

Towards Highly Adaptive Services for Mobile
Computing*

Alessandra Agostini1, Claudio Bettini1, Nicolò Cesa-Bianchi2, Dario
Maggiorini1, Daniele Riboni1, Michele Ruberl3, Cristiano Sala3, and Davide
Vitali1
1DICo, University of Milan, Italy
2DSI, University of Milan, Italy
3B Human Web Factory, Milan, Italy

Abstract: The heterogeneity of device capabilities, network conditions and user contexts
that is associated with mobile computing has emphasized the need for more
advanced forms of adaptation of Internet services. This paper presents a
framework that addresses this issue by managing distributed profile
information and adaptation policies, solving possible conflicts by means of an
inference engine and prioritization techniques. The profile information
considered in the framework is very broad, including user preferences, device
and network capabilities, and user location and context. The framework has
been validated by experiments on the efficiency of the proposed conflict
resolution mechanism, and by the implementation of the main components of
the architecture. The paper also illustrates a specific testbed application in the
context of proximity marketing.

1. INTRODUCTION

The continued growth in the amount of content and the number of
information services available on-line has made effective personalized
content delivery a hot research topic. Considering the increasing capabilities
of mobile infrastructure and device hardware, mobile devices will probably

* This work has been partially supported by Italian MIUR (FIRB "Web-Minds" project

N.RBNE01WEJT_005)

2 Agostini et Al.

become the most common clients for on-line information systems. User-
orientation and personalization in mobile information systems has been
recognized as a major research challenge [20]. Indeed, due to the
heterogeneity of these devices, new aspects should be taken into account for
effective adaptation, among which device capabilities and status (e.g., screen
resolution, battery level, network available bandwidth). Mobility also leads
to a much wider variety of user contexts including but not limited to spatio-
temporal data (e.g., location, speed, direction), and social setting situations
(e.g., business meeting, home, shopping). If known by the service provider,
this data can be extremely valuable for adapting content delivery. In our
framework, we extend the notion of profile data to include all the
information that can contribute to achieve an effective adaptation.

Current approaches to mobile oriented adaptation are still quite limited.
In most cases, they are technically based on transcoding, and conceptually
based on the assumption that device capabilities can be deduced by the
HTTP request headers. Moreover, most approaches assume that user profile
data is available server-side. We believe that, despite a lot of information can
be gathered server-side, either explicitly given by the user or deduced by
historical data on interactions with the same user, this information cannot
include many of the relevant aspects we have mentioned above. In our view,
profile data is naturally distributed and should not be forced to be stored and
managed only server-side. In our framework, each source of profile data
(e.g., user, network operator, service provider) has an associated trusted
profile manager, which is typically running on a wired infrastructure, and
that can communicate with other profile managers. Hence, profile data can
be stored and managed locally and selectively made available to service
providers. It is the responsibility of service providers to access the portion of
profile data needed for the services they are delivering. User profile data can
be made available to a new service provider by simply allowing access to the
user profile manager. This model, by storing and managing profile data at
the source, also avoids consistency problems upon updates of profile
attributes (consider e.g., spatio-temporal or social setting information). Upon
each user request the service provider profile manager is responsible for
querying the necessary profile managers and aggregating profile data. This
task includes solving conflicts due to different values provided by different
entities for the same attribute. The introduction of profile managers also
implies the adoption of a standard formalism for the representation of profile
data, enabling the interoperability among the various entities.

In order to achieve enhanced personalization, our framework also allows
users and service providers to augment the profile attributes with policies;
that is, rules that set or change certain profile attributes based on the current
values of other profile attributes. Clearly, the introduction of policies makes

Towards Highly Adaptive Services for Mobile Computing 3

it possible to have, once more, conflicting attribute values, even considering
only policies from the same entity (service provider or user). For this reason,
the policy evaluation mechanism defined by the framework includes a quite
involved conflict resolution technique.

The main contribution of this paper is the presentation of the architecture
of our framework, first from a logical point of view, and then from an
implementation point of view, in terms of a software architecture. Finally, in
this paper we present a test case with an adaptive proximity marketing
application used to validate our prototype on a real domain. A theoretical
and experimental study on the soundness and efficiency of our conflict
resolution mechanism has also been performed that validates our approach in
terms of performance and scalability, but details are beyond the scope of this
paper. For lack of space, we cannot include in this paper the discussion of
two relevant issues: ’intra-session’ adaptation, and privacy. We just mention
here that we devised a distributed trigger mechanism for the former, and
adopt access control techniques [3, 16] for the latter.

The rest of the paper is structured as follows: In the following section we
give an overview of the framework logical architecture illustrating the
formalism used to represent profiles and policies, the role of the main
modules and the techniques used for conflict resolution. In Section 3 we
illustrate how each component of the logical architecture has been
implemented in the corresponding software architecture. Section 4 presents a
testbed application used to demonstrate the system prototype. Section 5
discusses related work and Section 6 presents future research directions.

2. ARCHITECTURE

In this section we describe the logical architecture of our framework,
starting with a list of requirements that have driven the design process. We
then present its main components as well as the issues related to profile and
policy representation and management.

2.1 Requirements

Based on an analysis of a large spectrum of Internet services that would
benefit from adaptation, of the data required for implementing highly
adaptive services, of the infrastructure that is available now and will
available in the near future, as well as of the issues of data privacy and
accessibility, we have identified the following set of requirements. (i) A
representation formalism is needed for the specification of a very broad set
of profile data, which integrates device capabilities with spatio-temporal

4 Agostini et Al.

context, device and network status, as well as user preferences and
semantically rich context; (ii) A representation formalism is needed for the
specification of policies, which can dynamically determine the value of some
profile data or presentation directives based on other values, possibly
provided by different entities; (iii) Vocabularies and/or ontologies should be
defined in order for different entities to share terms for the specification of
profile attributes; (iv) The architecture should support the distributed storage
and management of profiles and policies, with information stored and
managed close to its source; (v) The architecture should provide a
mechanism to aggregate profile data and policies from different sources,
supporting a flexible and fine-grained conflict resolution mechanism; (vi)
The architecture should rely on an advanced system for privacy protection
which allows the user to precisely control the partial sharing of his profile
data; (vii) The architecture should provide a configurable mechanism for
’intra-session’ adaptation based on real-time update of certain profile data
(e.g., location).

Clearly, efficiency should be taken into account when evaluating
different solutions, even if efficiency requirements may vary based on the
considered service.

2.2 Architecture Overview

The specification and implementation of a full-fledged architecture
satisfying all the requirements illustrated above is a long-term goal. The
contribution illustrated in this paper is a first step in this direction. We
present an architecture where three main entities are involved in the task of
building an aggregated profile, namely: the user with his devices (called user
in the rest of the paper), the network operator with its infrastructure (called
operator), and the service provider with its own infrastructure. A Profile
Manager devoted to manage profile data and policies is associated with each
entity and will be called UPM, OPM, and SPPM, respectively. In particular,
(i) The UPM stores information related to the user and his devices. These data
include, among other things, personal information, interests, context
information, and device capabilities. The UPM also manages policies defined
by the user, which describe the content and the presentation he wants to
receive under particular conditions; (ii) The OPM is responsible for managing
attributes describing the current network context (e.g., location, connection
profile, and network status); (iii) The SPPM is responsible for managing
service provider proprietary data including information about users derived
from previous service experiences. Clearly, the architecture, including
conflict resolution mechanisms, has been designed to handle an arbitrary
number of entities (e.g., profile managers owning context services).

Towards Highly Adaptive Services for Mobile Computing 5

OPERATOR
1 1

3

USER

POLICIES PROFILE

INTERNET
 SERVER

 LOGS CONTENT

APPLICATION
 LOGICCRM

6

7 7

UPM

 IE
 MERGE

2
3

4

5

 PROFILE POLICIES

PROVIDER
SERVICE

OPM

SPPM

Figure 1. Architecture overview and data flow upon a user request

Figure 1 provides an overview of the proposed architecture. We illustrate
the system behavior by describing the main steps involved in a service
request: (1) A user issues a request to a service provider through his device
and the connectivity offered by a network operator; (2) The service provider
queries its Profile Manager (SPPM) to retrieve the profile information
needed to perform adaptation; (3) The SPPM queries the UPM and the OPM to
retrieve profile data and user’s policies; (4) The SPPM then forwards
collected and local profile data and policies to the Inference Engine (IE); (5)
The IE first merges profile data; then, it evaluates service provider and user
policies against the merged profile, resolving possible conflicts. The
resulting profile attributes are then returned to the Service Provider; (6)
These attribute values are used by the application logic to properly select
content and customize its presentation; (7) Finally, the formatted content is
sent to the user.

2.3 Profile Management and Aggregation

In the following we explain the mechanism of profile management, and
address the issue of how to aggregate possibly conflicting data in a single
profile.

2.3.1 Profile representation

In order to aggregate profile information, data retrieved from the
different profile managers must be represented using a well defined schema,

6 Agostini et Al.

providing a mean to understand the semantics of the data. For this reason, we
chose to represent profile data using the Composite Capabilities/Preference
Profiles (CC/PP) structure and vocabularies [19]. CC/PP uses the Resource
Description Framework (RDF) to create profiles describing device
capabilities and user preferences. In CC/PP, profiles are described using a 2-
level hierarchy; attribute values can be either simple (string, integer or
rational number) or complex (set or sequence of values, represented as
rdf:Bag and rdf:Seq respectively). CC/PP attributes are declared in
RDFS vocabularies. In addition to well known CC/PP-compliant
vocabularies for device capabilities like UAProf [24] and its extensions, our
framework assumes the existence of vocabularies describing information
like user’s interests, content and presentation preferences, and user’s context
in general. Clearly, there are several issues regarding the general acceptance
of a vocabulary, the privateness of certain server-side attributes, and the
uniqueness of attribute names. In this paper, we simply assume there exists a
sufficiently rich set of profile attributes that is accessible by all entities in the
framework. We also simplify the syntax used to refer to attributes avoiding
to go into RDF and namespace details.

2.3.2 Profile aggregation and conflict resolution

Once the SPPM has obtained profile data from the other profile managers,
this information is passed to the IE which is in charge of profile integration
(Step 4 in Figure 1). Conflicts can arise when different values are given for
the same attribute. For example, the UPM could assign to the Coordinates
attribute a certain value x (obtained through the GPS of the user’s device),
while the OPM could provide for the same attribute a different value y,
obtained through triangulation. In our architecture, resolution of this kind of
conflicts is performed by the Merge submodule of the IE. In order to
resolve this type of conflict, the Service Provider has to specify resolution
rules at the attribute level in the form of priorities among entities. Priorities
are defined by profile resolution directives which associate to every attribute
an ordered list of profile managers, using the setPriority statement. This
means that, for instance, a service provider willing to obtain the most
accurate value for user’s location can give preference to the value supplied
by the UPM while keeping the value provided by the OPM just in case the
value from the UPM is totally missing. Continuing the above example, the
directive giving higher priority to the user for the Coordinates attribute is:

setPriority Coordinates=(UPM,OPM)
Profile resolution also depends on the type of attribute. With respect to

attributes of type Bag, the values to be assigned are the ones retrieved from
all entities present in the list. If some duplication occurs, only the first

Towards Highly Adaptive Services for Mobile Computing 7

occurrence of the value is taken into account (i.e., we apply the union
operation among sets). Finally, if the type of the attribute is Seq, the values
to be assigned to the attribute are the ones provided by the entities present in
the list, ordered according to the occurrence of the entity in the list. If some
duplication occurs, only the first occurrence of the value is taken into
account.

2.4 Policies for Supporting Adaptation

As anticipated in the introduction, policies can be declared by both the
service provider and the user. In particular, service providers can declare
policies in order to dynamically personalize and adapt their services
considering explicit profile data. For example, a service provider can choose
the appropriate resolution for an image to be sent to the user, depending both
on user preferences and on current available bandwidth. Similarly, users can
declare policies in order to dynamically change their preferences regarding
content and presentation depending on some parameters. For instance, a user
may prefer to receive high-resolution media when working on his palm
device, while choosing low-resolution media when using a WAP phone.
Both service providers and users’ policies determine new profile data by
analyzing profile attribute values retrieved from the aggregated profile.

2.4.1 Policy Representation

Each policy rule can be interpreted as a set of conditions on profile data
that determine a new value for a profile attribute when satisfied. A policy in
our language is composed by a set of rules of the form:

If C1 And … And Cn Then Set Ak=Vj
where Ak is an attribute, Vj is either a value or a variable, and Ci is either a
condition like Ai=Vl or not Ai with the meaning that no explicit nor derived
value for Ai exists. For example, the informal user policy:

"When I am in the main conference room using my palm device, any
communication should occur in textual form"
can be rendered by the following policy rule:

"If Location=’MConfRoom’ And Device=’PDA’ Then Set
PreferredMedia=’Text’"

2.4.2 Conflicts and resolution strategies

Since policies can dynamically change the value of an attribute that may
have an explicit value in a profile, or that may be changed by some other
policies, they introduce nontrivial conflicts. They can be determined by

8 Agostini et Al.

policies and/or by explicit attribute values given by the same entity or by
different entities. We have defined conflict resolution strategies specific for
different conflict situations. While a complete description of possible
conflicts and of the solutions implemented in our architecture is beyond the
scope of this paper (see [4] for further details), here we just mention the
basic technique. We implement conflict resolution strategies by transforming
the logical program defined by the policy rules. Transformations basically
consist in the assignment of a proper weight to each rule and in the
introduction of negation as failure. In the resulting program, each rule with a
generic head predicate A and weight w is evaluated only after the evaluation
of the rule with the same head predicate and weight w+1. When a rule with
weight w fires, rules with the same head predicate having a lower weight are
discarded. The weight assignment algorithm ensures that the evaluation of
the program satisfies the conflict resolution strategies, and a direct
evaluation algorithm can be devised that is linear in the number of rules.

3. SOFTWARE ARCHITECTURE

An illustration of the software modules which have been developed is
shown in Figure 2. There are two distinct data flows, which correspond to
profile modifications and service requests, identified by Sequence I and II,
respectively.

The local proxy (C) is an application running on the user device which
adds custom fields to the HTTP request headers, thus enabling the SPPM to
locate the user’s ID and the URIs of his UPM and OPM. Currently, the local
proxy is developed in C# (see Figure 3-A) and can be executed over the
.NET (Compact) Framework. The UPM, OPM and SPPM consoles (B, P, Q)
are browser-based web applications, which allow to modify profile attributes
on the UPM, OPM and SPPM repositories. The Service Provider
Application Logic module (E) is the component which delivers the profile-
and context-dependent service to the user. The application logic
implementation depends on the type of service to be delivered; the
implementation of the application logic for the prototype web application we
developed is briefly described in Section 4.

Besides managing local profiles and policies, the SPPM retrieves data
from the remote profile managers and from its own repositories and feeds
them to the Merge (I) and IE (J) modules. The integrated profile is returned
via SOAP to the service provider application logic. The Merge module (I)
receives from the Business Logic EJB (H) the profile resolution directives
and the objects representing the remote profiles. Attribute values are
retrieved from profiles using RDQL, a query language for RDF documents

Towards Highly Adaptive Services for Mobile Computing 9

implemented by the Jena Toolkit [17]. The integrated profile is built by
applying the service provider profile resolution directives, as explained in
Section 2. Finally, the object representing the integrated profile is forwarded
to the Inference Engine module (J), together with the set of user and content
provider policies, and profile resolution directives.

Figure 2. The developed software modules

Before starting the evaluation phase, the IE module modifies the logic
program (composed by facts retrieved from the integrated profile, and
policies) in order to apply the conflict resolution strategies described in
Section 2. User and service provider policies are represented in RuleML [5].
The evaluation of the logic program is performed using Mandarax, an open
source Java package for deductive rules. Mandarax is designed as a
backward reasoning engine, and supports negation as failure, which is
needed in our case to implement the conflict resolution mechanism. The
output of the derivation process is a result-set in which every row contains a
value of an attribute. These values are used to update the Java object
representing the integrated profile, which is returned to the EJB (F).

Our planned technology for the Profile Managers includes the adoption
of an RDF server such as Joseki [18]. However, at the time of writing, the
profile repositories (L, M, O) are a collection of simple files in CC/PP

10 Agostini et Al.

format. Policy repositories (K, N) are a collection of RuleML files which
describe the user and service provider policies.

Figure 3. Some screen-shots of the web application prototype

4. AN ADAPTIVE PROXIMITY MARKETING
SERVICE

In order to test our software architecture we developed a set of prototype
services. In this section, we illustrate a web-based adaptive proximity
marketing service. Its main goal is to provide targeted, location-aware
advertisements about sales on items contained in a user’s personal shopping
list. For example, if the user’s shopping list includes a specific camera model
and the user is walking on a street where a shop has that camera on sale, the
service will list an appropriate geolocalized ad on the user’s device, possibly
linked to multimedia content details. While we are not the first to consider
such a service, our emphasis is on adaptation based on user and service
provider policies. Advertisements are chosen and ranked by considering not
only the personal shopping list, but other profile data such as the user’s
location, interests, and action context. Users can be either paying or non-
paying service subscribers. Non-paying subscribers may also receive
unsolicited advertisements regarding items which are not on their shopping

Towards Highly Adaptive Services for Mobile Computing 11

list. The choice of items for unsolicited advertisements can be driven by
standard CRM software as well as from aggregated profile data. The service
currently implemented is browser-based, and provided on a per-request basis
(i.e., it is a pull service). The service is activated by accessing a specific web
page, and the delivery of content is performed by the Cocoon programming
framework [10]. Upon each request, the service returns a web page with the
list of ads, which is automatically refreshed after a certain period of time.
This time is dynamically set server-side based on aggregated profile data,
and communicated to the (micro)browser using a META element.

Table 1. An excerpt of policies

Policy Owner
(1) If DeviceType = ’PDA’ Then Set MediaQuality = ’High’ user
(2) If AvailableBandwidth < 56kbps Then Set MediaQuality = ’Low’ service provider
(3) If UserSpeed = ’Slow’ Then Set RefreshTime = ’15min’ service provider
(4) If UserSpeed = ’Fast’ Then Set RefreshTime = ’3min’ service provider

Table 2. An excerpt of profile resolution directives

Profile Resolution Directive
(5) setPriority AllowRecommandations = (SPPM, UPM)
(6) setPriority Coordinates = (UPM, OPM)
(7) setPriority MediaQuality = (SPPM, UPM)
(8) setPriority UserSpeed = (UPM, OPM, SPPM)

In order to show some of the profile resolution directives and policies

which determine service adaptation, we report one of the test cases we have
considered: An hypothetical user is browsing around a hypothetical town
with a PDA in his hands. We appropriately divided the town into bi-
dimensional cells identified by a pair of coordinates, further assuming that
some of the cells are covered by a GPRS connectivity service, while others
by a more efficient WiFi HotSpot service. Movements of our user and
context changes are simulated. The service needs to continuously adapt to
user’s changes of context. The screen-shots in Figure 3 show how different
ads are displayed depending on the user’s location and time of the day. In
addition, the presentation is properly adapted to the user’s device capabilities
and available bandwidth. The adaptation parameters are set by the IE
module, upon the evaluation of policies declared by the user and by the
service provider. For instance, we suppose the user declared policy (1) in
Table 1 to request high-quality multimedia content when using his PDA.
Similarly, service providers can declare policies for determining content and
presentation directives. A possibly conflicting policy (2) is declared by the

12 Agostini et Al.

service provider, stating to deliver low-quality multimedia contents when the
available bandwidth drops below a certain threshold. The refresh rate of the
service is determined by policies (3) and (4). In particular, policy (3)
determines a long refresh interval when the user is moving slowly, while
policy (4) shortens the refresh interval when the user is moving fast.

The firing of policy rules may depend on the aggregated profile obtained
by the Merge module, which in turn relies on profile resolution directives.
We remind that this kind of directives can only be specified by the service
provider. Some profile resolution directives are given in Table 2. For
instance, directive (8) is intended to solve conflicts due to different
estimations of the user’s current speed given by different entities. The
service provider gives higher confidence to the value provided by the UPM,
since speed can be estimated precisely by user-side sensors (e.g., supplied by
car appliances or GPS-enabled devices). If no value for speed is given by the
user, the value provided by the operator (if present) is taken into account;
otherwise, the value inferred by the service provider analyzing the history of
the user’s location is chosen.

5. RELATED WORK

Many research groups and companies have been working, at different
levels, to provide effective solutions for service adaptation and
personalization in a multi-device and mobile environment. In the following,
we report on the efforts we consider closer to our work. Our approach is
similar to the one underlying DELI [8] and Intel CC/PP SDK [6]. However,
our framework provides a finer control on profile aggregation, and includes
a policy mechanism. Various other architectures address the problem of
service adaptation in mobile environments [2, 7, 9, 11, 14, 21]. The
distinguishing feature of our architecture is that in our case the adaptation
process is driven by the evaluation of distributed profile data and policies
which are stored on and handled by modules in the trusted domain of their
data source. For example, the Houdini framework [14] provides a
mechanism of rule evaluation against user context information that is similar
to ours. However, policy rules in [14] are specified by users only and stored
on and handled by a single module. Since efficiency is a major concern in
their applications this module is in the domain of the service provider.
Moreover much less emphasis is given to conflict resolution issues.

We claim that our framework is able to support a wide range of context-
aware applications, which can profitably exploit it for adapting and
personalize their services to users. Even focusing on the domain of the
application described in this paper, the number of related works is large

Towards Highly Adaptive Services for Mobile Computing 13

(e.g., [12, 15, 23]). In particular, the ViaVis’ Proximity Marketing allows
users to personalize the reception of advertisements in terms of their
location, time and content. Again, a main difference in our service is that
profile data and user preferences are not stored and managed at the service
provider, but kept in the user trusted domain (at the UPM). This has several
advantages especially when multiple services need to access overlapping
portions of profile data (centralized updates, privacy control). Moreover, our
solution provides users with a richer set of personalization parameters, which
allow for a better definition of user contextual situations and a finer
personalization of the service.

6. CONCLUSIONS AND FUTURE WORK

In this paper we presented a framework supporting adaptation and
personalization of mobile Internet services. We illustrated the software
architecture adopted for its implementation, and a prototype service used as
a test-bed. Even if the main components of the framework are consolidated,
various extensions and enhancements are possible and already foreseen. In
particular, our profile technology can be meaningfully coupled with various
content-based services and recommendation systems. Thanks to our
framework, these systems can exploit both the explicit rules expressed as
preferences by users, and the information regarding the context the users are
immersed in. Moreover, various interesting works exist which are focused
on gathering information about the user and its environment on the basis of
sensors (e.g., [1, 22]). We believe that the integration of numerous sources of
profile data (i.e., sensors) and related processing modules in our framework
would be a natural and promising research direction.

REFERENCES

[1] AmbieSense. European project # IST-2001-34244. http://www.ambiesense.com/
[2] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli. Context-aware Middleware for

Resource Management in the Wireless Internet. IEEE Trans. on Software Engineering,
29(12):1086–1099, IEEE, 2003.

[3] C. Bettini, S. Jajodia, X. Wang, and D. Wijesekera. Provisions and obligations in policy
rule management. Journal of Network and Systems Management, 11(3):351–372, Kluwer,
2003.

[4] C. Bettini and D. Riboni. Profile Aggregation and Policy Evaluation for Adaptive Internet
Services. In Proc. of The First Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services (Mobiquitous), 2004.

14 Agostini et Al.

[5] H. Boley, S. Tabet, and G. Wagner. Design Rationale of RuleML: A Markup Language for

Semantic Web Rules. In Proc. of the first Semantic Web Working Symposium, pages 381–
402, 2001.

[6] M. Bowman, R. D. Chandler, and D. V. Keskar. Delivering Customized Content to Mobile
Device Using CC/PP and the Intel CC/PP SDK. Intel Technical Report, Intel, 2002.

[7] K. H. Britton, R. Case, A. Citron, R. Floyed, Y. Li, C. Seekamp, B. Topol, and K. Tracey.
Transcoding. Extending e-business to new environments. In IBM Systems Journal,
40(1):153–178, IBM, 2001.

[8] M. Butler. DELI: A DElivery context LIbrary for CC/PP and UAProf. External Technical
Report HPL-2001-260, HP, 2002.

[9] H. Chen, T. Finin, and A. Joshi. Semantic Web in the Context Broker Architecture. In
Proc. of IEEE International Conference on Pervasive Computing and Communications
(PerCom2004), pages 277-286, IEEE, 2004.

[10] The Apache Cocoon Project. Apache Software Foundation. http://cocoon.apache.org
[11] C. Efstratiou, K. Cheverst, N. Davies, and A. Friday. An Architecture for the Effective

Support of Adaptive Context-Aware Applications. In Proc. of the International
Conference on Mobile Data Management, pages 15–26, IEEE, 2001.

[12] ELBA: European Location Based Advertising. European project # IST-2001-36530.
http://www.e-lba.com/

[13] B. Grosof. Prioritized Conflict Handling for Logic Programs. In Proc. of Symposium on
Logic Programming (ILPS), pages 197-211, 1997.

[14] R. Hull, B. Kumar, D. Lieuwen, P. Patel-Schneider, A. Sahuguet, S. Varadarajan, and
A. Vyas. Enabling Context-Aware and Privacy-Conscius User Data Sharing. In Proc. of
the International Conference on Mobile Data Management, pages 187–198, IEEE, 2004.

[15] IMAP: An innovative Interactive Mobile Advertising Platform. European project # IST-
2001-33357. http://www.imapproject.org/imapproject/hmain.jsp

[16] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible Support for
Multiple Access Control Policies. In ACM Transactions on Database Systems, 26(2):214–
260, ACM press, 2001.

[17] Jena 2 - A Semantic Web Framework. http://jena.sourceforge.net/
[18] Joseki - The Jena RDF server. http://www.joseki.org
[19] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm, M. Butler, and L. Tran, editors.

Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies 1.0, W3C
Recommendation, 15 January 2004. http://www.w3.org/TR/2004/REC-CCPP-struct-
vocab-20040115/

[20] J. Krogstie, K. Lyytinen, A. L. Opdahl, B. Pernici, K. Siau, and K. Smolander. Mobile
Information Systems - Research Challenges on the Conceptual and Logical Level. In Proc.
of ER’02/IFIP8.1 Workshop on Conceptual Modelling Approaches to Mobile Information
Systems Development, pages 1-13, Springer, 2002.

[21] S. Riché and G. Brebner. Storing and Accessing User Context. In Proc. of the
International Conference on Mobile Data Management, pages 1-12, IEEE, 2003.

[22] D. Terdinam. Soon, Marketing Will Follow You. Wired News, 2003.
http://www.wired.com/news/technology/0,1282,61597,00.html

[23] ViaVis Mobile Solutions Inc. http://www.viavis.com
[24] User Agent Profile Specification. WAP-248-UAProf. http://www.wapforum.org/

