
Submitted to Electronic Proceedings
in Theoretical Computer Science.

c© Luca Padovani
This work is licensed under the
Creative Commons Attribution License.

Session Types at the Mirror

Luca Padovani
Istituto di Scienze e Tecnologie dell’Informazione, Università degli Studi di Urbino “Carlo Bo”

padovani@sti.uniurb.it

We (re)define session types as projections of process behaviors with respect to the communication
channels they use. In this setting, we give session types a semantics based on fair testing. The
outcome is a unified theory of behavioral types that share common aspects with conversation types
and that encompass features of both dyadic and multi-party session types. The point of view we
provide sheds light on the nature of session types and gives us a chance to reason about them in a
framework where every notion, from well-typedness to the subtyping relation between session types,
is semantically – rather than syntactically – grounded.

1 Introduction

The leitmotif in the flourishing literature on session types [14, 15, 16] is to associate every communi-
cation channel with a type that constraints how a process can use that channel. In this paper we take
the opposite perspective: we define the session type associated with a channel as the projection of the
behavior of the processes restricted to how that channel is used by them. As expected, this approach
requires a language of session types that is more general than the ones we usually encounter in other
works. But, and this is in summary the contribution of this work, the language we come up with is just
a minor variation of well-known value passing process algebras that can be semantically characterized
using well-known concepts and techniques.

To get acquainted with our approach, let us consider the following example written in π-calculus like
language and which is a slightly simplified variant of the motivating example in [16]:

Seller = a?(x).x?(title : String).x!price.x?(addr : Address).x!date
Buyer1 = (νc)a!c.c!“The Origin of Species”.c?(price : Int).(νd)b!d.d!price/2.d!c
Buyer2 = b?(y).y?(contrib : Int).y?(z).z!address.z?(d : Date)

Here we have two buyers that collaborate with each other in order to complete a transaction with a
seller. Buyer1 creates a local channel c that it sends to Seller through the public channel a. The channel
c is normally dubbed session: it is a fresh channel shared by Buyer1 and Seller on which the two can
communicate privately. On c, Buyer1 sends to the Seller the name of a book, and Seller answers with its
price. At this stage Buyer1 asks the collaboration of Buyer2: it creates another fresh channel d which
it communicates to Buyer2 by means of the public channel b, it sends Buyer2 the amount of money
Buyer2 should contribute, and finally it delegates the private channel c to Buyer2, so that Buyer2 can
complete the transaction with the Seller. This implies sending the Seller a delivery address and receiving
the estimated delivery date.

Let us focus on the public channels a and b: the former is used by Buyer1 for sending a channel
of some type, say σ , and is used by Seller for receiving a channel of the same type. In our approach
we say that the type of a is ?σ .1 | !σ .1, where ?σ .1 is the projected behavior of Seller on a, !σ .1 is the
projected behavior of Buyer1 on a, and | denotes the composition of these two behaviors. In a similar
way, b is used by Buyer1 and Buyer2 and has type !τ.1 | ?τ.1, assuming that the channel exchanged

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Session Types at the Mirror

between Buyer1 and Buyer2 has type τ . Channel c is more interesting: it is created by Buyer1, which
uses it according to the type !String.?Int. However, c is delegated to Seller right after its creation, and
to Buyer2 when Buyer1 has finished using it. So, the true type of c is σ | !String.?Int.ρ where σ is
the projection of Seller’s behavior with respect to the channel c (after it has been received by Seller),
and ρ is the projection of Buyer2’s behavior with respect to the same channel after it has been received
by Buyer2. By similar arguments, one can see that the type of d is τ | !Int.!ρ.1 and the mentioned
types σ , τ , and ρ are defined as ?String.!Int.?Address.!Date.1, ?Int.?ρ.1, and !Address.?Date.1,
respectively. If we were to depict the projection we have operated for typing the channels in the example,
we could summarize it as follows:

Seller︷ ︸︸ ︷ Buyer1︷ ︸︸ ︷ Buyer2︷ ︸︸ ︷
a : ?σ .1 | !σ .1
b : !τ.1 | ?τ.1
c : ?String.!Int.?Address.!Date.1 | !String.?Int.1 | !Address.?Date.1
d : !Int.!ρ.1 | ?Int.?ρ.1

Can we tell whether the system composed of Seller and the two buyers “behaves well”? Although
at this stage we have not given a formal semantics to session types, by looking at the the types for the
various channels involved in the example we can argue that they all eventually “reduce” to a parallel
composition of 1’s. If we read the type 1 as the fact that a process stops using a channel with that type,
this roughly indicates that all the conversations initiated in the example eventually terminate successfully.

Observe that the projection we have operated does not capture the temporal dependencies between
communications occurring on different channels. This is a well-known source of problems if one is in-
terested in global progress properties. In our approach, and unlike other presentations of session types,
we do not even try to impose any linearity constraint on the channels being used, nor do we use polar-
ities [11] or indexes [16, 1] for distinguishing different roles. For example, the process Buyer1 keeps
using channel c after it has been delegated, and it delegates the channel once more before terminating.
As a consequence, the projection we operate may not even capture the temporal dependencies between
communications occurring on the same channel. This can happen if two distinct free variables are in-
stantiated with the same channel during some execution. Thus, we must impose additional constraints
on processes only to ensure the type preservation property. Interestingly, such additional constraints are
exactly the same used for ensuring global progress [8, 1, 3].

We can identify three main contributions of this work: (1) we show that session types can be naturally
generalized to an algebraic language of processes that closely resembles value-passing CCS; (2) as a
consequence, we are able to work on session types reusing a vast toolkit of known results and techniques;
in particular, we are able to semantically justify the fundamental concepts (duality, well-typedness, the
subtyping relation) that are axiomatically or syntactically presented in other theories; (3) we provide
a unified framework of behavioral types that encompasses features not only of dyadic and multi-party
session types, but also of conversation types [2].

Structure of the paper. In Section 2 we define session types as a proper process algebra equipped with
a labeled transition system and a testing semantics based on fair testing. This will immediately provide
us with a semantically justified equivalence relation – actually, a precongruence – to reason about safe
replacement of channels and well-behaving systems. In Section 3 we formally define a process language
that is a minor variant of the π-calculus without any explicit construct that is dedicated to session-oriented
interaction. We will show how to type processes in this language and illustrate the main features of the

Luca Padovani 3

type system with several examples. Finally, we will prove the main properties (type preservation and
local progress) of our typing relation. Section 4 concludes. For referee convenience, the Appendix
contains proofs and auxiliary results.

Related work. Theories of dyadic session types can be traced back to the works of Honda [14] and
Honda et al. [15]. Since then, the application of session types has been extended to functional lan-
guages [20, 12] and object-oriented languages (see [10, 9] for just a few examples). A major line of
research is the one dealing with so-called multi-party session types, those describing sessions where
multiple participants interact simultaneously [16, 1]. An in depth study of a subtyping relation for ses-
sion types can be found in [11], while [19] provides an incremental tutorial presentation of the most
relevant features of dyadic session types.

Conversation types [2] are a recently introduced formalism that aims at generalizing session types
for the description of the behavior of processes that interact within and across the scope of structurally
organized communications called conversations. Conversation types are very similar to the language of
session types we propose here, for example they embed a parallel composition operator for representing
the composed behavior of several processes simultaneously accessing a conversation. The difference
with our approach mainly resides in the semantics of types: we treat session types as terms of a proper
process algebra with a proper transition relation and all the relevant notions on types originate from here.
In [2], the semantics of conversation types is given in terms of syntactically-defined notions of subtyping
and merging. Also, [2] uses a process language that incorporates explicit constructs for dealing with
conversations, while we emphasize the idea of projected behavior by working with the naked π-calculus.

Elsewhere [3] we have been advocating the use of a testing approach in order to semantically justify
session types. Unlike [3], here we disallow branch selection depending on the type of channels. This
reduces the expressiveness of types for the sake of a simplification of the technicalities in the resulting
theory. Another difference is that in the present paper we adopt a fair testing approach [18].

Finally, it should be mentioned that the use of processes as types has already been proposed in the
past, for example in [5, 17]. In particular, [17] uses a language close to value-passing CCS for defining
an effect system for Concurrent ML.

2 Syntax and semantics of session types

Let us fix some conventions: σ , τ , ρ , . . . range over session types; α , . . . range over actions; t, s, . . . range
over types; v, . . . range over an unspecified set V of basic values; B, . . . range over an unspecified set of
basic types such as Int, Bool, String, and so on. The syntax of session types is defined by the grammar
in Table 1. Types represent sets of related values: 0 is the empty type, the one inhabited by no value;
basic types are arbitrary subsets of V ; for every v ∈ V we write v for the singleton type whose only value
is v itself. We will write v : t to state that v inhabits type t and we will sometimes say that v is of type t.

Actions represent input/output operations on a channel. An action !t represents the sending of an
arbitrary value of type t; an action ?t represents the receiving of an arbitrary value of type t; actions !σ
and ?σ are similar but they respectively represent the sending and receiving of a channel of type σ .

Although session types are used to classify channels, they describe the behavior of processes using
those channels. Consistently with this observation, we will often present session types as characterizing
processes rather than channels. In the explanation that follows, it is useful to keep in mind that, when a
process uses a channel according to some protocol described by a session type, it expects to interact with
other processes that use the same channel according to other protocols. For a communication to occur,

4 Session Types at the Mirror

Table 1: Syntax of session types.
σ ::= session type

0 (failure)
| 1 (success)
| α.σ (action prefix)
| σ +σ (external choice)
| σ ⊕σ (internal choice)
| σ |σ (composition)

α ::= action
?t (value input)

| !t (value output)
| ?σ (channel input)
| !σ (delegation)

t ::= type
0 (empty)

| v (singleton)
| B (basic type)

the process must perform an action on the channel (say, sending a value of some type), and another
process must perform the corresponding co-action (say, receiving a value of the same type). The session
type 0 classifies a channel on which a communication error has occurred. No correct system should ever
involve channels typed by 0, but we will see that it is useful to have an explicit term denoting a static
error. The session type 1 describes a process that performs no further action on a channel. The session
type α.σ describes a process that performs the action α , and then behaves according to the protocol σ .
The session type σ + τ is the external choice of σ and τ and describes a process that offers interacting
processes to behave according to one of the branches. Dually, the session type σ ⊕ τ is the internal
choice of σ and τ and describes a process that internally decides to behave according to one of the
branches. The session type σ | τ describes the simultaneous access to a shared channel by two processes
behaving according to σ and τ . If we have n processes sharing a common channel and each process
behaves according to some protocol σi, then σ1 | · · · |σn describes the overall protocol implemented by
the processes on the channel.

We do not rely on any explicit syntax for describing recursive behaviors. We borrow the technique
already used in [3] and define the set of session types as the set of possibly infinite syntax trees generated
by the productions of the grammar in Table 1 that satisfy the following conditions:

1. the tree must contain a finite number of different subtrees;

2. on every infinite branch of the tree there must be infinite occurrences of the action prefix operator;

3. the tree must contain a finite number of occurrences of the parallel composition operator.

The first condition is a standard regularity condition imposing that the tree must be a regular tree [6].
The second one is a contractivity condition ruling out meaningless regular trees such as those generated
by the equations X = X +X or X = X ⊕X . Finally, it can be shown that the last condition enforces that
the protocol described by a session type is “finite state”.

To familiarize with session types consider the following two examples: ?Int.!String.1+?Bool.!Real.1
describes a process that waits for either an integer number or a Boolean value. If the process receives
an integer number, it sends a string; if the process receives a Boolean value, it sends a real number.
After that, in either case, the process stops using the channel. Instead, the session type !Int.1⊕ !Bool.1
describes a process that internally decides whether to send an integer or a Boolean value.

It may seem that the syntax of session types is overly generic, and that external choices make sense
only when they are guarded by input actions and internal choices make sense only when they are guarded
by output actions. As a matter of facts, this is a common restriction in standard session type presentations.
In our approach, this generality is actually necessary: a session type σ = !Int.1 | !Bool.1 describes two
processes trying to simultaneously send an integer and a Boolean value on the same channel. A process
interacting with these two parties is allowed to read both values in either order, since both are available.

Luca Padovani 5

Table 2: Transitions of session types.

1
X−→ 1 σ ⊕ τ −→ σ !v.σ

!v−→ σ !ρ.σ
!ρ−→ σ ?ρ.σ

?ρ−→ σ

v : t

!t.σ −→ !v.t

v : t

?t.σ
?v−→ σ

σ −→ σ
′

σ + τ −→ σ
′+ τ

σ
µ−→ σ

′

σ + τ
µ−→ σ

′

σ −→ σ
′

σ | τ −→ σ
′ | τ

σ
µ−→ σ

′
µ 6=X

σ | τ µ−→ σ
′ | τ

σ
X−→ σ

′
τ
X−→ τ

′

σ | τ X−→ σ
′ | τ ′

σ
!v−→ σ

′
τ

?v−→ τ
′

σ | τ −→ σ
′ | τ ′

σ
!ρ−→ σ

′
τ

?ρ ′−→ τ
′

ρ � ρ
′

σ | τ −→ σ
′ | τ ′

σ
!ρ−→ σ

′
τ

?ρ ′−→ τ
′

ρ 6� ρ
′

σ | τ −→ 0

In other words, the session type σ is equivalent to !Int.!Bool.1+ !Bool.!Int.1, that is the interleaving
of the actions in σ . Had we expanded σ to !Int.!Bool.1⊕ !Bool.!Int.1 instead, no interacting process
would be able to decide which value, the integer or the Boolean value, to read first. The ability to
express parallel composition in terms of choices is well studied in process algebra communities where it
goes under the name of expansion law [7, 13]. This ability is fundamental in order to define complete
proof systems and algorithms for deciding equivalences. Decidability issues aside, we envision two more
reasons why this generality is appealing: first, it allows us to express the typing rules (Section 3) in a
more compositional way, which is particularly important in our approach where we aim at capturing full,
unconstrained process behaviors; second, it clearly separates communications (represented by actions)
from choices, thus yielding a clean, algebraic type language with orthogonal features.

We equip session types with an operational semantics that mimics the actions performed by processes
behaving according to these types. The labeled transition system of session types is defined by the
rules in Table 2 plus the obvious symmetric rules of those concerning choices and parallel composition.
Transitions make use of labels ranged over by µ , . . . and generated by the grammar:

µ ::= X | ?v | !v | ?σ | !σ

Strictly speaking, the transition system is defined by two relations: a labeled one
µ−→ describing

external, visible actions and an unlabeled one −→ describing internal, invisible actions. The session
type 1 emits a single action X denoting successful termination of the protocol, and reduces to itself.
The session type σ ⊕ τ can perform an invisible transition to either σ or τ . The session type !v.σ emits
the value v and reduces to σ . Similarly, !ρ.σ emits a signal !ρ (the output of a channel of type ρ) and
?ρ.σ emits a signal ?ρ (the input of a channel of type ρ). The first rule on the second line of Table 2
states that a process behaving according to !t.σ internally chooses a value v of type t to send, and once
has committed to such a value it reduces to !v.σ . The next rule expresses a similar capability for input
actions. However, observe that a process behaving according to !t.σ commits to sending one particular
value of type t, whereas a process behaving according to ?t.σ is able to receive any value of type t.
The following rule states that + is indeed an external choice, thus internal choices in either branch do
not preempt the other branch. This is a typical reduction rule for those languages with two different
choices, such as CCS without τ’s [7]. The last two rules in the second line state obvious reductions for

6 Session Types at the Mirror

external choices, which offer any action that is offered in either branch, and parallel compositions, which
allow either component to internally evolve independently. The first rule in the third line states that any
action other thanX is offered by a parallel composition whenever it is offered by one of the components;
the second rule in the row states that a parallel composition has successfully terminated only if both
components have; the last rule states the obvious synchronization between components offering dual
actions. The last line contains two more synchronization rules concerning channels: the first rule states
that a process sending a channel of type ρ can synchronize with another process willing to receive a
channel of type ρ ′, but only if ρ � ρ ′. Here � is a subtyping relation meaning that any channel of type
ρ can be used where a channel of type ρ ′ is expected. We shall formally define � in a moment; for the
time being we must content ourselves with this intuition. The last rule states that if the relation ρ � ρ ′ is
not satisfied, the synchronization occurs nonetheless, but a communication error occurs.

Before we move on to the subtyping relation for session types, we should point out a fundamental
design decision that relates communication and external choices. On the one hand, values other than
channels may drive the selection of the branch in external choices. For example, we have ?Int.σ +
?Bool.τ ?3−→ σ while ?Int.σ + ?Bool.τ ?true−−−→ τ . The type of the value determines the branch, and this
feature allows us to model the label-driven branch selection that is found in standard presentations. On
the other hand, the last two rules in Table 2 show that branch selection cannot be affected by the type of

the channel being communicated. It is true that ?ρ.σ + ?ρ ′.τ
?ρ−→ σ and ?ρ.σ + ?ρ ′.τ

?ρ ′−→ τ , but when
we compose ?ρ.σ + ?ρ ′.τ with !ρ ′′.θ any reduction is possible, and the residual may or may not be 0
depending on the relation between ρ , ρ ′, and ρ ′′:

ρ
′′ � ρ

?ρ.σ + ?ρ
′.τ | !ρ ′′.θ −→ σ |θ

ρ
′′ 6� ρ

?ρ.σ + ?ρ
′.τ | !ρ ′′.θ −→ 0

To be sure that the residual is not 0, it must be the case that ρ ′′ � ρ and ρ ′′ � ρ ′. In summary, we
do not allow dynamic dispatching according to the type of a channel, namely all channels are equal
and indistinguishable. This is not the only possible choice (see [3] for an alternative), but is one that
significantly simplifies the theory.

In the following we adopt standard conventions regarding the transition relations: we write =⇒ for
the reflexive, transitive closure of −→; we write σ

µ−→ (respectively, σ
µ

=⇒) if there exists τ such that
σ

µ−→ τ (respectively, σ
µ

=⇒ τ); we write X−→, X
µ−→, Y

µ
=⇒ for the usual negated relations; for example,

σ X−→ means that σ does not perform internal transitions.
The first characterization we give is that of complete session type, namely a session type that can

always reach a successful state, no matter of its internal transitions.

Definition 2.1 (completeness). We say that σ is complete if σ =⇒ σ ′ implies σ ′
X=⇒.

Completeness roughly corresponds to the notion of well-typed process in standard presentations: it
means that no evolution of the system may lead to an error state or a to state where one process insists
on sending a message that no interacting party is willing to accept. 1 is the simplest complete session
type; the session types ?σ .1 | !σ .1 and σ | !String.?Int.ρ we have seen in the introduction are also
complete, since every maximal transition leads to a successfully terminated state. The simplest example
of incomplete session type is 0, another example being ?Int.1 |!Real.1 because of the maximal reduction
?Int.1 | !Real.1 −→ ?Int.1 | !

√
2.1 X−→. If we take σ as the solution of the equation X = ?Int.X and

τ as the solution of the equation Y = !Int.Y we have that σ | τ is not complete, despite it never reaches
a deadlock state. In this sense the notion of completeness embeds a fairness principle that is typically

Luca Padovani 7

found in fair testing theories [18]. In fact, we provide session types with a (fair) testing semantics: σ is
“smaller than” τ if every session type that completes σ completes τ as well.

Definition 2.2 (subsession). We say that σ is a subsession of τ , notation σ � τ , if σ |ρ complete implies
τ |ρ complete for every ρ . We write ≈ for the equivalence relation induced by �, namely ≈=�∩�.

The equational theory generated by this definition is not immediately obvious, and we will not de-
velop it here because it falls out of the scope of the paper. Nonetheless, a few relations are easy to check:
for example, +, ⊕, and | are commutative, associative operators; 0 is neutral for + and 1 is neutral for |;
furthermore σ ⊕ τ � σ . Namely, it is safe to use a channel with type σ ⊕ τ where another one of type σ

is expected. If the safety property mentioned here seems hard to grasp, one should resort to the intuition
that the “type” of a channel actually is the behavior of a process communicating on that channel. A
process that expects to receive a channel with type σ will behave on that channel according to σ ; if we
send that process a channel with type σ⊕τ , the receiving process will still behave according to σ , which
is a more deterministic behavior than σ ⊕ τ , hence no problem may arise. As a special case of reduction
of nondeterminism, we have !Real.σ � !Int.σ assuming that Int is a subtype of Real. Other useful
relations are those concerning failed processes: we have 0≈ α.0 and !0.σ ≈ ?0.σ ≈ 0. More generally,
the relation σ ≈ 0 means that there is no session type τ such that σ | τ is complete: σ is intrinsically
flawed and cannot be remedied. The class of non-flawed session types will be of primary importance in
the following, to the point that we reserve them a name.

Definition 2.3 (viability). We say that σ is viable if σ |ρ is complete for some ρ .

Remark 2.1. At this stage we can appreciate the fact that subsession depends on the transition relation,
and that the transition relation depends on subsession. This circularity can be broken by stratifying the
definitions: a session type σ is given weight 0 if it contains no prefix of the form ?ρ or !ρ; a session type
σ is given weight n > 0 if any session type ρ in any prefix of the form ?ρ or !ρ occurring in σ has weight
at most n− 1. By means of this stratification, one can see that the definitions of the transition relation
and of subsession are well founded. �

It is fairly easy to see that � is a precongruence with respect to action prefix, internal choice, and
parallel composition. The case of the action prefix is trivial. As regards the internal choice, it suffices to
observe that (σ⊕τ) |ρ is complete if and only if both σ |ρ and τ |ρ are complete. Namely,⊕ corresponds
to a set-theoretic intersection between session types that complete σ and τ . As regards the parallel
composition, the precongruence follows from the very definition of subsession, since σ |σ ′ � τ |σ ′ if
(σ | σ ′) | ρ complete implies (τ | σ ′) | ρ complete, namely if σ | (σ ′ | ρ) complete implies τ | (σ ′ | ρ)
complete, that is if σ � τ . Because all the non-viable session types are ≈-equal, however, � is not a
precongruence with respect to the external choice. For example, we have 0 � !Int.0 but !Int.1 + 0 6�
!Int.1+ !Int.0≈ 0. This is a major drawback of the subsession relation as it is defined, since it prevents
� from being used in arbitrary contexts for replacing equals with equals (note that≈ is not a congruence
for the same reasons). We resort to a standard technique for defining the largest relation included in �
that is a precongruence with respect to the external choice. We call this relation strong subsession:

Definition 2.4 (strong subsession). Let v be the largest relation included in � that is a precongruence
with respect to +, namely σ v τ if and only if σ +ρ � τ +ρ for every ρ . We write' for the equivalence
relation induced by v, namely '=v∩w.

We end this section with a few results about � and v. First of all, we can use v for reasoning about
viability and completeness of a session type:

Proposition 2.1. The following properties hold:

8 Session Types at the Mirror

Table 3: Syntax of processes.
P ::= process

| 0 (idle)
| π.P (action prefix)
| ?P (replication)
| P+P (external choice)
| P⊕P (internal choice)
| P |P (parallel composition)
| (νc)P (restriction)

π ::= action
| u?(x : t) (value input)
| u!e (value output)
| u?(x) (channel input)
| u!v (delegation)

1. σ is not viable if and only if σ v 0;

2. σ is complete if and only if 1+σ v σ .

Then, we prove that � and v are almost the same relation, in the sense that they coincide as soon as
the smaller session type is viable. This means that for all practical purposes the use of v in place of � is
immaterial, if not for the gained precongruence, since in no case we will be keen on replacing a channel
with a viable type with one that is not viable.

Theorem 2.1. σ � τ if and only if either σ v 0 or σ v τ .

3 Processes

Processes are defined by the grammar in Table 3. We use P, Q, R, . . . to range over processes; we use π ,
. . . to range over action prefixes; we use a, b, c, . . . to range over channel names; we let x, y, z, . . . range
over variables and u, v, . . . range over channel names and variables (v should not be confused with v that
we used to range over elements of V); we let e, . . . range over an unspecified language of expressions.
The process language is a minor variation of the π-calculus, so we remark here only the differences: we
have four action prefixes: u?(x : t) denotes a receive action for a basic value x of type t on channel u;
u!e denotes a send action for the value of the expression e on channel u; u?(x) denotes a receive action
for a channel x on channel u; u!v denotes a send action for a channel v on channel u. Consistently with
the language of session types, actions denoting send/receive operations of channels are “untyped”. The
process ?P denotes unbounded replications of process P, and P + Q and P⊕Q respectively denote the
external and internal choice between P and Q. We will usually omit the 0 process; we will write fn(P)
for the set of free channel names occurring in P (the only binder for channel names is restriction); we
will write P{m/x} for the process P where free occurrences of the variable x has been replaced by m.

The transition relation of processes is defined by an almost standard relation in Table 4, so we will
not provide detailed comments here. In the table, we write e ↓ v for the fact that expression e evaluates to
v. Labels of the transition relation are ranged over by `, . . . and are generated by the following grammar:

` ::= c?m | c!m | c!(d)

where m, . . . ranges over messages, namely basic values and channel names. Actions of the form c?m
and c!m are often called free inputs and free outputs respectively. Actions of the form c!(d) are called
bound outputs and represent the extrusion of a private channel, d in this case. We use these actions to
model session initiations, whereby a private channel is exchanged and subsequently used for the actual

Luca Padovani 9

Table 4: Transitions of processes.

P⊕Q−→ P ?P−→ ?P |P c?(x).P
c?d−→ P{d/x} c!d.P

c!d−→ P
v : t

c?(x : t).P
c?v−→ P{v/x}

e ↓ v

c!e.P
c!v−→ P

P−→ P′

P+Q−→ P′+Q

P
`−→ P′

P+Q
`−→ P′

P
c!m−→ P′ Q

c?m−→ Q′

P |Q−→ P′ |Q′

P
c!(d)−→ P′ Q

c?d−→ Q′ d 6∈ fn(Q)

P |Q−→ (νd)(P′ |Q′)

P−→ P′

P |Q−→ P′ |Q

P
`−→ P′ bn(`)∩fn(Q) = /0

P |Q `−→ P′ |Q

P−→ P′

(νd)P−→ (νd)P′

P
`−→ P′ d 6∈ fn(`)∪bn(`)

(νd)P
`−→ (νd)P′

P
c!d−→ P′ c 6= d

(νd)P
c!(d)−→ P′

interaction. Notions of free and bound names in labels are standard, with fn(c?d) = fn(c!d) = {c,d},
fn(c?v) = fn(c!v) = fn(c!(d)) = {c}, and bn(c!(d)) = {d}, the other sets being empty.

We remark only two distinctive features of the transition relation: (1) the replicated process ?P
evolves by means of an internal transition to ?P |P; technically this makes ?P a divergent process, but
the fact that we work with a fair semantics makes this only a detail; (2) similarly to the transition relation
for session types, the transition relation for processes selects branches of external choices according to
the type of the basic value being communicated. This is evident in the transitions for c?(x : t).P, which
are labeled by values of type t.

The typing rules for the process language are inductively defined in Table 5. Judgments have the
form Γ ` P : ∆ or Γ `u P : ∆, where Γ is a standard environment mapping variables to basic types and
∆ is an environment mapping channel names and channel variables to session types. We write dom(∆)
for the domain of ∆. The u annotation in some judgments is used to constraint the way actions can be
composed. Rule (T-WEAK) allows one to enrich ∆ with assumptions of the form u : 1, indicating that
a process does not use the channel u. The premise u 6∈ dom(∆) implies u 6∈ fn(P) since it is always the
case that fn(P)⊆ dom(∆). Rule (T-SUB) is an almost standard subsumption rule regarding the type of a
channel u. The peculiarity is that it works “the other way round” by allowing a session type τ to become
a smaller session type σ . The intuition is that P behaves according to τ on the channel u. Thus, it is
safe to declare that the session type associated with u is even less deterministic than τ . We will see that
this rule is fundamental in the type system since many other rules impose equality constraints on session
types that can only be satisfied by finding a lower bound to two or more session types. It should also be
appreciated the importance of using v, which is a precongruence, since this allows us to apply rule (T-
SUB) in arbitrary contexts. Rule (T-RES) types restrictions, by requiring the session type associated with
the restricted channel to be of the form 1 + σ . In light of rule (T-SUB) and of Proposition 2.1(2), this
requirement imposes that the session type of a restricted channel c must be complete. Namely, there
must not be communication errors on c. Rule (T-NIL) types the idle process 0 with the empty session
environment. The process 0 should not be confused with the failed session type 0: the former is the
successfully terminated process that does not use any channel; the latter denotes a communication error
or a deadlock. Rules annotated with a channel u regard communications. The annotation indicates the

10 Session Types at the Mirror

Table 5: Typing rules for processes.
T-WEAK
Γ ` P : ∆ u 6∈ dom(∆)

Γ ` P : ∆∪{u : 1}

T-SUB
Γ ` P : ∆∪{u : τ} σ v τ

Γ ` P : ∆∪{u : σ}

T-RES
Γ ` P : ∆∪{c : 1+σ}

Γ ` (νc)P : ∆

T-NIL

Γ ` 0 : /0

T-COMM
Γ `u P : ∆

Γ ` P : ∆

T-INPUT
Γ,x : t ` P : ∆∪{u : σ}

Γ `u u?(x : t).P : ∆∪{u : ?t.σ}

T-INPUTS
Γ ` P : {x : ρ}

Γ `u u?(x).P : {u : ?ρ.1}

T-OUTPUT
Γ ` e : t Γ ` P : ∆∪{u : σ}

Γ `u u!e.P : ∆∪{u : !t.σ}

T-OUTPUTS
Γ ` P : ∆∪{u : σ ,v : τ}

Γ `u u!v.P : ∆∪{u : !ρ.σ ,v : τ |ρ}

T-EXT
Γ `u P : ∆∪{u : σ} Γ `u Q : ∆∪{u : τ}

Γ `u: P+Q : ∆∪{u : σ + τ}

T-INT
Γ ` P : ∆ Γ ` Q : ∆

Γ ` P⊕Q : ∆

T-BANG
Γ ` P : {ui : σi

i∈I} σi v σi |σi
i∈I

Γ ` ?P : {ui : σi
i∈I}

T-PAR
Γ ` P : {ui : σi

i∈I} Γ ` Q : {ui : τi
i∈I}

Γ ` P |Q : {ui : σi | τi
i∈I}

channel on which the communication occurs. Rule (T-INPUT) types an input action for basic values of
type t. The assumption x : t is moved into the environment Γ and if the session type associated with u
in the continuation P is σ , then the overall behavior of P on u is described by ?t.σ . Rule (T-OUTPUT)
is similar, but regards output actions of basic values. We assume an unspecified set of deduction rules
for judgments of the form Γ ` e : t, denoting that the expression e has type t in the environment Γ.
Rule (T-INPUTS) types an input action for a channel x. The continuation P must be typed in a session
environment of the form {x : ρ}, requiring that P must not refer to (free) channels other than the received
one. Consequently, the whole process behaves according to the session type ?ρ.1. The severe restriction
on the continuation process is necessary for type preservation, as we will see in Example 3.4 below.
Rule (T-OUTPUTS) types delegations, whereby a channel v is sent over another channel u. This rule
expresses clearly the idea of projection we are pursuing in our approach: the delegated channel v is used
in the continuation P according to the session type τ (which may be 1 in case rule (T-WEAK) is applied);
at the same time, the channel v is delegated to another process which will behave on it according to
ρ . As a consequence, the overall behavior on v is expressed by the composition of τ and ρ , namely
by τ | ρ . If u is used in the continuation P according to σ , then its type is !ρ.σ in the conclusion.
Rule (T-EXT) types external choices. These can only be performed with respect to a single channel u
by combining the session types associated with u in the two branches. The u annotation makes sure that
both branches are guarded by actions involving u, as this is the only case where this type rule is sound
(see example 3.3). Rule (T-COMM) strips the annotation u off the judgment, allowing one to re-enter
the domain of judgments without annotations. Observe that the continuation process P in the rules (T-
INPUT), (T-OUTPUT), (T-INPUTS), and (T-OUTPUTS) is typed by a judgment without the annotation,
which is safe because P is guarded by a prefix. Rule (T-INT) types internal choices, but only when the
two branches do have the same session environment. This can be achieved by repeated applications of
rules (T-WEAK) and (T-SUB). Rule (T-PAR) types the parallel composition of processes. Again this

Luca Padovani 11

rules shows the idea of projection and, unlike other session type systems, allows (actually requires) both
processes to use exactly the same channels, whose corresponding session types are composed with |. In
this context rule (T-WEAK) can be used to enforce that the session environments for P and Q be exactly
the same, recalling that 1 is neutral for |. Finally, rule (T-BANG) types replicated processes: the basic
idea is that a replicated process ?P is well typed if any channel it uses is “unlimited” (in the terminology
of [11]), which in our case translates to the property that it must be equal to (actually smaller than) two
compositions of itself. 1 is the simplest session type with this property, but there are others as we will
see in Example 3.1.

Example 3.1 (persistent service provider). Consider the process

Q≡ ?server?(x).P

which accepts an unbounded number of connection requests on the channel server and processes them
in the process P. Assume we can type the non-replicated process as follows:

Γ ` P : {x : ρ}
Γ ` server?(x).P : {server : ?ρ.1}

To apply rule (T-BANG) for Q we need server to have a type σ such that σ v σ |σ , and ?ρ.1 clearly
does not have this property. Consider the session type σ that is solution of the equation X = 1⊕?ρ.X . We
have σ v ?ρ.1 and furthermore σ v σ |σ . Hence we can now type Q with an application of rule (T-SUB)
followed by (T-BANG). �

Example 3.2 (multi-party session). Intuitively, a multi-party session is a conversation taking place on a
restricted channel that is shared between three or more participants. Consider a system (νa)(P |P |Q)
where

P def= a?(x).x?(y : Int).(x!isprime(y)+ x?(z : abort))

Q def= (νc)(a!c.c!n |a!c.c!n | c?(x : Bool).c!abort)

the idea being that the two instances of P represent two servers checking whether a number is prime.
The process Q establishes a connection by sending the two servers a fresh channel c and sending on this
channel some integer number n. The two servers are thus able to process the number in parallel and the
first one that succeeds sends the result back to Q. Upon reception of the result from one of the servers, Q
notifies the other server by sending a dummy value abort, which we assume is a singleton type inhabited
only by abort itself.

It is easy to verify that, within P, the channel x has type σ = ?Int.(!Bool.1 + ?abort.1) and a is
used according to the type ?σ .1. In Q, a is used according to the type !σ .1 | !σ .1 and c is used according
to the type σ | !Int.1 |σ | !Int.1 |?Bool.!abort.1. Hence, the overall type of a is !σ .1 | !σ .1 |?σ .1 |?σ .1
and the whole system is well typed since both a’s type and c’s type are complete. �

The type system permits to find type derivations for processes using channels with a non-viable
session type. Examples of such processes are c?(x : 0).0. A non-viable session type indicates an intrinsic
flaw in the process. It is thus unsurprising that viability of the session types in the session environment
is an essential requirement for the type preservation property. We say that a session environment ∆ is
viable if so is every session type in its codomain.

Theorem 3.1 (subject reduction). Let Γ ` P : ∆ and P−→ Q and ∆ viable. Then Γ ` Q : ∆.

Before addressing local progress, we justify by means of examples the two main constraints imposed
by the type system in order to guarantee type preservation.

12 Session Types at the Mirror

Example 3.3. To justify the use of u-annotations in rule (T-EXT), consider the process

P def= a?(x : Int).b?(y : Bool)+b?(x : Int).a?(y : Bool)

and suppose it well typed, where a : ?Int.1 + ?Bool and b : ?Bool.1 + ?Int.1. Apparently, both a and
b are able to receive either an integer or a Boolean value and a system such as (νa)(νb)(P | a!3 | b!3)
would be well typed. Alas, the external choices in the types of a and b do not take into account the fact
that any synchronization of P with another process may actually disable one branch in these choices.
The reduction

(νa)(νb)(P |a!3 |b!3)−→ (νa)(νb)(b?(y : Bool) |0 |b!3)

leads to an ill-typed process, since b has type ?Bool.1 | !Int.1 which is not complete. �

Example 3.4. The severe constraint in the premise of rule (T-INPUTS) can be justified by looking at the
following processes:

P def= a!c.a!c.c?(x : Int).c?(y : Bool)

Q def= a?(x).a?(y).y!true.x!3

where P can be typed with a derivation like the following:

...

Γ ` c?(x : Int).c?(y : Bool) : {a : 1,c : ?Int.?Bool.1}
Γ ` a!c.c?(x : Int).c?(y : Bool) : {a : !(!Bool.1).1,c : !Bool.1 | ?Int.?Bool.1}

Γ ` a!c.a!c.c?(x : Int).c?(y : Bool) : {a : !(!Int.1).!(!Bool.1).1,c : !Int.1 | !Bool.1 | ?Int.?Bool.1}

The process P delegates the channel c twice on a. The first time, the delegated behavior is !Int.1,
while the second time the delegated behavior is !Bool.1. Each time c is delegated, P assumes that
the receiving process will implement the delegated behavior. However, as it can be clearly seen in the
conclusion of the typing derivation above, the overall delegated behavior of c is !Int.1 | !Bool.1, namely
the parallel composition of the two behaviors that were separately delegated. This is fundamental for
the completeness of c’s type, since the input operations performed by the residual of P at the top of the
typing derivation occur in a specific order.

The process Q, which receives both delegations, is unaware that x and y will be instantiated with the
same channel. So, Q is well typed and x and y have respectively type !Bool.1 and !Int.1, as requested
by P, but Q uses these channels in a specific order that is not captured by the projections. The process
P |Q deadlocks in two steps:

P |Q =⇒ c?(x : Int).c?(y : Bool) | c!true.c!3

where in the final state we have c : ?Int.?Bool.1 | !Bool.!Int.1 which is not complete. By requiring, in
the premise of rule (T-INPUTS), that the receiving process cannot use any channel other than the received
one, we are basically imposing that the receiving process must handle every received channel in a thread
of its own. �

In judgments of the form Γ ` P : ∆ the environment ∆ is an approximation of P insofar as it describes
the projections of P’s behavior with respect to the channel it uses and delegates. It is well known that
this approximation is unable to capture situations where well-typed processes deadlock because the in-
terdependence between communications occurring on different channels are lost. Our approach is no
exception, as shown by the following example.

Luca Padovani 13

Example 3.5 (deadlock). Consider the system

(νa)(νb)(a!3.b?(x : Bool) |b!true.a?(x : Int))

where the channels a and b have respectively type σ = !Int.1 | ?Int.1 and τ = ?Bool.1 | !Bool.1. In
both cases we have 1+σ v σ and 1+ τ v τ , hence the system is well typed but deadlock. �

The progress property we are able to state is a local one, in the sense that a synchronization on some
channel c is guaranteed to eventually occur provided that all processes awaiting for interactions on c are
ready to do so. This notion of “readiness” is captured by the following definition:

Definition 3.1 (readiness). We say that P is ready on c if P ↓ c is derivable by the rules:

π.P ↓ subj(π)
c 6∈ fn(P)

P ↓ c

P ↓ c Q ↓ c

P+Q ↓ c

P ↓ c Q ↓ c

P |Q ↓ c

P ↓ c c 6= d

(νd)P ↓ c

where we write subj(π) for the subject of π (the channel on which the communication occurs).

Intuitively, P is ready on c if either it does not use c, in which case it plays no role in any synchro-
nization on c, or if P is prefixed by an action whose subject is c, or if every branch of P is ready on c.
Observe that when P≡ P1 +P2, both branches are required to be ready on c. This is not overly restrictive
because, by rule (T-EXT), if either branch is prefixed by an action whose subject is c, so must be the
other branch.

Theorem 3.2. If Γ ` P : ∆∪{c : σ} and σ complete and P ↓ c, then either c 6∈ fn(P) or P−→.

4 Concluding remarks

It may sound obvious to say that session types are behavioral types. Yet, although session types are
normally associated with channels, channels do not expose any behavior. The solution of this apparently
innocuous paradox lays in the equally obvious observation that the session type associated with a channel
reflects the behavior of a process concerning the input/output operations that the process performs on that
channel. By taking this mirrored point of view we have been able to define a simple and, in our opinion,
elegant theory of session types that generalizes, unifies, and semantically justifies many concepts that
can be found scattered in the current literature: (multi-party) session types are terms of a suitably defined
process algebra closely based on value-passing CCS; completeness expresses the property that a session
is well-formed and never yields a communication error; duality [11] σ ./ τ is the special case where
σ | τ is complete; viability captures the concept of well-typed process, namely of process that can be
composed with others in order to implement complete sessions; the subtyping relation between session
types arises semantically by relating those session types that preserve completeness in arbitrary contexts.

The adoption of a fair testing semantics [18] for session types is original to the best of our knowledge.
In fact, most presentations of session types rely on notions of duality or well-formed composition where
the only concern is the absence of communication errors, while the fairness principle we adopt imposes
an additional constraint: that at any time a conversation is always able to reach a so-called successful
state. Whether or not this is desirable in practice, from a technical point of view there are both pros
and cons: on the one hand, the fair subsession relation is more difficult to characterize coinductively
and axiomatically because fairness escapes the mere structure of types; on the other hand, the subsession
relation is an all-in-one tool that incorporates safe substitutability (rule (T-SUB)), viability, and complete-
ness (Proposition 2.1). We have been unable to fully characterize completeness in terms of a non-fair
subsession relation (see [4] for an attempt in the context of behavioral contracts).

14 Session Types at the Mirror

The type system we have provided as a proof-of-concept in Section 3 may look excessively restric-
tive, in particular with respect to the rule (T-INPUTS) which demands that the continuation cannot use
any (known) session if not the received one. We have three observations regarding this point: (1) this
is a direct consequence of our focus on the idea of projected behavior, which allows a more liberal use
of channels; (2) similar restrictions can be found in type systems guaranteeing global progress [8, 1, 3];
(3) the provided type system is very natural and simple, considering the freedom it leaves in the use of
channels; this simplicity suggests that it can be smoothly extended with features such as polarities or
roles which would likely help relaxing the constraints. We leave this extension as future work.

References
[1] L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini, and N. Yoshida. Global Progress in

Dynamically Interleaved Multiparty Sessions. In CONCUR’08, LNCS 5201. Springer, 2008.
[2] L. Caires and H. Vieira. Conversation types. In ESOP’09, LNCS 5502. Springer, 2009.
[3] G. Castagna, M. Dezani-Ciancaglini, E. Giachino, and L. Padovani. Foundations of session types. Available

at http://www.sti.uniurb.it/padovani/Papers/FoundationsSessionTypes.pdf, 2009.
[4] G. Castagna and L. Padovani. Contracts for mobile processes. Available at http://www.sti.uniurb.it/

padovani/publications.html, 2009.
[5] S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: model checking message-passing programs.

SIGPLAN Not., 37(1):45–57, 2002.
[6] B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science, 25:95–169, 1983.
[7] R. De Nicola and M. Hennessy. CCS without τ’s. In TAPSOFT’87/CAAP’87, LNCS 249. Springer, 1987.
[8] M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. On Progress for Structured Communications. In

G. Barthe and C. Fournet, editors, TGC’07, LNCS 4912. Springer, 2008.
[9] M. Dezani-Ciancaglini, S. Drossopoulou, D. Mostrous, and N. Yoshida. Session Types for Object-Oriented

Languages. Information and Computation, 207(5):595–641, 2009.
[10] S. Drossopoulou, M. Dezani-Ciancaglini, and M. Coppo. Amalgamating the Session Types and the Object

Oriented Programming Paradigms. In MPOOL’07, 2007.
[11] S. Gay and M. Hole. Subtyping for session types in the π-calculus. Acta Informatica, 42(2-3):191–225,

2005.
[12] S. Gay and V. Vasconcelos. Asynchronous functional session types. Technical Report 2007–251, Department

of Computing, University of Glasgow, 2007.
[13] M. Hennessy. Algebraic Theory of Processes. Foundation of Computing. MIT Press, 1988.
[14] K. Honda. Types for dyadic interaction. In CONCUR’93, LNCS 715, 1993.
[15] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for structured

communication-based programming. In ESOP’98, LNCS 1381. Springer, 1998.
[16] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In POPL’08, 2008.
[17] H. R. Nielson and F. Nielson. Higher-order concurrent programs with finite communication topology (ex-

tended abstract). In POPL’94, New York, NY, USA, 1994. ACM Press.
[18] A. Rensink and W. Vogler. Fair testing. Inf. Comput., 205(2):125–198, 2007.
[19] V. Vasconcelos. Fundamentals of session types. In SFM’09, LNCS 5569. Springer, 2009.
[20] V. Vasconcelos, S. Gay, and A. Ravara. Type checking a multithreaded functional language with session

types. Theoretical Computer Science, 368, 2006.

Acknowledgments. I wish to thank Giuseppe Castagna for having provided comments on an early
draft of this paper.

http://www.sti.uniurb.it/padovani/Papers/FoundationsSessionTypes.pdf
http://www.sti.uniurb.it/padovani/publications.html
http://www.sti.uniurb.it/padovani/publications.html

Luca Padovani 15

A Supplement to Section 2

We introduce some additional notation that is used in this and the following appendixes: we write
∑i∈{1,...,n}σi in place of σ1 +· · ·+σn with the convention that ∑i∈ /0 σi = 0. Similarly, we write

⊕
i∈{1,...,n}σi

for σ1⊕·· ·⊕σn, assuming that n > 0 (the internal choice has no neutral element).

Definition A.1 (ground actions). Let b·c be the function over actions that is the identity except that

b?ρc = ?� and b!ρc = !� for every ρ . We say that bµc is the ground action of µ; we write σ
bµc−→ σ ′ if

σ
µ−→ σ ′.

The transition relation of session types in Table 2 is subjective in the sense that it expresses the
behavior of a process from the point of view of the process itself. For example, we have ?Int.σ +
?Real.τ ?3−→ σ . Namely, the process has read an integer value 3 and it knows that the left branch of the
external choice has been selected. In the following it is useful to define an objective transition relation,
from the point of view of the processes that are interacting with another process exposing a certain
behavior. This objective transition relation will be expressed as a continuation of a session type with
respect to a specified action. On the one hand, for example, we have (?Int.σ + ?Real.τ)(?3) = σ ⊕ τ ,
namely the interacting processes do not know which branch has been selected. On the other hand, we
have (?Int.σ + ?Real.τ)(?

√
2) = τ .

Definition A.2 (continuation). Let σ
µ

=⇒. The continuation of σ with respect to µ is defined as σ(µ) def=⊕
σ
bµc
=⇒σ ′

σ ′. We generalize this notion to finite sequences of actions µ1, . . . ,µn so that σ(ε) = σ and
σ(µµ1 · · ·µn) = σ(µ)(µ1 · · ·µn).

Not every action exposed by a session type is important as far as viability is concerned. For example,
σ

def= 1+ ?Int.0 describes a process that is capable of reading any integer value, but after doing so there
is no way to interact successfully with that process. In this sense, we say that σ is not ready on ?v
whenever v : Int. However, σ is ready on X, and this is what it makes σ viable. In general, we say that
σ is ready on some (ground) action µ if there is a session type ρ that completes σ and may synchronize
with σ when σ emits µ . To this aim we introduce a symmetric duality relation between (ground) actions
such that:

X#X ?v#!v ?ρ#!ρ ′ ?�#!�

Observe that ?ρ and !ρ ′ are dual regardless of ρ and ρ ′, since a synchronization is always possible,
although the continuation is not necessarily viable.

Definition A.3 (readiness). We say that σ is ready on µ , notation σ ↓ µ , if σ
µ

=⇒ and there exist ρ and

µ ′ such that µ#µ ′ and ρ
µ ′

=⇒ and σ |ρ is complete.

Proof of Proposition 2.1(1). The “if” part is trivial. Suppose σ is not viable. We want to prove that
σ + τ � τ for every τ . Suppose that this is not the case. Then there exists ρ such that σ + τ | ρ is
complete and τ |ρ is not complete. Then σ |ρ is complete, which contradicts σ not viable.

Proposition A.1. Let σ be viable. The following properties hold:

1. if σ =⇒ τ , then σ � τ;

2. if σ � τ and τ is not complete, then σ is not complete;

3. if σ � τ and τ
µ

=⇒ and µ 6=X, then σ
bµc
=⇒ and σ ↓ µ implies σ(µ)� τ(µ).

16 Session Types at the Mirror

Proof. As regards item (1), observe that σ |ρ complete implies τ |ρ complete, hence σ � τ .
As regards item (2), suppose that τ is not complete and σ is complete. Then σ | 1 is complete and

τ |1 is not, which is absurd.
As regards item (3), from the hypothesis σ viable we know that there exists ρ such that σ | ρ is

complete. We reason by cases on µ for defining a session type ρ ′:

• if µ = †v, then let ρ ′
def= ρ +†v.0;

• if µ = †ρ , then let ρ ′
def= ρ +†0.0.

Now suppose, by contradiction, that σ Y
bµc
=⇒. We have that σ |ρ ′ is complete and τ |ρ ′ is not, which

is absurd. Hence σ
bµc
=⇒.

Suppose σ ↓ µ and let ρ be such that σ |ρ is complete and ρ
µ ′

=⇒ where µ#µ ′. Let ρ ′ be an arbitrary
session type such that σ(µ) | ρ ′ is complete. The existence of ρ ′ is guaranteed by the existence of ρ .
Let ρ ′′ be the same as ρ , except that every term α.θ that generates µ ′ actions is replaced by α.ρ ′. We
have σ |ρ ′′ complete, from which we deduce τ |ρ ′′ complete. Hence, τ(µ) |ρ ′ is complete. We conclude
σ(µ)� τ(µ).

Proof of Theorem 2.1. (“if” part) If σ v 0, then by Proposition 2.1(1) we have that σ is not viable, hence
σ � τ . If σ v τ , then σ +0� τ +0 and we conclude by observing that σ +0≈ σ and τ +0≈ τ .

(“only if” part) Suppose σ � τ and σ 6v 0 and suppose, by contradiction, that σ 6v τ . Namely,
there exists σ ′ such that σ + σ ′ 6� τ + σ ′. Then, there exists ρ such that σ + σ ′ | ρ is complete and

τ + σ ′ |ρ is not complete. This happens if there exists a derivation τ + σ ′ |ρ =⇒ τ ′′ |ρ ′ Y X=⇒. Without

loss of generality, we may assume ρ ′
X=⇒ and τ ′′ Y X=⇒. By unzipping this derivation we obtain that

there exist two sequences of actions µ1, . . . ,µn and µ ′1, . . . ,µ ′n such that µi#µ ′i for every 1 ≤ i ≤ n and

τ + σ ′
µ ′1···µ ′n===⇒ τ ′′ and ρ

µ1···µn===⇒ ρ ′. Suppose n > 0. By Proposition A.1 and from the hypotheses σ � τ

and σ viable we have that τ + σ ′
bµ ′1c=⇒ implies σ + σ ′

bµ ′1c=⇒. From the hypotheses σ + σ ′ | ρ complete

and ρ
bµ1c=⇒ where µ1#µ ′1 we deduce that (σ + σ ′)(µ ′1) |ρ(µ1) is complete. Furthermore, τ

bµ ′1c=⇒ implies

σ
bµ ′1c=⇒ and σ(µ ′1) � τ(µ ′1). From the hypothesis τ ′′ |ρ ′ Y X=⇒ we deduce that (τ + σ ′)(µ ′1) |ρ(µ1) is not

complete, since (τ + σ ′)(µ ′1)
µ ′2···µ ′n===⇒ τ ′′ and ρ(µ1)

µ2···µn===⇒ ρ ′. This is absurd, since we can show that
(σ + σ ′)(µ ′1) � (τ + σ ′)(µ ′1) recalling that � is a precongruence with respect to ⊕. We distinguish the
following subcases:

• If τ
bµ ′1c=⇒ and σ ′

bµ ′1c=⇒, then (σ +σ ′)(µ ′1) = σ(µ ′1)⊕σ ′(µ ′1)� τ(µ ′1)⊕σ ′(µ ′1) = (τ +σ ′)(µ ′1).

• If τ
bµ ′1c=⇒ and σ ′ Y

bµ ′1c=⇒, then (σ +σ ′)(µ ′1) = σ(µ ′1)� τ(µ ′1) = (τ +σ ′)(µ ′1).

• If τ Y
bµ ′1c=⇒ and σ ′

bµ ′1c=⇒ and σ
bµ ′1c=⇒, then (σ +σ ′)(µ ′1) = σ(µ ′1)⊕σ ′(µ ′1)� σ ′(µ ′1) = (τ +σ ′)(µ ′1).

• If τ Y
bµ ′1c=⇒ and σ ′

bµ ′1c=⇒ and σ Y
bµ ′1c=⇒, then (σ +σ ′)(µ ′1) = σ ′(µ ′1) = (τ +σ ′)(µ ′1).

Suppose n = 0. Then τ + σ ′ =⇒ τ ′+ σ ′′ ≡ τ ′′. From τ ′′ Y X=⇒ we deduce τ ′ Y X=⇒ and σ ′′ Y X=⇒. From
Proposition A.1(2) and the hypotheses σ � τ and σ viable we deduce that there exists σ ′′′ such that
σ =⇒ σ ′′′ and σ ′′′ Y X=⇒. Then σ + σ ′ |ρ =⇒ σ ′′′+ σ ′′ |ρ ′ Y X=⇒, contradicting the hypothesis σ + σ ′ |ρ
complete.

Luca Padovani 17

Proof of Proposition 2.1(2). We prove that σ is complete if and only if 1 + σ � σ . The statement then
follows from Theorem 2.1, since 1+σ is viable (1+σ |1 is complete). As regards the “if” part, suppose
by contradiction that 1 + σ � σ and σ is not complete. Then 1 | 1 + σ is complete and 1 |σ is not,
which is absurd. Hence σ is complete. As regards the “only if” part, suppose by contradiction that σ is
complete and 1 + σ 6� σ . Then, there exists ρ such that 1 + σ |ρ is complete and σ | 1 is not. Suppose

that there exist µ and µ ′ such that µ#µ ′ and σ
µ

=⇒ and ρ
µ ′

=⇒ and σ(µ) |ρ(µ ′) is not complete. Then
1 + σ |ρ is not complete since (1 + σ)(µ) = σ(µ), which is absurd. Hence, there exist σ ′ and ρ ′ such

that σ =⇒ σ ′ and ρ =⇒ ρ ′ and σ ′ and ρ ′ never synchronize and σ ′ |ρ ′ Y X=⇒, meaning either σ ′ Y X=⇒ or

ρ ′ Y X=⇒. Then either σ is not complete or 1+σ |ρ is not complete, which is absurd. Hence we conclude
1+σ � σ .

B Supplement to Section 3

Lemma B.1 (substitution). The following properties hold:

1. If Γ,x : t ` P : ∆ and v : t, then Γ ` P{v/x} : ∆.

2. If Γ ` P : ∆∪{x : σ} and d 6∈ fn(P), then Γ ` P{d/x} : ∆∪{d : σ}.

Proof. A simple induction on the typing derivation.

Proposition B.1. Let Γ ` P : ∆∪{c : 1} and c 6∈ fn(P). Then Γ ` P : ∆.

Proof. A simple induction on the derivation of Γ ` P : ∆∪{c : 1}.

Lemma B.2 (subject reduction). The following properties hold:

1. if Γ ` P : ∆ and P−→ Q and ∆ is viable, then Γ ` Q : ∆;

2. if Γ ` P : ∆∪{c : σ} and P c†v−→ Q, then σ
†v=⇒ and σ ↓ †v implies Γ ` Q : ∆∪{c : σ(†v)}.

3. if Γ ` P : ∆∪{c : σ ,d : τ} and P c?d−→ Q, then there exists ρ such that σ
?ρ

=⇒ and σ ↓ ?� implies
Γ ` Q : ∆∪{c : σ(?�),d : τ |ρ};

4. if Γ ` P : ∆∪{c : σ ,d : τ} and P c!d−→ Q, then there exist τ ′ and ρ such that τ = τ ′ |ρ and σ
!ρ

=⇒
and σ ↓ !� implies Γ ` Q : ∆∪{c : σ(!�),d : τ ′};

5. if Γ ` P : ∆∪{c : σ} and d 6∈ dom(∆) and P
c!(d)−→ Q, then there exist τ ′ and ρ such that τ ′ | ρ is

complete and σ
!ρ

=⇒ and σ ↓ !� implies Γ ` Q : ∆∪{c : σ(!�),d : τ ′}.

Proof. By induction on the derivation of P −→ Q or P
µ−→ Q and by cases on the structure of P. By

Proposition A.1(3) we may assume that the typing derivation for P does not end with an application
of rule (T-SUB) and consequently is syntax directed except possibly for applications of rule (T-WEAK).
Also, note that the constraints on the domain of the session environment in items (3) and (5) are not
restrictive. In item (3), if d does not belong to the session environment it can be added with an application
of rule (T-WEAK). In item (3), if d ∈ dom(∆) then d 6∈ fn(P) for otherwise P would not be able to emit
a bound output action c!(d). Consequently, we can remove d from the session environment by means of
Proposition B.1.

(P≡ Q⊕P′ −→ Q) From the hypothesis of rule (T-INT) we conclude Γ ` Q : ∆.

18 Session Types at the Mirror

(P≡ ?P′ −→ ?P′ |P′ ≡ Q) From rule (T-BANG) we deduce σ v σ |σ for every u : σ ∈ ∆. From (T-PAR)
and (T-SUB) we conclude Γ ` Q : ∆.

(P≡ c?(x : t).P′ c?v−→ P′{v/x} ≡ Q where v : t) From rule (T-INPUT) we deduce σ = ?t.σ ′ and Γ,x : t `
P′ : ∆∪{c : σ ′}. By Lemma B.1 we obtain Γ `Q : ∆∪{c : σ ′} and we conclude by observing that
σ(?v) = (?t.σ ′)(?v) = σ ′.

(P≡ c?(x).P′ c?d−→ P′{d/x} ≡ Q) From rules (T-INPUTS) and (T-WEAK) we deduce σ = ?ρ.1 for some
ρ and τ = 1 and u : θ ∈ ∆ implies θ = 1 and Γ ` P′ : {x : ρ}. Since d 6∈ fn(P′), by Lemma B.1
we obtain Γ ` Q : {d : ρ}. By repeated applications of rule (T-WEAK) we deduce Γ ` Q : ∆∪{c :

1,d : τ |ρ}. We conclude by observing that σ
?ρ

=⇒ and σ(?�) = 1.

(P≡ c!e.Q c!v−→ Q where e ↓ v) From rule (T-OUTPUT) we deduce σ = !t.σ ′ where Γ ` e : t and Γ `Q :
∆∪{c : σ ′}. We conclude by observing that σ

!v=⇒ and σ(!v) = σ ′.

(P≡ c!d.Q c!d−→ Q) From rule (T-OUTPUTS) we deduce σ = !ρ.σ ′ there exists τ ′ such that τ = τ ′ |ρ and
Γ ` Q : ∆∪{c : σ ′,d : τ ′}. We conclude by observing that σ(!�) = σ ′.

(P≡ P1 +P2 −→ P′1 +P2 ≡ Q where P1 −→ P′1) From rule (T-EXT) we deduce that there exists c such
that ∆ = ∆′ ∪{c : σ1 + σ2} and Γ `c P1 : ∆′ ∪{c : σ1} and Γ `c P2 : ∆′ ∪{c : σ2}. By induction
hypothesis we deduce Γ `c P′1 : ∆′∪{c : σ1}. From rule (T-EXT) we conclude Γ `c Q : ∆.

(P≡ P1 +P2
c†v−→ Q where P1

c†v−→ Q) From rule (T-EXT) we deduce σ = σ1 + σ2 and Γ `c Pi : ∆∪{c :

σi} for i ∈ {1,2}. By induction hypothesis we deduce σ1
†v=⇒ and (σ1 ↓ †v implies Γ `Q : ∆∪{c :

σ1(†v)}). We conclude by observing that σ
†v=⇒ and σ ↓ †v implies σ1 ↓ †v and σ(†v) v σ1(†v)

and by rule (T-SUB).

(P≡ P1 +P2
c?d−→ Q where P1

c?d−→ Q) From rule (T-EXT) we deduce σ = σ1 +σ2 where Γ `c Pi : ∆∪{c :

σi,d : τ} for i ∈ {1,2}. By induction hypothesis we deduce that there exists ρ such that σ1
?ρ

=⇒
and (σ1 ↓ ?� implies Γ `c P′1 : ∆∪{c : σ1(?�),d : τ |ρ}). We observe that σ

?ρ
=⇒ and σ ↓ ?� implies

σ1 ↓ ?� and σ(?�)v σ1(?�). We conclude by rule (T-SUB).

P≡ P1 +P2
c!d−→ Q where P1

c!d−→ Q From rule (T-EXT) we deduce σ = σ1 +σ2 where Γ `c Pi : ∆∪{c :
σi,d : τ} for i ∈ {1,2}. By induction hypothesis we deduce that there exist τ ′ and ρ such that

τ = τ ′ |ρ and σ1
!ρ

=⇒ and (σ1 ↓ !� implies Γ `Q : ∆∪{c : σ1(!�),d : τ ′}). Observe that σ
!ρ

=⇒ and
σ ↓ !ρ implies σ1 ↓ !ρ and σ(!�)v σ1(!�). We conclude by rule (T-SUB).

P≡ P1 +P2
c!(d)−→ Q where P1

c!(d)−→ Q From rule (T-EXT) we deduce σ = σ1 +σ2 where Γ `c Pi : ∆∪{c :
σi} for i ∈ {1,2}. By induction hypothesis we deduce that there exist τ ′ and ρ such that τ ′ |ρ is

complete and σ1
!ρ

=⇒ and (σ1 ↓ !� implies Γ `Q : ∆∪{c : σ1(!�),d : τ ′}). Observe that σ
!ρ

=⇒ and
σ ↓ !ρ implies σ1 ↓ !ρ and σ(!�)v σ1(!�). We conclude by rule (T-SUB).

(P≡ P1 |P2 −→ P′1 |P2 ≡ Q where P1 −→ P′1) From rule (T-PAR) we deduce Γ ` Pi : {u j : σi j
j∈I} for

i∈ {1,2}. By induction hypothesis we deduce Γ ` P′1 : {u j : σi j
j∈I}. By rule (T-PAR) we conclude

Γ ` Q : ∆.

(P≡ P1 |P2 −→ P′1 |P′2 where P1
c!v−→ P′1 and P2

c?v−→ P′2) From rule (T-PAR) we deduce ∆ = {u j : σ1 j |
σ2 j

j∈I}∪{c : σ1 |σ2} and Γ ` Pi : {u j : σi j
j∈I}∪{c : σi} for i ∈ {1,2}. By induction hypothesis

we deduce σ1
!v=⇒ and σ2

?v=⇒ and (σ1 ↓ !v implies Γ ` P′1 : {u j : σ1 j
j∈I} ∪ {c : σ1(!v)}) and

Luca Padovani 19

(σ2 ↓ ?v implies Γ ` P′2 : {u j : σ2 j
j∈I}∪{c : σ2(?v)}). From σ1 |σ2 viable we deduce σ1 ↓ !v and

σ2 ↓ ?v. Observe that σ1 |σ2 v σ1(!v) |σ2(?v). From (T-PAR) and (T-SUB) we conclude Γ `Q : ∆.

(P≡ P1 |P2 −→ P′1 |P′2 where P1
c!d−→ P′1 and P2

c?d−→ P′2) From rule (T-PAR) we deduce ∆ = {u j : σ1 j |
σ2 j

j∈I}∪{c : σ1 |σ2,d : τ1 |τ2} and Γ`Pi : {u j : σ j
j∈I}∪{c : σi,d : τi} for i∈ {1,2}. By induction

hypothesis on P1 we deduce that there exist τ ′1 and ρ1 such that τ1 = τ ′1 |ρ1 and σ1
!ρ

=⇒ and (σ1 ↓ !�
implies Γ ` P′1 : {u j : σ1 j

j∈I}∪{c : σ1(!�),d : τ ′1}). By induction hypothesis on P2 we deduce that

there exists ρ2 such that σ2
?ρ2=⇒ and (σ2 ↓ ?� implies Γ`P2 : {u j : σ2 j

j∈I}∪{c : σ2(?�),d : τ2 |ρ2}).
From σ1 |σ2 viable we deduce ρ1 � ρ2. From τ1 viable we deduce ρ1 viable. By Theorem 2.1 we
deduce ρ1 v ρ2. By rule (T-PAR) we deduce Γ ` Q : {u j : σ1 j |σ2 j

j∈I}∪{c : σ1(!�) |σ2(?�),d :
τ ′1 | τ2 |ρ2}. We conclude from σ1 |σ2 v σ1(!�) |σ2(?�) and τ1 | τ2 = τ ′1 |ρ1 | τ2 v τ ′1 | τ2 |ρ2 and
rule (T-SUB).

(P≡ P1 |P2 −→ (νd)(P′1 |P′2) where P1
c!(d)−→ P′1 and P2

c?d−→ P′2 and d 6∈ fn(P2)) From rule (T-PAR) we de-
duce ∆ = {u j : σ1 j |σ2 j

j∈I}∪{c : σ1 |σ2,d : τ1 | τ2} and Γ ` Pi : {u j : σi j
j∈I}∪{c : σi,d : τi} for

i∈ {1,2}. Furthermore, it must be τ1 = τ2 = 1 since d 6∈ fn(P1)∪fn(P2). By induction hypothesis

on P1 we deduce that there exist τ ′1 and ρ1 such that τ ′1 |ρ1 is complete and σ1
!ρ1=⇒ and (σ1 ↓ !�

implies Γ ` P′1 : {u j : σ1 j
j∈I}∪{c : σ1(!�),d : τ ′1}). By induction hypothesis on P2 we deduce that

there exists ρ2 such that σ2
?ρ2=⇒ and (σ2 ↓ ?� implies Γ`P′2 : {u j : σ2 j

j∈I}∪{c : σ2(?�),d : τ2 |ρ2}).
From σ1 |σ2 viable we deduce ρ1 � ρ2 and σ1 ↓ !� and σ2 ↓ ?�. From τ ′1 |ρ1 complete we deduce
ρ1 viable. By Theorem 2.1 we deduce ρ1 v ρ2. By rule (T-PAR) we deduce Γ ` P′1 |P′2 : {u j :
σ1 j |σ2 j

j∈I}∪{c : σ1(!�) |σ2(?�),d : τ ′1 |ρ2}. From τ ′1 |ρ1 complete and ρ1 v ρ2 we deduce τ ′1 |ρ2
complete. We have σ1 |σ2 v σ1(!�) |σ2(?�). We conclude by rules (T-RES) and (T-SUB).

(P≡ P1 |P2
c†v−→ P′1 |P2 ≡ Q where P1

c†v−→ P′1) From rule (T-PAR) we deduce ∆ = {u j : σ1 j |σ2 j
j∈I} and

σ = σ1 |σ2 and Γ ` Pi : {u j : σi j
j∈I}∪{c : σi} for i ∈ {1,2}. By induction hypothesis we deduce

σ1
†v=⇒ and (σ1 ↓ †v implies Γ ` P′1 : {u j : σ1 j

j∈I}∪ {c : σ1(†v)}). We have σ
†v=⇒ and σ ↓ †v

implies σ1 ↓ †v and σ(†v)v σ1(†v) |σ2. We conclude by rules (T-PAR) and (T-SUB).

(P≡ P1 |P2
c?d−→ P′1 |P2 ≡ Q where P1

c?d−→ P′1) From rule (T-PAR) we deduce ∆ = {u j : σ1 j |σ2 j
j∈I} and

σ = σ1 |σ2 and τ = τ1 | τ2 and Γ ` Pi : {u j : σi j
j∈I}∪{c : σi,d : τi} for i ∈ {1,2}. By induction

hypothesis there exists ρ such that σ1
?ρ

=⇒ and (σ1 ↓ ?� implies Γ ` P′1 : {u j : σ1 j
j∈I} ∪ {c :

σ1(?�),d : τ1 | ρ}). Observe that σ
?ρ

=⇒ and σ ↓ ?� implies σ1 ↓ ?� and σ(?�) v σ1(?�). We
conclude by rules (T-PAR) and (T-SUB).

(P≡ P1 |P2 where P1
c!d−→ P′1 and P′1 |P2 ≡ Q) From rule (T-PAR) we deduce ∆ = {u j : σ1 j |σ2 j

j∈I} and
σ = σ1 |σ2 and τ = τ1 | τ2 and Γ ` Pi : {u j : σi j

j∈I}∪{c : σi,d : τi} for i ∈ {1,2}. By induction

hypothesis we deduce that there exist τ ′1 and ρ such that τ1 = τ ′1 |ρ and σ1
!ρ

=⇒ and (σ1 ↓ !� implies

Γ ` P′1 : {u j : σi j
j∈I}∪{c : σ1(!�),d : τ ′1}). Observe that σ

!ρ
=⇒ and σ ↓ !� implies σ1 ↓ !� and

σ(!�)v σ1(!�). We conclude by rules (T-PAR) and (T-SUB) and by taking τ ′ = τ ′1 | τ2.

(P≡ P1 |P2 where P1
c!(d)−→ P′1 and P′1 |P2 ≡ Q) From rule (T-PAR) we deduce ∆ = {u j : σ1 j |σ2 j

j∈I} and
σ = σ1 |σ2 and Γ ` Pi : {u j : σi j

j∈I}∪{c : σi} for i ∈ {1,2}. By induction hypothesis we deduce

that there exist τ ′ and ρ such that τ ′ | ρ is complete and σ1
!ρ

=⇒ and (σ1 ↓ !� implies Γ ` P′1 :
{u j : σi j

j∈I}∪{c : σ1(!�),d : τ ′}). From the hypothesis d 6∈ dom(∆) we deduce d 6∈ fn(P), hence

20 Session Types at the Mirror

d 6∈ fn(P2). From rule (T-WEAK) we deduce Γ ` P2 : {u j : σ2 j
j∈I}∪{c : σ2,d : 1}. Observe that

σ
!ρ

=⇒ and σ ↓ !� implies σ1 ↓ !� and σ(!�)v σ1(!�). We conclude by rules (T-PAR) and (T-SUB).

(P≡ (νc)P′ −→ (νc)P′′ ≡ Q where P′ −→ P′′) From rule (T-RES) we deduce that Γ ` P′ : ∆∪{c : 1+
σ} for some σ . By induction hypothesis we deduce Γ ` P′′ : ∆∪{c : 1+σ}. By rule (T-RES) we
conclude Γ ` Q : ∆.

(P≡ (νd)P′ c†v−→ (νd)P′′ ≡ Q where c 6= d and P′ c†v−→ P′′) From rule (T-RES) we deduce that Γ ` P′ :

∆∪{d : 1+τ} for some τ . By induction hypothesis we deduce σ
†v=⇒ and (σ ↓ †v implies Γ ` P′′ :

∆∪{c : σ(†v),d : 1+ τ}. We conclude by rule (T-RES).

(P≡ (νd)P′
c!(d)−→ Q where P′ c!d−→ Q and c 6= d) From rule (T-RES) we deduce that there exists τ com-

plete such that Γ ` P′ : ∆∪{c : σ ,d : τ}. By induction hypothesis we conclude that there exist τ ′

and ρ such that τ = τ ′ |ρ and σ
!ρ

=⇒ and (σ ↓ !� implies Γ ` Q : ∆∪{c : σ(!�),d : τ ′}).

(P≡ (νd′)P′ c?d−→ (νd′)P′′ ≡ Q where P′ c?d−→ P′′ and d′ 6= c,d) From rule (T-RES) we deduce that there
exists τ ′ complete such that Γ ` P′ : ∆∪{c : σ ,d : τ,d′ : τ ′}. By induction hypothesis we deduce

that there exists ρ such that σ
?ρ

=⇒ and (σ ↓ ?� implies Γ ` P′′ : ∆∪{c : σ(?�),d : τ |ρ,d′ : τ ′}).
We conclude by rule (T-RES).

(P≡ (νd′)P′ c!d−→ (νd′)P′′ ≡ Q where P′ c!d−→ P′′ and d′ 6= c,d) From rule (T-RES) we deduce that there
exists τ ′′ complete such that Γ ` P′ : ∆∪{c : σ ,d : τ,d′ : τ ′′}. By induction hypothesis we deduce

that there exist τ ′ and ρ such that τ = τ ′ |ρ and σ
!ρ

=⇒ and (σ ↓ !� implies Γ`P′′ : ∆∪{c : σ(!�),d :
τ ′,d′ : τ ′′}. We conclude by rule (T-RES).

(P≡ (νd′)P′
c!(d)−→ (νd′)P′′ where P′

c!(d)−→ P′′ and d′ 6= c,d) Similar to the previous case.

Theorem 3.1 is a special case of Lemma B.2. Before proving Theorem 3.2 we need to show that
among all the possible typings for a process there is one that is more precise than the others, which we
call principal typing. Unsurprisingly, this is obtained when rule (T-SUB) is never used at the bottom of
the typing derivation for a process. In order to prove that every process has a principal type, we need to
define the projection of the visible actions of a process P with respect to a specified channel c, which we
denote with init(P)|c:

init(P)|c
def= {†v | P c†v=⇒}∪{†� | ∃d : P c†d=⇒}∪{!� | ∃d : P

c!(d)
=⇒}

Lemma B.3. If Γ ` P : ∆∪{c : σ} and P ↓ c and P X−→, then there exists τ such that σ v τ and τ X−→
and Γ ` P : ∆∪{c : τ} and init(τ) = init(P)|c∪{X}.

Proof. By induction on the derivation of Γ ` P : ∆∪{c : σ} and by cases on the last typing rule applied.
Only two cases are shown. Cases for action prefixes are base cases. The other cases can be solved by
trivial inductions.

(T-WEAK) Then either σ = 1, in which case we conclude by taking τ = σ , or we conclude by induction
hypothesis.

(T-SUB) Then there exists τ ′ such that σ v τ ′ and Γ ` P : ∆∪ {c : τ ′}. We conclude by induction
hypothesis and transitivity of v.

Luca Padovani 21

Proof of Theorem 3.2. We prove that if Γ ` P : ∆∪{c : σ} and P ↓ c and P X−→ and σ complete, then
c 6∈ fn(P). We proceed by induction on P. Trivial cases are omitted.

(P≡ π.P′) From σ complete and P ↓ c we conclude subj(π) 6= c and c 6∈ fn(P).

(P≡ P1 +P2) Then ∆∪{c : σ} = ∆′ ∪{d : σ1 + σ2} for some ∆′ and Γ `d Pi : ∆′ ∪{d : σi} (if d were
equal to c the session type σ would not be complete, because no prefix action involving c is typed
by a complete session type). From the hypotheses P ↓ c and P X−→ we deduce Pi ↓ c and Pi X−→
for i ∈ {1,2}. By induction hypothesis we derive that c 6∈ fn(Pi) for i ∈ {1,2}, hence we conclude
c 6∈ fn(P).

(P≡ P1 |P2) Then ∆ = {u j : σ1 j |σ2 j
j∈I} and σ = σ1 |σ2 and Γ ` Pi : {u j : σi j

j∈I}∪ {c : σi} for i ∈
{1,2}. From Lemma B.3 we deduce that there exist τ1 and τ2 such that σi v τi and τi X−→ and
init(τi) = init(Pi)|c ∪{X} and Γ ` Pi : {u j : σi j

j∈I}∪ {c : τi}. We deduce σ1 |σ2 v τ1 | τ2.
From the hypotheses P ↓ c and P X−→ we deduce Pi ↓ c and Pi X−→ for every i ∈ {1,2}. From the
hypothesis P X−→ we deduce that P1 and P2 cannot synchronize with each other. In other terms,
µ ∈ init(P1)|c and µ ′ ∈ init(P2)|c implies not µ#µ ′. This means that the same holds for the
actions other than X in init(τ1) and init(τ2). From σ complete we deduce τ1 | τ2 complete.
From τi X−→ and the fact that τ1 and τ2 cannot synchronize with each other we deduce τi complete
for every i ∈ {1,2}. By induction hypothesis we deduce c 6∈ fn(Pi) for every i ∈ {1,2}. We
conclude c 6∈ fn(P).

