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Abstract

The importanceof designingquery systemswhich are effective and easyto use hasbeen widely
recognizedn the databasarea.Also, it is well known that the adequacyof a systemshould be tested
againstactual usersin a well monitored experiment.However, very few such experimentshave been
conducted.The objective of our study is to measureand understandhe comparativeeasewith which
subjectscan constructqueriesin two kinds of visual languagespone diagrammaticand the other iconic.

More specifically, we arinterestedn determiningif thereis significantinteractionbetween:1) the query
class and the query language type; and 2) the type of query language and the experience of the user.

Experimental results indicate that the effectiveness of a diagrammatidawnic querylanguagevaries
dependingon the classesf queriesand the kinds of users.This supportsthe opinion that an interface
offering to the user various visual representations and query modalities is the most appropriate for a wide set

of users and applications.
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1. I ntroduction

The problem of easily extractinginformation from database$as beendiscussedextensivelyin the
database community. Several quergdalitiesrepresentingalternativego traditional querylanguagesuch
as SQL, have beerproposed.Most of them are basedon the use of visual representationsand direct
manipulation interaction mechanisms (see [1] for a survey of visual query languagesau®$,for the
definition of direct manipulation). All of the proposed approaches emphasize in principle tbé ttudeend
userin the designlife cycle of a query system.In addition, the importance of designing and testing
interfaces for ease and effectiveness of use has become widely recognized ([3, 4, 5, 6]).

However, despite this growing recognitiargry few empirical studiesaiming at testing and validating
the effectiveness of various query styles and interfaces have been conducted in the database figlborhis is
due to the fact that measuring the easesifig a querylanguageis itself a difficult activity. It requiresto
identify and control a large number of extraneousvariablesincluding, among others, the cognitive
capabilities and limitations of the user. To capture at least some aspeetseof use, experimenterhave
developeda numberof differenttasks[7]. The most commonare query writing and query readingtasks,
which are performed by investigating the relationshipsbetweendatabasequeries expressedn natural
language and the same queries expressed in the query systeratudgdn querywriting, the questionis:
“Given a query in natural language how easily can a user exptassughthe querylanguagestatements?
The question for query reading is: “Givarquery expressedhroughthe querylanguagestatementsanthe
user expressthe query easily in natural language?”.More precisely, what is measuredis the user's

performancevhen accomplishing such tasks. Such performance is usually expressed in t&yrascafacy



of query completiofi.e., user's correctness rate when writing the queries) amsk2} efficiencyi.e., time
spent to complete a query).

Two different classesf experimentshave beeneportedin the literature:one aiming at evaluatingthe
ease of use of a single language, the other aiming at establishing whicledsiteto useamongtwo or
more languages. Reisngf] reviews most of the experimentalresearchon traditional query languages
covering mainly work done on SQand QBE. Recently,QBE and SQL were againcomparedtaking into
account several factors, suahthe useof the samedatabasenanagemensystem,a similar environment,
etc. [8]. It is interestingto note that in this new experiment,the query languagetype affected user's
performanceonly in so-called“paperandpencil” tests,in which caseQBE usershavehigher scoresthan
SQL users. In on-line tests, the user's accuracy was not affected by the type of the language adiyeted, but
user's satisfaction was much greater with QBE, and his/her efficieack better. Other earlier surveys on
experiments irthe databasdield include papersby Shneidermari9, 10] and Thomas[11]. A morerecent
work is presentedn [12]. This study concentrate@n a languagebasedon the querying techniquecalled
“dynamic query”. Given a query, a new query is easily formulated by moving the positoslidér with a
mouse, and the display of the resultiotegais dynamicallymodified. The languagewastestedagainsttwo
other query languagesboth providing form fill-in as the input method, but having different output
methods. The hypothesis ththie dynamicquerylanguagewould performbetterthan both other oneswas
confirmed by the experiment results.

As we saidabove,a commongoal of suchempirical studiesis to provide a quantitativebasisfor the
comparative effectiveness and ea$aiseof a given querylanguageandinterface.Frequently they aim at
verifying some hypothesis, which coutdmefrom eitherthe intuition of the authorsor, more often, the
simple observation of people using the systefine generalapproachusedin most suchstudiesincludes:
1) defining precisely what onie to measure?) developinga task for usersto perform;and3) measuring
relevantparameter®f user'sperformancdi.e. error rate, time to completea task, etc.). A few tens of
subjects are usually involved in the experiments (ranging from 18 in [12] and 20 in [14] to 65 in [8]).

In a recent empirical study, Catarci and Santummparedthe visual querylanguageQBD* (Query by
Diagram) with SQL [15]. The results of the study confirmed the hypothesia thatial languageis easier
to understandhind usethan a traditional textual languageln this paper,using primarily the sametype of
query writing task usedearlier by Catarciand Santucci,we describethe outcomeof an experimentto
comparethe effectson user'sperformanceof two different querylanguagespne iconic andthe other one
diagrammatic.The independenvariablesof the experimentare user’s skill and query classes.Since we
conjecturedthat thereis a significant relationshipbetweenthe independenvariablesand the visual query

language used, we designed our experiment to test such conjecture.

1 Talking to real users,visiting their working environment, observing how they approachtheir task are
activities which form the basis of usability engineering [3].



The two visual query languages, developed at the Dipartimemtdodinaticae Sistemistica,are QBD*
[16, 17, 18] and QBI (Query by Icon) [19, 20]. A& will clarify below, the two languageddiffer in both
the adopted visual formalism (diagrams vs. icons) and the main query strategy (nhavigation vs. compaosition).
The visual formalism and the query strategyare two fundamentalfeaturesof VQLSs, since they both
determine the nature of the human-computer dialogue, whose improvement is the primaryw@giia §f,
6, 21]. Being both diagramandicons, aswell as navigationaland compositionalquery strategiesusedin
most of existing VQLSs (see [1]), the two systems under analysis can be also sgesentativef larger
VQL classes. To the best of our knowledt®s is the first experimentcomparingthe easeof use of two
VQLs based on different visual formalisms and query strategies.

The actual experiment was preceded by a teaching period. We tried to make as thampoditionsof
the experimentatiorof the two languageshe sameas we reasonablycould (i.e., teachingmethod, exam
questions, exam procedure, method of scoring).al¥e examinedsomebackgroundnformation aboutthe
various users in order to divide them into equivalence classes and to assign to each langaagestief
classes. Thiss commonlydonein experimentsn orderto minimize the probableeffectsof uncontrolled
extraneous variables leading to unreliable results

The paperis organizedasfollows. In Section2, we summarizethe elementsof QBD* and QBI. In
Section 3, we identify and classify the timalependentariables,namelyuser’sskill andqueryclasseslin
Section4, we describethe designof the experiment,the results obtainedand our interpretationof the

findings. Finally, conclusions are drawn in Section 5.

2. The Prototype Visual Query Systems

In the following we summarizethe basic featuresof the two visual query systemswe have tested,
namely QBD* and QBI. From an internal point of view, both systems are loasademanticobject-based
data model. In particular, QBD* isasedon the Entity-Relationship(ER) model[22], while QBI usesthe
Binary Graph Model [20, 23], which correspondgo the Graph Model introducedin [24] restricted to
consider binary relationships only. It has been shown in [25Jtt@fial mappingexists betweenthe ER
model and the Graph Modedp that we can considerthe two systemsactually basedon the sameinternal
data model, namely the Graph Model.

The Graph Model allows one to define a dataliageterms ofa triple <g, ¢, m>, whereg is a Typed
Graph,c is a set of suitable Constraints,and m is the correspondindnterpretation.The schemaof a
database is represented in the Graph Model by the Typed Graph andoth€aestraints.The instancesof
a database are represented by the notion of Interpretation. Th@agbe specifiedby using a logic-based
constraint languagevhich is intended to be exploited by the system designer in twdgyecify constraints
on and meaningful properties of the nodes represented in the Typed Graph. A adgeaéd Graphcan be
eithera class-nodaepresenting classof objectsor a role-noderepresentinga relationshipbetweentwo

classes, whereas an edge connects a class-node to a role-node. Moreover, class-nodes ardrgartitianed



subsetsthe set of printable class-nodegconcreteclasseshndthe setof unprintable class-nodeqabstract
classes) The former represent set of objects that are actuallyesof distinguisheddomains(real, integer,

char, etc.), whereas the latter represent sets of objects denoted simply by object identifiersp&tizicall
Typed Graph a sequence of adjacent class-nodes and role-nodes always stagtidingndth a class-node.
Given a path it is possible to associate witla multivaluedfunction which mapsevery objectbelonging

to the Interpretation of the first class-node to a set of objects of the last class-node of the path. tiiete that
definition of path does not exclude the presence of cycles.

From the user’'spoint of view, the two systemsmainly differ in the visual formalism they adopt for
representing the database schemata, and in the basic query s@&Bq\is basedon the useof diagrams,
namelyER diagramswhile QBI adoptsicons. Both formalisms present complementargdvantagesand
disadvantaged-or instance,while diagramsare particularly effective in representingthe relationships
existing betweenconceptswhich aredirectly mappedinto correspondenceamongthe diagramelements,
icons are powerful in resembling objects of the real world having an intrinsic visual representation [26].

QBD* allows the user to querthe databasdy schemanavigation i.e. by concentratingon a concept
and moving from it following the diagram links in orderraachother conceptsof interest.QBI works by
compositionand grouping of icons, i.e. by interpretingsimple actions, such as the selectionor the
dragging of an icon, as a particular chain of operations on the database.

We will see in Section 4.4 how such differences are reflectdteisubjects’behaviorwhen composing

aquery.

2.1 QBD*

QBD* is a visual query systembasedon diagrammatiaepresentationsf ER schematalescribingthe
underlying(relational)databaseslt balancesa high expressivepower with a noticeablefacility of use.
Concerning theexpressivepower, it hasbeenprovedto be relationally complete.Moreover, it includesa
significant classof recursivequeries(transitive closure)and handlesan extensionof the relationalalgebra
set-oriented operators that wall generalizedset-orientedoperators[27]. The easeof use haseenreached
through a fully graphical environment. In that environment the imseractswith the system mainlywith
a mouse-like device, using the keyboard only when necessary.

The general structure of the QBD* query is basadhe location of a distinguishingconcept(entity or
relationship),calledthe main concept which canbe seenas the entry point of one or more subqueries.
These subqueries express possible navigation fromm#ie conceptto otherconceptsn the schemaThe
attributes belonging teachsubqueryare determinedoy the following strategy:the attributesof the main
concept are automatically considered (unless explicitly deleted ls#rg while the other onesare shown
in the resultonly if requestedy the user.The presenceof a main conceptassociates type with each
subquery. As an example, if the main concept is the esdityson, the result of the query will ba set of

people (possibly enriched with attributes comirgm other concepts)no matterwhat kind of subsequent



operations the user performs to specify it. The subqueries can be combined together by applyirggseveral

oriented operators to two or more subqueries derived from the same entity.
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Figure 2.1: Schema navigation through existing paths

Oncethe main concepthasbeenselectediwo types of strategiesare availablefor navigatingin the
schema. Thdirst one allows the userto follow existing paths, so exploiting predefinedrelationships
amongdata.In the examplein Figure 2.1, through the path (University, In, City) (plus the
conditioncity.name=“Rome”, in a separate window, not shown in the figure) the user asldl fthre
Universities in Rome. Figure 2.2, instead, referthiosecondstrategyand correspondsgo the first part of
the answer to query Q4 (see Section 3.2ylich the usersearchesor all professorsvhoselast nameis
equal to the last name of a student enrollechf®ome’s University. To find out suchprofessorsthe user
has to build a new relationshijetweenthe entitiesprofessor andstudent (seeFigure 2.2.a). After
that, the user has to specify the comparisoncondition usedto build the new relationship, that is
professor.last_name=student.last_name. Comparison conditions, as well as generic
conditions on the attributes, are expressed by means of a simple window mechanism including a suitable set
of icons (seeFigure 2.2.b). Roughly speakingwe cansaythat a path on the schemacorrespondgo an
ordered sequence of natural jGiasnong the pairs <entity, relationship> constitutihg path, followed by
final selectionand projection. The explicit presenceof relationshipsreleasesghe userfrom the needof
looking for concepts like “foreign keysindthe systemcan performin the right way the join operations.
On the other hand, comparing two conceptsasigw relationshipcorrespondso a theta-joinbetweenthe

two involved entities, and it is up to the user the specification of the theta-condition.

2.2 OBl

QBI is a systemthat allows usersto queryandunderstandhe contentof a databaseéby manipulating
icons. QBI was originally conceived as an interface for a distributed database of radidtogged[28] and

subsequentlydevelopedinto a generalpurposequery processingfacility that is domain independent.t

2We mean here the natural join and theta-join operators as defined in relational algebra [38].



providesintensional browsinghroughmetaquenytools that assist in the formulation of complgteriesin

an incremental manner using icons and without involving path specification [10, 29].
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Figure 2.2: Schema navigation through the buigg?ng of a new relationship (2.2a) on the basis of attribute
comparisons (2.2b)

In QBI, the conceptsof class of objects and attribute of a class exclusively form the external
representatiof the databasestructuredueto their natural simplicity. Usersare presentedwvith database
abstractions calledomplete objectd.e. completelyencapsulatedbjects,similar to the universalrelation
abstractionin relational databaseq430]. A complete object has several properties called Generalized

Attributes(GAs in the following). For example, the setedfams made by atudent is treatedasa GA
of student in a way similar to that ofimple attributessuchasits name or birthday. In QBI, each
class provides a view of the whole underlying database from its own viewpoimu&hdanguageof QBI
is based on the select-project paradigm: a query is expressed by first defining the cahditideterminea
subset of the chosen class (selection) and then specifying those GAs that ate geipgrt of the output
result (projection). The result of a query canbe usedsubsequentlyn the compositionof more complex

queries.



Three windows forming the QBI interface are refenr@ds the WorkspaceWindow the Query Window
andthe BrowserWindow In figure 2.3 the threewindows of QBI containingthe icons relatedwith the
experiment database (i.e., students, professors) are displayed.

Workspace Window. This window displays both the primitive anérivedclassesgachicon in this
space corresponds tackass-nodef the underlying Typed Graph. Theusercanfreely arrangethe iconsin
the workspace and create duplicates. Pointing an icon corresponds to selecting the vagsenudef a
query. In figure 2.3 the selected icormpisofessor.
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Figure 2.3: The three QBI windows

Query Window. In the query windovthe usercomposesoth the selection,Conditionssubwindow,
and the projection condition§howsubwindow,by draggingandarrangingicons. Referringto figure 2.3
the condition is: 8urname of the professor" equal to "Smith", whichis composedy
the GA "surname of the professor" (thesurname labeledicon), the constantvalue Smith
and the connectivequal. Note that the GAdge of the professor" (theage labeledicon) has
been dragged in the condition space; this GA could be combined with either anotbera@anstantvalue
to create a new atomic condition.

Browser Window. The browser window contains the GAstbé chosenclass-noddprofessor in
Figure 2.3). This set can be composed of thousands of elements. The metaquery @berattirs userto
search the desired GAs within a smaller set. Among the various metaquery operators, it istpossibte

all the GAs having a certaintype. Moreover, it is possibleto select eithel single valued GA only, or



thoseGAs that includein their paths a certain class-nodej.e. whosedescription"talk about" a certain
concept. Foexample,the browserwindow shownin figure 2.3 containsthe icon student in the Talk

About space, whereag-ofessor is the selected icoAs a consequencanly the GAs of professor
talking aboutstudent are presented. Note that on the left of each GA icon, a natural lansgratgaces

displayed. This sentence is automatically generated by QBI in order to disambiguate the meaning of the GA.

3. The Experiment Factors

In this study, we conjecturethat thereis a significantrelationshipbetweenthe independentariables,
user skill and query type, and the visual query language used on the time and accuracyoningtiergtion.
Thereforein the experiment, usersf different skill levels will be askedto constructdifferent types of
queries. This choice reflects (and aims to validate) the current literature trend which relates the
appropriateness of the visual representationteedevel of the user’sskill andto the kind of queriess/he

wants to perform (see, e.g., [31, 32, 33]).

3.1 The User Classes

A few user classifications have been proposed in the database literature (e.g., [31, 33, 34]). Each of them
identifiesa certainnumberof featureswhich permitsthe labeling of a homogeneougroup of users.The
number and the kinds of groups diffdpendingon the specific classification.However,thereis at leasta
general agreement on the initial splitting of tieersinto two large groups:thosewho havehada certain
instruction period and have database knowledge, and those who do not have specific trdatatgasedn
our experimentwe call thosetwo groupsskilled and unskilled usersrespectively.Our unskilled useris
roughly characterizedby the following features:1) s/heinteractswith the computeronly occasionally,2)
haslittle, if any, training on computerusage,3) haslow tolerancefor a formal query language4) is
unfamiliar with the details of the internal organization of an information system. Usually thidogsgiot
want to spend extra time in order to learn how to interact with a query system, and finds it itGtdiave
to switch media, e.g., to manuals,in orderto learn how to interactwith the system. Moreover, the
unskilled user wants to know where s/he is and what to do at any given monttentndéractionwith the
system. Notice that the unskilled user is very similar to Cuff's [34] casual users.

On the other hand, skilled users possessknowledge of databasemanagemensystems, query and

manipulation languages, etc., and often like to acquire a deep understanding of the system they are using.

3.2 The Query Classes

For the purposeof our experimentwe needto identify meaningfulclassesof queries.Severalquery
classifications have been proposed inlitegature (see,e.qg., [35, 36, 37]). However,thoseclassifications
areall basedon consideringthe so-calledexpressivepower of the query language,i.e. the ability of the

languageto extractmeaningfulinformation from the databaseand/orthe complexity of computing the



query answer. While extremely valuable in general, such classifications are inadequate for our purposes since
they do not take into account the user’s point of viea, the user'seffort when formulating a query. For
example,all queriescontainingselectionoperationsonly aretraditionally consideredas belongingto the

same classjespitethe kind of formula usedfor expressinghe selectioncondition (e.g., with or without

boolean operators). However, observing the different difficulties theemseuntersvhen formulating such
queries,one can easily conclude that they should be in different classes.Whereas,we need a query
classificationwhich evaluatesn a differentway querieswith different intrinsic complexitiesin terms of
user-oriented features.

By a preliminary study on users interacting w@BD* and QBI, we observedsignificant differencesin
the ease with which they did formulate the query. These differences are strongly depetigenuomberof
databaseonceptsnvolvedin the queryandthe way in which they arerelated.Thus, we conjecturedthat
thesetwo featurescould be good candidatesfor query classification.We exploit the notion of path as
introduced in Section 2, for formalizing the two coordinates in terms of:

« the maximunsemantic distancef the paths involved in the query;
< the overall number afyclesof the paths involved in the query.

The concepbf semanticdistanceis introducedfor orderingthe importanceof user'saccesgaths.The
semantic distance, formally introduced in [19], is a mathematical function modeling both the
meaningfulnesand theexpected utilityof a path forthe compositionof a query. The meaningfulnessf a
path canbe regardedas the difficulty a userencountersn understandinghe path meaning.The expected
utility measures "how likely" the path will be used in a query.

More precisely, leP be the set of well formed pathson a Typed Graph,a semanticdistancefunction
SD: P->Ris a function mapping every paph7 P into a real numbe8D(p) Givena pathp it is possible
to derive numericalattributes,calledfeaturesof the path, eachone representinga characteristiauseful for
modeling the semantidistancefunction. In [19] severalfeatureshave beerintroducedand motivated.The
most significantare: 1) the length of the path and 2) the numberof printableclass-nodeincludedin the
path (excluding the last node). These two features have been alda tiseghresentwork. For the sakeof
simplicity, the codomain of the semantic distance function has been partitioned into three ranged,,namely
M, H. TheL rangecomprisesghosequerieswhosepathshavea length lessthan or equalto two and no
printable inclusion. In the M range we put the paths wikbngth up to 3 andno printableinclusion, i.e.
no printable class-nodes included in it. THieangeincludespath longerthan 3, and/orallowing printable
inclusion.

As for computingthe secondclassificationcoordinate we recall [19] that every path has associatech
function. Sucha function is determinedby 1) declaringfor eachclass-nodeof the path an existentially
quantified variable ranging on the class-node interpretation, and 2) specisétgfaconnectionconditions
between pairs of consecutive variables, each pair being favdeelincludedin the interpretationof a role-
node. Now, we define the number of cycles in a pah a functiorC(p): P->N. In particular:

10



C(p) = length(p) - number of distinct class-nodes in the path +11)

wherelength(p)is the length of the path p in terms of numberof role-nodesincludedin the path.
Referringto the path function, note that whenthe numberof cyclesis greaterthanzero, it follows that
thereexist at leasttwo existentially quantifiedindependentariablesranging on the interpretationof the
same class-node. As a consequence, a queogeformulation requirescyclic pathsforcesthe userto deal
with different references to the same class-node.

In the following wedescribethe six queriesusedin the experiment. Thebovefeaturesj.e. length of
the path, printable inclusions, and cycles, from now on will be always calculatbé basisof the Typed
Graphshownin Figure 3.1, which is the experimentview of a more generalTyped Graph depicting the

schema of a University database.
(0.n)
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Figure 3.1: Experiment Typed Graph
QueryQ1: “Find out students older than 40”. This query involves the gathdent age integer)

(n)

of length 1, which includes one role-node corresponding to the age of the studesenimticdistanceof
the path is L and there are no cycles.

QueryQ2: “Find out all persons enrolled for and teachinghiea sameUniversity”. The queryinvolves
the path(Person, enrolled, University, teaches, Person) of length 2.The pathhasa
semantic distanck andthereis a cycle (two variableson the class-nodeoerson aredeclaredwithin the

query expressiof)

® Note that thesa constraint®rofessor ISA Person andStudent ISA Person do not imply the disjunction
of the classestudent andProfessor.

11



Query Q3 : “Find out all studentsenrolledfor a University in Rome”. The query involves a path of
length3 (Student, enrolled, University, in, City, name, string). The semantic
distance of the path is M and there are no cycles.

QueryQ4 : “Find out all professorsvhosesurnames equalto the surnameof a studentenrolledfor a
Rome’s University”. The query involves a path of length 4 (Professor, surname, string,
surname, Student, enrolled, University, in, City) andit doesinclude a printableclass-node
(string). Thereareno cyclesin the query(therearefive distinct class-nodeén the path, thereforethe
expression (1) is 4-5+1). The semantic distance of the path is H.

QueryQ5 : “Find out all personsvho live in the samecity wherethe University they are enrolledfor
is”". The query involves the path (Person, lives, city, in, University, enrolled,
Person) of length 3. The semantic distance is M and there is a cycle.

Query Q6 : “Find out all studentswith the samesurnameof professorsteachingin the University
located in the city where they live”. The query involves two pathisuflent, surname, string) of
length 1, and (Student, 1lives, City, in, University, teaches, Professor,
surname, string) of length 4. While the semantic distance of the first path is L, the sendisitince

of the second one is H. As a consequehesoverall semanticdistanceof this queryis H andthereareno

cycles.
CYCLES
0 1
SEMANTIC LOW o1 o2
DISTANCE MEDIUM Q3 Q5
HIGH 06,04

Figure 3.2: The classification of the experiment queries
Figure 3.2 showsthe classificationof the six experimentquerieswith respectto the two above
coordinates when the codomain of the semantic distance function has been partitioned irdogless€he
same queries have then been grouped into three classes, using the two value partition of the codomain of the
semantic distance function. The subjects’ performances as a function of these threéalesbesrdeeply
studied in the experiment. In the following we will refer to the tlalessesas close-uncycliqlow-medium
semantic distance amb cycles),close-cyclic(low-mediumsemanticdistanceand cycles),and far-uncyclic

(high semantic distance and no cycles).

4. The Experiment

The overall objective of our study is to measureand understandhe comparativeeasewith which
subjectscan constructqueriesin either the diagrammaticor iconic language.More specifically, we are
interested in three questions: 1) given a query in natural language, how easily can a useit éXpresag

eitherthe Diagrammaticor Iconic representation?) given different types of queries,is there significant

12



interaction between the query-type and the visual language used; and 3) given different levels tieskill is
significant interaction between skill level and query language used? The experiment is desdgietnine
if there is significant interactiobetween:1) the query classandthe querylanguagetype as representedh

table 4.1; and 2) between the type of query language and the experience of the user as reflected in table 4.2.

4.1 Participants

A total of thirty-two subjectswere usedin the experiment. Thesubjectswere studentvolunteers.
Sixteen of the subjects were third year Computer Science students. The othegixegraduatestudents
in scienceand engineering.One-half of the graduatestudentsand one-half of the undergraduatesvere
assignedo eachof the two querylanguageconditions.In addition, as discussedbelow, experiencewith
query languages and skill lewekre also takeninto accountwhen assigningsubjectsto the two language

groups (see Table 4)1

Natural language query ----- > Interface query
DIAGRAMMATIC ICONIC
Skilled users Group 1S Group 2S
NLQ->DIQ NLQ->I1Q
Group 1U Group 2U
Unskilled users NLQ->DIQ NLQ->I1Q

Table 4.1: Query language as a function of skill level

4.2 Procedure

A pretestaswell as a backgroundquestionnairevere administeredo all subjects.The purposeof the
pretestwas to determineeach subject'slevel of knowledge and understandingof the databasequery
languages. Theubjectswerethenassignedo one of two treatmentconditions,iconic or diagrammatic.

Level of experience with query languages and pretest performance scores were used to equate the two groups.
Next all subjectsunderwenta shorttraining sessionof equaltimes in using the diagrammaticor iconic
interface environment.

After the training session, each subject wessentedvith six queriesof different levels of complexity
in natural language and was asked to construct these queries in oneanaf theerylanguageenvironments
(seeTable 4.2). The orderin which subjectswere given the queries (close-uncyclic,close-cyclic, far-

uncyclic) was counterbalanced across subjects in order to minimize the learning effect.

“In Tables 4.1 and 4.2, NLQ, DIQ, and 11Q stand for Natural Language Queries, Diagrammatic |Qerdaies,
and Iconic Interface Queries respectively.
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Natural language query ----- > |nterface query
DIAGRAMMATIC ICONIC
Cloge-uncycli( Group 1 Group 2
queries NLQ->DIQ NLQ->11Q
(Q1, Q3)
Close-cyclic Group 1 Group 2
queries NLQ->DIQ NLQ->1IQ
(Q2, Q5)
Far-uncyclic
queries Group 1 Group 2
(Q4, Q6) NLQ->DIQ NLQ->IIQ
Table 4.2: Interface Typg Query Complexity For
Expression as an Interface Query
4.3 Results

Time in seconds to complete a query and accuracy of query completion were used apénotmance
measures. In our analysis we were mainly intereistetie differencesin performancebetweenthe subjects
using QBD* and those using QBI. We were also interested in determitiiathertherewas a differencein
performanceas relatedto the classof queriesandthe skill level of the user.Table 4.3 showsthe overall
average accuracy and time scores for QBD* and QBI. The well-known statistical anlysis of the variance (i.e.,
AN analysisOf VAriance test, ANOVA) vyielded no significant differenceon accuracybetweenQBI and
QBD* at [F(1,30) = 0.025, P> 0.05. There was howevera significant differenceon the subject’'stime
performance between the two systems at F(1,30) = 5.230B5. At inspectingof the time meansiit is
clear that the subjects spent on the average less time conducting queries using QBD* than QBI.

VISUAL LANGUAGE

QBD* QB
PERFORMANCE TIME 129 211
MEASURES ACCURACY | 8.7 8.8

Table 4.3: Overall average time and accuracy
Performance as a Function of Skill. Table 4.4 shows time performance for QBI Vs. QBDaragion
of skill level. Again, an ANOVA hereyielded a statistically non-significantdifference betweenthe two
systems for low-skill inexperienced subjeatd=(1,14) = 0.343, P> 0.05. On the otherhand,therewas a
significant difference for high skilled people with experience at F(1,14) = 10.80,05. At aninspection
of the means in table 4.4, it is clear that skilled subjects take less time to construct a query using the QBD*

system.The reasonfor this result could very well be that skilled subjectshave more experienceusing
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graphs than the unskilled ones. On the otfardthe skilled subjectsexperiencan usingiconsis similar
to that of the unskilled group.
VISUAL LANGUAGE

QBD* QB
USER SKILL SKILLED 104 218
LEVEL UNSKILLED 154 205

Table 4.4 :Average time in seconds to construct a query as a function of skill level

Performance as a Function of Query Classes. Table 4.5 gives a summary tiie averaggime
and accuracy performance as related to the different query classes discussed earlier. The accuracy data show no
significant difference between the groups as a function of query classes. In comparing group performance
eachone of the query classes ANOVAs vyielded significant differencesfor classesclose-cyclicand far-
uncyclic at F(1,30) = 17.77, P < 0.05 for class close-cyclic, and at F(1,30) = 28:98,08 for classfar-
uncyclic, and no significardifferencefor classclose-uncyclicAt inspectingthe meansin table4.5, it is
clear that the subjects do bettertgpe close-cyclicqueryif they usethe QBI system.On the otherhand,

for query type far-uncyclic, the subjects’ performance is better if they use the QBD* system.

VISUAL LANGUAGE
QBD* QB
TIME ACCURACY TIME ACCURACY

QUERY CLOSE- 95.5 9.6 145 9.4
UNCYCLIC

CLASSES CLOSE- 135 7.5 41 10

CYCLIC

FAR- 156 9.1 448 7.2

UNCYCLIC

Table 4.5: Average time in seconds and Accuracy as a function of query classes

4.4 Discussion

Both the accuracy anthe responsdime of the subjectsusing QBI seemto be highly sensitiveto the
semantic distance of treery paths.More specifically,the two queriesinvolving a pathwith a semantic
distancevalue H, Q6 and Q4 (seeFigure 3.2) respectively,have the lowest degreesof accuracyand the
highest response times. On the other hand, QBD* manifests a substantial independence both on the accuracy
and on the responseime with respectto the semanticdistanceof the paths involved in the query
expression.

Whenever a quergontainsa cycle (Q2 and Q5), expressingt using QBD* is lessaccurateandtake a

longer time. QBI is not affected by the presence of cycles, on the contrary, itthiellsstresultsboth in
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terms of accuracy and response time when cycles are present. In the case of quersugdtseresponse
time for QBD* is four times as high as the time fbe QBI subjects.This differencecanbe motivatedby

observing that the attributes belonging to the same concept are reached by following different paths.

VISUAL LANGUAGE
QBD* QB
TIME ACCURACY TIME ACCURACY
QUERIES Q1 80 9.4 134 9.5
Q2 84 7.1 27 10
Q3 111 9.8 156 9.25
Q4 179 9.3 599 7
Q5 187 7.9 55 10
Q6 134 9 298 7.5

Table 4.6: Average response Time and Accuracy per query

The previous results can pestified asfollows: the sensitivity of QBI to the semanticdistanceof the
paths involved in the query is a direct consequence ofitlyein which QBI forcesthe userto think about
the query. More specifically, in QBI the user should think about the query predicaselastaoninvolving
generalized attributes. A generalized attribute is a multivalued function that is asswiflatachath on the
underlying semanticschema(see Section 3.2); therefore,either when the path is not composedof all
predefined relationships or when the path is longuerfinds it difficult to understandhe corresponding
path function.

In QBI the navigation phase is replaced with the activity of sear¢h@A correspondingo the path
to be specified. The reason why QBI suffers when the path to be found is semanticallyidistainiy the
browsingactivity itself, but in the cognitive processhat comesbeforethe browsingactivity, that is to
think about the whole path in terms of a function, often multivalued, of the génstanceof the selected
class. Referringo the query Q4, for example,the usershouldhavethoughtto find the GA of professor:
“All the students that have the same last name of the professor x”. Even
though this attribute is not difficult to understand, we have observed that the majoir {hersubjectsjust
refused the idethat sucha kind of GA could have everexisted.lt is interestingto reportthe reactionof
surprise all the subjects had when, after having spent mimuteging to understanchow to constructthe
query, they finally realizedthat sucha strangeGA waspresentin the list. In some sense,this reaction
demonstrates that the problem with this query was not how taia@A, but simply to understandvhat
had to be found.

As far as the query Q6 is concerned, pineblemswe observedn the QBI subjectswere similar to the

ones described for query Q4. However, in this case, the cognitive process of understanding wiadhoGA
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be found for building the query, hadlessinfluence on the overall performanceln particular,we observed
that the major componenfor the whole time spentby the subjectsin finding the attribute “A11 the
last names of the professors teaching in the University located in the
city where student X lives”was due to difficulties in the metaquery techniques.

The reasonwhy QBD* usersperform betterwhen expressingjueriescharacterizedyy a high semantic
distance could very well be that paths in QBD* are built manually. As a consequence, thercsgeshe
whole path not as a unique complexction, but as a sequencef single steps.Moreover,the userhasa
total control on the path specification, since it is always possibbacktrackand,oncethe path hasbeen
completed, to change the conditions which have been previously specified for each single step.

Consideringthe queriescontainingcycles,we cansay that whenevera query involves two attributes
belonging to the same conceptthe QBD* usersget much more confusedthan the QBI ones. Our
explanation resides mostly in the way in which the two systems present the attributes to tineQBBF:.
the attributes of any concept (entity or relationship), are represented as labels groupéatintassociated
with the concept (see Figure 2.2b). As a consequence, when the query is cyclic, the user sees more copies of
the same form, belonging to tldferent occurrence®f the sameconceptmet alongthe path. In orderto
associateeachform with the right conceptoccurrencethe systemautomaticallyaddsa numberto the
attribute labels. Howevewe noticedthat, evenusing numbers,most usersarestill confusednot clearly
understanding the meaning of the replicated labels.

On the contrary, in QBI a path corresponda @A andevery GA is visually representeas a different
icon on the screen.Therefore,when a query expressioncontainscycles, the userstill perceivesa clear
distinction among different occurrencesth@ sameconcept.In the caseof query5, for example the path
(Person, lives, city, in, University, enrolled, Person)was splitinto two distinct
paths: (city where the person lives) and (city where the University the
person is enrolled for is) which wererepresentedby two distinctcity icons, as a result
almost all the subjects did not get confused in constructing the appropriate selection predioaibibing

such icons.

5. Conclusion and Future Work

In this paperwe comparedtwo visual query languages,QBD* and QBI performing a usability
experiment orthem. The experimentshowedsignificant relationshipsamongthe kind of visual language
and the user’s skill and query classes, pointing out thatthesystemsexhibit complementaryadvantages
and disadvantages. On the basis of the figures we got we can ssliltedtusersperform betterusing the
QBD* system, while no significant difference exists concerningorrmanceof unskilled users.On the
other hand,while consideringthe query classesve discoveredhoticeabledifferencesbetweenthe class of
close-cyclicqueries(betterperformedin QBI) and far-uncyclic queries(better performedin QBD*), such

differencesinvolve both time and accuracyand are totally independenfrom the skill of the users.In

17



summary,the analysisof the experimentresultsallows us to say that both systemsgot good resultsin

terms of effectiveness, even if such results vary depemtirtge classesof queriesandthe kinds of users.
This supports the widely believed opinion that an interface offering to the user various visual
representationand query modalitiesis the most appropriatefor a wide set of usersandapplications(see,
e.g., [21, 31, 32, 39]).

We plan to further investigate on the effectivenesQBD* and QBI by performingotherexperiments,
at both the University of Rome and the Georgia Institute of Technology, involving a larger number of users
and other classes of queries. On the other hand, we will also start tgtesitgpeof a multiparadigmatic
queryinterface,i.e. an interfaceoffering to the user different visual environmentsand the possibility to
switch among them, which is under development at the University of Rome.

Finally, we wantto point out that the results of the experimentsed us to make changesin both
prototypes.Referringto QBD* it cameup by the users’ commentsthat the default option we usedin
combiningtwo or more attribute conditions(logical AND) was misleadingand we removedit. Moreover,
the users reported the need of a more uniform way of interacting with the systera eesirangedhe user
interface in order to present several phases of the query formulation in a homogeagouspite of their
conceptual difference. As for QBI, we have got extremvalyablehints for improving both the metaquery
operators and the query specificatimechanismin particular,we very often observedsubjectsdragginga
GA, saya,, in the Talk About space with the purpose of selecting othgr GAs having a path including
a,. Moreover, different subjectanceselectedan icon and specifiedan atomic condition, tried to move the
GAs of the selectedicon directly on the workspacewindow. This operationwas not allowed in the
experimentversion of QBI. However, it is consistentwith the interface philosophy and has a neat
semantics: since the variable rangingtbe selectedcon is in someway boundby the atomic condition,
the correspondingGAs can be regardedas queriesthemselvesBoth thesemechanismsave now been

implemented and we are observing significant improvements in the ease of use of QBI.
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