1M1 as the 
thickness and deadline were not compatible with the customer 
instance. Similarly, instance S1M2 was rejected because of non-
compatibility of technology, thickness and deadline. 
Consequently, the geometrical compatibility and optimization 
engine was applied only to instances S2M1 and S3M1. 

In this work, the genetic algorithm was configured utilizing 
a population size of 500, 2 genes (representing the item 
inclusion and rotation, respectively) and a maximum number 
of generations equal to 100. The permutation probability was 
set to 0.5 and the crossover probability was set to 0.5 [23, 24].  

The energy consumption cost for all the instance pairs was 
computed according to Eq. 8. The distance computation was 
carried out utilizing third party software, namely Baidu Maps 
© [21]. The results of the platform computation are reported 
for the two compatible instances in Table 4, in terms of total 
utilization rate, energy consumption cost and supplier-
customer distance. 

A useful way to display the solutions generated by the 
platform is represented by the spider web chart illustrated in 
Fig. 5 which allows for a simultaneous visual comparison. 

Table 4. Table of compatible solutions results 

Instance Total Utilization 
Rate (%) 

Energy Consumption 
Cost (CNY) 

Distance (km) 

M2S1+C1 91.43 1004 37.0 
M3S1+C1 92.30 654 35.3 

 

Fig. 5. Compatible solutions comparison 
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increasing width. The current item is then packed in the lowest 
position of any initialized bin, left justified; if no bin can 
accommodate it, a new one is initialized [16]. 

Additional constraints are applied to the items spacing, 
specifically: the distance between the metal sheet edge and 
each item is equal to the kerf width related to the machine in 
consideration. The space between two items is equal to 2 x kerf 
width (the kerf width is provided as a machine tool attribute). 

If the GA is not able to find a solution, it means that the 
current Customer Instance 𝐶𝐶𝑖𝑖  doesn’t have enough available 
surface for the current Supplier Instance 𝑆𝑆𝑗𝑗, hence the instances 
are not compatible. If the GA converges to a solution, it will 
generate a number of geometrical configurations of metal 
sheets that allow for the realization of the customer batch of 
items 𝐶𝐶𝑖𝑖 within the supplier batch 𝑆𝑆𝑗𝑗.  

Each generated configuration is characterized by a Surface 
Utilization Rate, 𝜂𝜂𝑖𝑖𝑖𝑖, defined as the ratio of the utilized area and 
the total metal sheets area, as reported in Eq. 5 

𝜂𝜂𝑖𝑖𝑖𝑖 =
∑(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠) + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐))

∑𝐴𝐴𝑠𝑠𝑠𝑠 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛⁡𝑜𝑜𝑜𝑜⁡𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (5) 

The Surface Utilization Rate should be maximized to reduce 
the scrap surface related to the metal cutting instance. Solutions 
are ranked in a descending order according to 𝜂𝜂𝑖𝑖𝑖𝑖. 

A limitation to this approach is represented by the locality 
of the optimum solution [11]. To tackle this issue, it is possible 
to empirically set the algorithm parameters as well as adopt a 
parallel algorithm strategy [17, 18]. 

 
4.3. Energy consumption cost function 

The energy consumption cost 𝐸𝐸𝑖𝑖𝑖𝑖  is calculated based on 
unitary energy cost, machine average power and cutting time.  

To estimate the cutting time, the cutting speed, 𝑣𝑣𝑐𝑐 , is 
calculated based on the machine tool type. As regards the laser 
cutting speed, it is computed on the basis of the experimental 
curves, available from the database, which are a power function 
of the workpiece thickness, expressed as follows [19]: 

𝑣𝑣𝑐𝑐 = 𝛼𝛼𝑡𝑡𝑠𝑠𝑠𝑠𝛽𝛽 (6) 

Where 𝛼𝛼 and 𝛽𝛽 depend on the laser type (e.g. CO2, Fiber, 
etc.) and power (e.g. 3000 W, 5000 W, etc.) as well as on the 
workmaterial (e.g. stainless steel, carbon steel, copper, etc.) 
and their values will be available in the cloud database. 

As regards the waterjet cutting speed, it is calculated based 

on workpiece material and thickness, water pressure, orifice 
size, focus tube diameter, abrasive material and rate [19]. 

The Cutting Time is then computed as the ratio of the total 
cutting length, i.e. the length of the path required to cut the part 
geometry, and the cutting speed, taking into account the 
machine availability factor as shown in Eq. 7. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶⁡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇⁡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶⁡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⁡ × 𝑣𝑣𝑐𝑐

 (7) 

Hence, the energy consumption is calculated by multiplying 
the average machine power by the cutting time, and the final 
energy consumption cost is obtained by multiplying the energy 
consumption by the local unitary energy cost. 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈⁡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸⁡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸⁡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.× 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶⁡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (8) 

4.4. Distance cost function 

The transportation costs can be modelled by introducing a 
distance related cost 𝐷𝐷𝑖𝑖𝑖𝑖, to be calculated for each instance pair 
based on the customer and supplier locations 𝐿𝐿𝑠𝑠𝑠𝑠  and 𝐿𝐿𝑐𝑐𝑐𝑐  
(utilizing a distance cost coefficient 𝛿𝛿𝐷𝐷 ). The distance 
computation, along with an estimation of costs can be obtained 
using third party modules [20, 21]. Solutions are ranked in a 
descending order according to 𝐷𝐷𝑖𝑖𝑖𝑖 . 

𝐷𝐷𝑖𝑖𝑖𝑖 = 𝛿𝛿𝐷𝐷‖𝐿𝐿𝑠𝑠𝑠𝑠 − 𝐿𝐿𝑐𝑐𝑐𝑐‖ (9) 

4.5. User rating  

Customers and Suppliers can be endowed with a score, 
respectively 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑗𝑗, related to their reputation and historical 
quality feedback. Each solution can be weighted according to 
the supplier rating and therefore ranked in descending order. 

5. Cloud Decision-Making Support Module 

The Cloud Decision-Making Support Module provides final 
recommendations for users to identify an appropriate match for 
the realization of the desired products. The compatible 
solutions generated at the cloud level are ranked according to 
total utilization rate (%), energy consumption cost (CNY), 
distance (km) and rating. 

 
Table 1. Case study suppliers table 

 Suppliers 
 𝑺𝑺𝟏𝟏 𝑺𝑺𝟐𝟐 𝑺𝑺𝟑𝟑 
Model TruLaser 3030 3200 W Flow Mach 500 TruLaser 3040 4000 W TruLaser 3030 fiber 4000 W 
Technology Laser  Waterjet Laser Laser 
Laser Type CO2 - CO2 Fiber 
Laser Power (W) 3200 W - 4000 W 4000 W 
Max Dimension (mm) 1500 x 3000 1500 x 3000 2000 x 4000 1500 x 3000 
Power (kW) 29 35 31 14 
Materials SST CS Al SST CS Al Cu Brass SST CS Al SST CS Al Cu Brass 

Thickness (mm) Min 0.5 0.5 0.5 2.5 2.5 2.5 2.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Max  12.7 20 8 300 300 300 300 300 26 20 10 20 25 20 8 8 

Kerf width (mm) 1 1.2 1 1 
Availability (%) 90 90 90 90 
Scrap rate (%) 5 5 5 5 
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The solutions report is organized in a summary table for ease 
of use, where the rows represent the compatible solutions and 
the columns represent the various parameters listed above. 

The users will select the best solution according to their 
requirements and an instance match is created upon the 
agreement by both parts on price and delivery details. 

The outcome will be sent directly to the cloud user 
according to a preferred path (i.e. email, SMS or Web Service). 

5.1. Instance agreement and new users  

Once both users have agreed on an instance match, the 
platform will update 𝑆𝑆𝑗𝑗  with the inclusion of the 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐  data. 
The updated 𝑆𝑆𝑗𝑗is then stored in the cloud database. 

Starting from the agreement date, and until the deadline date 
𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 , there can exist new user(s) who can fit their 𝐶𝐶𝑖𝑖  in the 
updated 𝑆𝑆𝑗𝑗 as illustrated in the loop in Fig. 3. 

In this scenario, the potential final surface utilization rate 
will be increased given the higher initial 𝜂𝜂𝑖𝑖𝑖𝑖, on the other hand, 
there will be less probability to geometrically compatible as the 
new available area will be smaller. 

6. Case Study 

To exemplify the proposed framework, a case study 
including a single customer and three suppliers is reported. 

The machine details specified by the suppliers and stored in 
the cloud database are reported in Table 1. The allowed metal 
sheet materials include Stainless Steel (SST), Carbon Steel 
(CS), Copper (Cu), Aluminum (Al) and Brass. The customer 
and suppliers’ instances are reported in Tab. 2-3, respectively. 

Table 2. Customer Instance 

𝑰𝑰𝑰𝑰𝒄𝒄𝒄𝒄, 𝑸𝑸𝒄𝒄𝒄𝒄 𝒎𝒎𝒄𝒄𝒄𝒄 𝒕𝒕𝒄𝒄𝒄𝒄, 𝑻𝑻𝒄𝒄𝒄𝒄, 𝑫𝑫𝑫𝑫𝒄𝒄𝒄𝒄 𝑳𝑳𝒄𝒄𝒄𝒄 𝑪𝑪𝑪𝑪𝑪𝑪𝒄𝒄𝒄𝒄 

C1 600 Al 6 Laser 28-
Jun 

2018 

Shantou  
(China) 

 

Table 3. Suppliers Instances  

𝑰𝑰𝑰𝑰𝒔𝒔𝒔𝒔, 𝑸𝑸𝒔𝒔𝒔𝒔 𝑴𝑴𝒔𝒔𝒔𝒔 𝒎𝒎𝒔𝒔𝒔𝒔 𝒕𝒕𝒔𝒔𝒔𝒔, 𝑨𝑨𝒔𝒔𝒔𝒔, 𝑫𝑫𝑫𝑫𝒔𝒔𝒔𝒔 𝑳𝑳𝒔𝒔𝒔𝒔 𝑪𝑪𝑪𝑪𝑪𝑪𝒔𝒔𝒔𝒔 

S1M1 1500 TL3030 Al 8 1500 
x 

3000 

29-
Jun 

2018 

Shenzhen 
(China) 

 

S1M2 2000 FM500 Brass 10 1500 
x 

3000 

10-
Jul-

2018 

Shenzhen 
(China) 

 

S2M1 1000 TL3040 Al 6 2000 
x 

3000 

25-
Jun 

2018 

Jieyang 
(China) 

 

S3M1 1200 TL3030 Al 6 1500 
x 

3000 

21-
Jun 

2018 

Chaozhou 
(China) 

 

 

For this case study, the following assumptions were 
considered: 
 All the items are represented by rectangles and no 

complex geometries are involved. 
 All the suppliers have the same rating, to equalize the 

rating ranking. 
 All tolerances defined by the customer are perfectly 

compatible with the tolerances provided by the suppliers’ 
machines. 

 The metal sheets availability is to be considered 
unlimited for all the suppliers. 

 The energy cost was set to 0.8901 CNY/kWh for all the 
suppliers [22]. 

 In the deadline formulation, the transportation and 
delivery time was not taken into account. 

With reference to the customer instance C1, the functional 
compatibility engine rejected the supplier instance S1M1 as the 
thickness and deadline were not compatible with the customer 
instance. Similarly, instance S1M2 was rejected because of non-
compatibility of technology, thickness and deadline. 
Consequently, the geometrical compatibility and optimization 
engine was applied only to instances S2M1 and S3M1. 

In this work, the genetic algorithm was configured utilizing 
a population size of 500, 2 genes (representing the item 
inclusion and rotation, respectively) and a maximum number 
of generations equal to 100. The permutation probability was 
set to 0.5 and the crossover probability was set to 0.5 [23, 24].  

The energy consumption cost for all the instance pairs was 
computed according to Eq. 8. The distance computation was 
carried out utilizing third party software, namely Baidu Maps 
© [21]. The results of the platform computation are reported 
for the two compatible instances in Table 4, in terms of total 
utilization rate, energy consumption cost and supplier-
customer distance. 

A useful way to display the solutions generated by the 
platform is represented by the spider web chart illustrated in 
Fig. 5 which allows for a simultaneous visual comparison. 

Table 4. Table of compatible solutions results 

Instance Total Utilization 
Rate (%) 

Energy Consumption 
Cost (CNY) 

Distance (km) 

M2S1+C1 91.43 1004 37.0 
M3S1+C1 92.30 654 35.3 

 

Fig. 5. Compatible solutions comparison 
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Fig. 6. Metal sheets configurations 

Table 5. Utilization rate comparison 

Instance Total Utilization Rate (%) 
M3S1 84.11 
M3S1+C1 92.30 

 
The sheets configurations generated by the GA to realize the 

pair of instances S3M1+C1 are reported in Fig. 6. The red items 
are related to the supplier S3 and the green items are related to 
the customer. The computing time for this solution was 159 s. 

The first configuration consists of 13 sheets containing 87 
supplier items and 45 customer items each, leading to a 
utilization rate of 94.18%. The second configuration consists 
of 1 sheet containing 69 supplier items and 15 customer items 
each, leading to a utilization rate equal to 67.84%. The total 
surface utilization rate for this pair of instances is 92.30 %. 

7. Concluding discussions 

This paper proposed an intelligent cloud manufacturing 
platform to increase computational and physical resource 
efficiency in a manufacturing network through dynamic 
sharing of manufacturing services. An interface module for 
user data input, a cloud-based intelligent module for data 
processing, optimization and feasible solutions generation, and 
a decision support module for solutions evaluation and 
comparison were created. The reported case study related to 
sheet metal cutting services shows how the cloud framework 
improved the utilization rate of the supplier resources (Table 
5). Assuming that the supplier is endowed with a cutting stock 
optimization tool, the utilization rate for the batch would be 
84.11%. By incorporating the customer instance described 
above, the total utilization rate rises to 92.30%. 

Future work will involve the optimization engine 
improvement, including handling of complex geometries, 
addition and modelling of a third type of user (i.e. transporter) 
and the investigation of alternative intelligent algorithms. 
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