1864

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, NO. 7, JULY 2011

Three-Dimensional Simulation of Charge-Trap
Memory Programming—~Part I: Average Behavior

Salvatore Maria Amoroso, Alessandro Maconi, Aurelio Mauri, Christian Monzio Compagnoni, Member, IEEE,
Alessandro S. Spinelli, Senior Member, IEEE, and Andrea L. Lacaita, Fellow, IEEE

Abstract—This paper presents a detailed investigation of
charge-trap memory programming by means of 3-D TCAD sim-
ulations accounting both for the discrete and localized nature
of traps and for the statistical process ruling granular electron
injection from the substrate into the storage layer. In addition, for
a correct evaluation of the threshold-voltage dynamics, cell elec-
trostatics and drain current are calculated in presence of atomistic
doping, largely contributing to percolative substrate conduction.
Results show that the low average programming efficiency com-
monly encountered in nanoscaled charge-trap memory devices
mainly results from the low impact of locally stored electrons on
cell threshold voltage in presence of fringing fields at the cell edges.
Programming variability arising from the discreteness of charge
and matter will be addressed in Part II of this paper.

Index Terms—Atomistic doping, charge-trap memory devices,
Monte Carlo simulations, semiconductor device modeling.

I. INTRODUCTION

HE PROGRAMMING efficiency of NAND-type charge-

trap memory devices has been shown to largely decrease
when device dimensions are reduced to the deca—nanometer
scale [1]-[4]. By referring to the incremental step-pulse pro-
gramming (ISPP) algorithm [5], [6], in fact, significant dif-
ferences have been shown to appear in the ratio between the
threshold-voltage increase per step (AVp ;) and the step am-
plitude V for large-area capacitors and nanoscaled cells. While
the ratio is only slightly below 1 for the former, at least far from
the saturation of the available traps in the storage layer [7], quite
lower values in the range of 0.5-0.65 are typically reported for
the latter [1], [2], [4]. Despite the decrease in the ISPP slope
for small-area cells has been clearly correlated not only to cell
dimensions but also to cell geometry [3], its origin has not been
well assessed so far.
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In this paper, extending our previous work [8], we present
a detailed simulation analysis of the ISPP dynamics on
nanoscaled charge-trap memory cells, highlighting the basic
features of the electron storage process and its impact on cell
threshold voltage V7. In order to account in detail for all the
effects of discreteness, 3-D technology computer-aided design
(TCAD) simulations have been performed accounting for the
discrete nature both of traps in the storage layer and of the elec-
tron flow charging it [9]-[13]. Moreover, to carefully evaluate
the impact of each single stored electron on cell Vi, substrate
doping was treated as atomistic when solving for cell elec-
trostatics and source-to-drain-current conduction [14]-[20].
Statistical results were collected following a Monte Carlo
approach, randomly changing the number and the position of
both the nitride traps and subtrate dopants and reproducing the
stochastic process ruling the discrete electron injection into the
storage layer during programming. The average results from
the Monte Carlo simulations show that the low programming
efficiency of nanoscaled charge-trap cells mainly results from
the low impact of locally stored electrons on V7 due to fringing
fields at the cell edges. This is also supported by results from
a continuous 3-D model for the program operation, including
only the localized nature of charge storage but neglecting the
discreteness of traps, dopants, and electron flow. The statistical
variability of the ISPP transients will be addressed by our
Monte Carlo simulations in the companion paper [21].

II. PHYSICS-BASED NUMERICAL MODEL

Fig. 1 shows the TCAD structure of the charge-trap memory
cell investigated in this paper, featuring an aluminum metal
gate, a bottom-oxide/nitride/top-oxide dielectric stack with
thicknesses equal to 4/4.5/5 nm, and shallow trench isolations
(STI) at the active-area edges. Note that the nitride layer is
patterned over the channel area, having width W and length
L equal to 18 nm. Instead, the gate extends beyond the active
area in the W direction, remaining completely planar. A uni-
form substrate doping N, = 4.2 x 10'® cm™3 was assumed,
discretizing the acceptor atoms in the channel region down to
25 nm from the bottom-oxide interface. A trap density equal to
N, = 6 x 10" cm~3 was assumed for the nitride. Details on
doping and nitride-trap discretization can be found in [9].

Fig. 2 shows the simulation procedure adopted for the sta-
tistical analysis of the ISPP dynamics. After the definition of
the deterministic features of the device, a first Monte Carlo
loop is used to gather information on cells having different
stochastic configurations of atomistic dopants and nitride traps,
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Filled traps
Empty traps

Fig. 1. TCAD structure for the simulated 18-nm metal-oxide—nitride—oxide—
semiconductor cell, highlighting discrete dopants in the substrate and discrete
traps in the nitride. Red regions: n-type implants. Blue regions: p-type substrate.
The oxide regions are not shown for clarity.

which were obtained by drawing their number from a Poisson
statistics and their spatial position from a uniform distribution
in their discretization region. Assuming empty traps in the
nitride, the neutral cell Vi is extracted from the drain-current-
versus-gate-voltage (Ip—Vi) transcharacteristics, which was
calculated by solving the drift—diffusion equations, as discussed
in [9], keeping the source and the bulk grounded and the
drain at Vp = 0.7 V. An inner Monte Carlo loop is then
used to simulate the electron-injection process during each
ISPP step. Once cell electrostatics is solved for Vg = Vg prog
(with source, drain and bulk grounded), the tunneling current
density J(x,y) is calculated over the channel area in the
Wentzel-Kramers—Brillouin approximation taking into account
the local electron supply in each point of the channel, and the
average electron-injection time from the substrate to each trap
is computed as

Tinj = T (1)
S, I (@ y)dwdy
where ¢ is the electron charge, and the integral is evaluated on
an area equal to the trap capture cross section o (assumed equal
to 1071* cm? throughout this paper [22]) centered at the trap
position. Then, for each trap, the stochastic electron-injection
time 7y, is drawn from an exponential distribution with average
value equal to its corresponding Ti,j, and a single electron is
placed in the nitride trap having the smallest 7;,; value. This
value is added to the total time ¢ elapsed since the beginning of
the program operation, then going back to the solution of cell
electrostatics with the new electron in the nitride and repeating
the calculations for the stochastic injection of the next electron
until the end of the ISPP step. When this happens, the Ip—V
transcharacteristics is calculated again to extract cell V- after
the programming step, then reentering the Monte Carlo loop for
electron injection after adding V, to Vg prog. The simulation
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flow reaches its end when Vg prog is equal to the maximum
value selected for the ISPP algorithm.

As a final remark, note that the model does not include
the possibility for electron emission from filled nitride traps.
This process is surely very important in the late stages of the
program operation, when the number of electrons stored in
the nitride is large and when the electric field within the top
oxide is high [22]. The analysis is therefore expected to hold
for V values far from the saturation of the available traps in
the nitride. Moreover, no trapping was included in the bottom-
and top-oxide layers, which were considered as ideal trap-
free dielectrics. Despite this choice allows the investigation
of the ultimate programming performance of the charge-trap
technology, the trapping in the top dielectric should be carefully
taken into account when a high-£ material is adopted. Similar to
electron emission, results on TANOS memory devices revealed,
in fact, that trapping in the top alumina layer has a nonnegli-
gible impact on the late stages of the programming transient
[23]-[25].

III. ELECTRON INJECTION

In order to highlight the basic features of the statistical
process leading to a discrete electron injection into the nitride
traps, ISPP was first investigated on a single stochastic cell,
having a random configuration of substrate dopants and nitride
traps, whose number was set nearly equal to the corresponding
average value. Fig. 3 shows J(z,y) over the channel area in
the case of Vg prog = 13 V and empty nitride, representing the
initial condition for the simulated ISPP. A largely nonuniform
tunneling current density clearly appears, with higher J(z,y)
at the STI corners where field peaks occur [9]. As a result,
Tinj strongly depends on the trap position over the channel, as
shown in Fig. 4. Traps placed near the active-area edges along
W display a smaller average capture time than traps located
near the channel center, with only a relatively small statistical
dispersion of the scatter plot. This dispersion is due, first of
all, to a weak Ti,; dependence on the trap position along L,
resulting into a slightly smaller capture time when the trap
is placed halfway between the source and the drain than near
the junctions. Moreover, Ti,;j also depends on the trap position
along the nitride thickness when the trap is vertically aligned to
other traps. In this case, in fact, the injected electron is assumed
to be captured by the lowest trap in the stack, and Tiy,; for the
higher traps was calculated by limiting the integral in (1) only
to the fraction of the o projection not shadowed by the lowest
traps.

From the results in Figs. 3 and 4, electron storage in the
nitride layer is not uniform during programming. This is shown
in Fig. 5, where the average distance of stored electrons from
the channel center is reported along the L and W directions.
If electrons were uniformly stored in the nitride, then their
average distance from the channel center in our 18-nm cell
should be 4.5 nm (i.e., the dashed line in the figure). Fig. 5
instead shows that the real distance in the W direction is
larger than this value during the first steps of ISPP, due
to a larger electron injection/capture near the cell STI cor-
ners. However, such a trapped charge reduces the tunneling
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Fig. 2.

probability in the same regions, making the electron trapping
in the central part of the channel more and more important
as programming proceeds. As a result, the average electron
distance from the channel center decreases and approaches
4.5 nm. Fig. 5 also shows a weak increase in the stored charge
position along L. This trend can be explained considering the
results in Figs. 3 and 4, showing that, during the initial ISPP
steps, electrons are nearly stored halfway between the source
and the drain. However, note that disuniformities in the electron
distribution along L are recovered as ISPP proceeds, with

Block diagram for the simulation procedure used to statistically investigate ISPP on nanoscaled charge-trap memory devices.

the mean stored charge position approaching 4.5 nm. Finally,
Fig. 5 also shows that the average distance of stored electrons
from the nitride/bottom-oxide interface slightly increases as
programming proceeds.

IV. AVy TRANSIENTS AND ISPP EFFICIENCY

The impact of electrons stored in the nitride layer on cell
Vr is strongly affected by fringing fields and atomistic sub-
strate doping [9], [10]. In fact, both these effects result into a



AMOROSO et al.: SIMULATION OF CHARGE-TRAP MEMORY PROGRAMMING I

|
. J(xy)
o0 [AlcmA2]
B
- 1x10°2
i - 1x1073
l 1x107
=
By 1x107
Ug— no— l 1x10°®
SOURCE

Fig. 3. Tunneling current density J(x,y) at the channel surface of the
stochastic cell investigated in Sections III and IV, for Vg = 13 V and empty
nitride (i.e., the beginning of ISPP). The squares are trap positions in the nitride.
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Fig. 4. Average injection time into the nitride traps Ti,j as a function of trap
position along W (left) and L (right), for Vo = 13 V and empty nitride. The
channel center is at (0, 0). The dashed lines are the average trend guidelines.

nonuniform source-to-drain-current density on the active area
during read, as shown in Fig. 6, where percolative substrate
conduction clearly appears. Note that the current density profile
is not symmetrical in the W direction, as expected in presence
only of field intensifications at the cell STI corners, due to the
variability contribution given by atomistic doping on substrate
inversion. In these conditions, the Vi shift AV obtained by
a single electron stored in the nitride depends on the electron
position over the active area, with electrons placed above a
current percolation path having a larger impact on Vp than the
others, due to their larger possibility to stop source-to-drain
conduction. This is shown in Fig. 7, where the AV produced
by a single electron placed in the different nitride traps is
reported as a function of the trap position along W and L.
In addition to the dispersion of the scatter plot, matching the
current density profile in Fig. 6, the resulting AV values in the
graph are all below the 1-D prediction AV} P = ¢/CLP ~
88 mV, where C;” = 1.81 aF is the 1-D capacitance from
the nitride center to the gate, which is given by
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Fig. 5. Average distance of trapped electrons from the channel center [i.e.,
(0, 0)] in the W and L directions as ISPP proceeds (the dashed line represents
the expected average distance in the case electrons were uniformly distributed
over the channel). The average vertical position of the trapped electrons in the
nitride is also shown (0 is the bottom-oxide/nitride interface).
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Fig. 6. Source-to-drain-current density at the channel surface of the stochastic

cell investigated in Sections III and IV, during read at Vg = Vo, with empty
nitride. The squares are the trap positions in the nitride.

with teq = tiop + tn€ox/2€ representing the equivalent oxide
thickness of the dielectric materials from the nitride central
position to the gate (€.« and €y and ¢y, and ¢ are the oxide
and nitride dielectric constants and thicknesses, respectively).
The smaller AV in Fig. 7 with respect to the 1-D prediction is
the result of fringing fields in the 3-D electrostatics, increasing
the gate coupling both with the nitride stored charge and the
channel, as discussed in [10].

In order to correctly quantify the stored charge effect on cell
Vr, Fig. 8 shows the average number of electrons in the nitride
(1) as a function of the average Vr shift AV at the end of
the ISPP steps (Vs = 500 mV and step duration 74 = 10 us),
resulting from more than 100 Monte Carlo simulations on the
investigated stochastic cell. From the slope of this graph, an
effective 3-D electrostatic capacitance value CI?\’IE;D =4.2 aF
can be extracted, allowing a correct evaluation of AVp as
g /O . Note that the effective O3 ” value is larger than
OY P, as required to give rise to AV values lower than the
1-D predictions in Fig. 7. The variability of the scatter plot
cannot, however, be explored by C3%., as this is defined from
Fig. 8 using the integral of n, and AVp as programming
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Fig.7. AVp given by a single electron stored in the nitride layer as a function
of the trap position along W (left) and L (right). The channel center is at (0, 0).
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Fig. 8. 7y versus AV relation during ISPP with Vi = 500 mV and 75 =
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proceeds, therefore averaging the different effects of stored
electrons on cell V. The displacement of the 7; versus AVp
relation from the linear behavior for large numbers of stored
electrons in Fig. 8 clearly highlights, however, a change in the
average impact of the stored charge on V7. This reflects the
displacement of the storage position from the STI cell corners to
the central channel regions and from half-way between source
and drain to the junctions as ISPP proceeds, in agreement with
the results in Fig. 5 and determining a consequent reduction of
the stored electron control on V7.

Fig. 9 shows some Monte Carlo simulations for the AVp
transients during ISPP on the same stochastic cell. In addition to
the statistical dispersion of the curves, which will be addressed
in detail in Part II of this paper, an average increase per step
AVr s ~ 0.5V, appears, confirming the low ISPP efficiency
commonly observed on charge-trap memory devices [1], [2],
[4]. The low AV /V; is mainly the result of the low impact
exerted by stored electrons on V- and, in turn, of the large effec-
tive CI%E;D . Note, in fact, that, by assuming for the electrons an
electrostatic control as in the 1-D case, the resulting ISPP slope
would be increased by ratio Cg_GD / C’ﬁ@D ~ 2.3, i.e., it would
be even a little bit larger than 1. This means that the nonuniform
J(z,y) and Tiyj profiles over the active area not only do not
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Fig. 9. Monte Carlo simulation results for the AV transients of the stochas-
tic cell investigated in Sections III and IV.
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Fig. 10. Average Vi and AV transients during ISPP simulated from many
Monte Carlo runs on the same single cell or from a single Monte Carlo run on
many stochastic cells.

degrade the electron-injection process but also enhance indeed
the process with respect to the 1-D case.

In order to exclude that the previous results are a specific fea-
ture of the single stochastic cell investigated, we simulated the
ISPP transient on a large number of different cells, following
the complete Monte Carlo procedure in Fig. 2. Fig. 10 shows
the comparison between the average results from many ISPP
transients on the same cell and from a single ISPP transient on
many stochastically different cells, in terms of V7 and AVrp.
Despite the number of atomistic dopants in the substrate of
the previously considered single cell was selected nearly equal
to the average value expected from N,, a higher neutral V
value (i.e., V at step 0) appears for this cell with respect to the
average value of the cells statistics. This is due to a significant
impact of dopants position on the cell neutral V- value [9].
However, no significant difference appears between the single-
and multicell AV transients in Fig. 10. This confirms in more
general terms the low programming efficiency of the investigate
charge-trap cell, leading to an average AVp ;/V, ~ 0.5.

V. SCALING ANALYSIS

The results in Fig. 10 revealed that the low ISPP efficiency is
a general feature of nanoscaled charge-trap memory devices,
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Fig. 11. Comparison between the average AV transient during ISPP from
our Monte Carlo model and from a 3-D numerical tool treating substrate
doping, nitride traps, and the programming electron flow as continuous.

clearly appearing in the average programming behavior ex-
tracted from single- and multi-cell statistics. Fig. 11 shows
that this average behavior can be reproduced, as reasonably
expected, even neglecting the discrete nature of charge and
matter, i.e., using 3-D simulations with continuous substrate
doping, continuous trap density in the nitride, and continuous
electron flow from the substrate to the nitride during program-
ming. These simulations were obtained by a numerical tool
extending to 3-D geometries the model for charge-trap memory
programming that we presented in [22], implementing electron
trapping as [26], [27]

dny(z,y) _ J(@,y)

o . [Ny — ni(z,y)] A3)

where n}(x,y) is the trapped electron density in the nitride.
Note that, for a correct comparison of the Monte Carlo and
continuous models, no emissivity from filled electron traps
was included in (3). Moreover, in the continuous tool cell, Vi
was obtained from the simulation of cell Ip—V transcharac-
teristics, as discussed in Fig. 2. Despite a small displacement
of the AV curves, which are mainly attributed to numerical
differences between the two simulation codes, Fig. 11 confirms,
first of all, the correctness of the Monte Carlo approach for the
program operation that we presented in Fig. 2. Moreover, the
agreement between the results in Fig. 11 makes possible
the use of the continuous 3-D model to investigate the pro-
gramming performance when only the average results are of
interest. However, note that the Monte Carlo model allows a
more complete analysis of the program operation, including
variability effects representing the topic of Part II of this
paper [21].

Fig. 12 shows a scaling analysis of the ISPP AV transient
obtained using the continuous 3-D model for cell programming
and assuming a reduction of the cell area while keeping the
same gate stack investigated in the previous sections. A reduc-
tion of the ISPP efficiency with cell scaling clearly appears,
in terms both of the slope and the horizontal delay of the
curves. This is due to a decreasing impact of the electrons
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stored in the nitride on V7 as cell dimensions are reduced, as
discussed in Section IV. Fig. 13 shows, in fact, that the average
n; curves display faster electron injection and storage in the
nitride as scaling proceeds, due to a larger field enhancement at
the corners of the cell area.

VI. CONCLUSION

This paper has presented a detailed simulation analysis of
charge-trap memory programming, carefully reproducing the
discrete and localized nature of storage traps and the statistical
process ruling the granular electron injection into the storage
layer. The average results for ISPP on single- and multi—cell
statistics revealed that the low programming efficiency of
nanoscaled charge-trap cells mainly results from the low impact
of locally stored electrons on cell Vr in presence of fringing
fields and 3-D electrostatics. Programming variability arising
from the discreteness of charge and matter will be addressed in
Part II of this paper.
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