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Abstract. The electronic structure of highly under-coordinated Rh atoms,
namely adatoms and ad-dimers, on homo-metallic surfaces has been probed
by combining high-energy resolution core level photoelectron spectroscopy and
density functional theory calculations. The Rh3d5/2 core level shifts are shown
to be proportional to the number of Rh nearest-neighbours (n = 3, 4 and 5). A
more refined analysis shows that the energy position of the different core level
components is correlated with the calculated changes of the individual inter-
atomic bond length and to the energy changes of the d-band centre, which is
known to be a reliable descriptor of local chemical reactivity.
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1. Introduction

Atomic-level understanding of the physical properties of transition metal (TM) clusters and
nanostructured surfaces outermost atomic layers, is a very important issue in condensed
matter science. Both the reduced number of nearest-neighbours and the interatomic distance
modifications (with respect to bulk or flat-surface geometries) strongly affect magnetic [1] and
chemical properties [2], in a way that may meet emerging needs in technological fields, such as
magnetic data storage and heterogeneous catalysis.

When TM atoms undergo reduced coordination and/or bond compressive or tensile strain,
the overlap of d states at neighbouring sites changes, leading in turn, to changes in d to sp
promotion or hybridization. While changing coordination numbers and lattice constants in a
theoretical calculation is relatively simple, measuring electronic structure-related properties
of under-coordinated monometallic structures, and making correlations with their atomic-level
geometrical properties, is a much more demanding task, as experimental results are in general
averaged over a large number of different local configurations [3]–[5].

The problem of understanding local properties becomes especially important in systems with
a large number of highly under-coordinated atoms like small atomic aggregates or nanostructured
surfaces. For example a strong reduction in the activation barrier of chemical reactions at low
coordinated reaction centres has been found in the case of stepped surfaces [6]–[14]. Moreover
at elevated temperatures, even an appreciable concentration of atoms with very low coordination
(e.g. adatoms evaporated from kink sites at steps), has been proven to exist on many material
surfaces [15]–[17]. Adatoms have been found to play a crucial role in determining reaction
pathways in a number of catalytic processes [18]–[22]. The possibility of obtaining direct
experimental information about the local electronic structure of surface atomic configurations
with low coordination numbers therefore would be crucial for improving our understanding of
their physical properties at the atomic level.

Here we present high-energy resolution core level photoelectron spectroscopy results on
Rh3d5/2 core level shifts (CLSs), induced by Rh adatoms and ad-dimers, adsorbed on the (100)
and (111) Rh surfaces. We have detected the spectral components originating from atoms with
many different coordination numbers measuring for the first time the electronic structure of
highly under-coordinated atoms, i.e. atoms with nearest neighbour number n equal to 3, 4 and 5.
We have also carried out CLSs density functional theory (DFT) calculations for atoms in different
geometrical configurations (tracking, in each case, both initial and final state contributions to the
shifts). The agreement between calculations and experimental data supports the identification of
different spectral components. Furthermore calculations indicate that for Rh final state effects
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give a minor contribution to CLSs. We find a linear relationship between CLSs and the energy
shifts of the atom projected d-band centre. The latter, in turn, are strongly correlated with
atomic coordination numbers, and with interatomic distance changes (ensuing from structure
relaxations).

2. Experimental and theoretical methods

The experiments were carried out at the SuperESCA beamline [23, 24] of the synchrotron
radiation source ELETTRA. The experimental chamber, with a base pressure of 1 × 10−10 mbar,
is equipped with a double pass 96-channel detector electron energy analyser. Clean Rh(100)
and Rh(111) samples were prepared following well established procedures [25], consisting of
repeated Ar+ sputtering cycles at room temperature, annealing to 1300 K, oxygen treatments and
a final hydrogen reduction. Rh atoms were deposited from the vapour phase via sublimation of
a 99.95% purity Rh wire, which was cleaned in ultra-high-vacuum by oxygen and hydrogen
treatments at 10−7 mbar, followed by annealing at about 1500 K. Surface cleanliness was
checked before and after Rh deposition by measuring C1s, O1s, S2p and Si2p XPS signals.
Presence of residual hydrogen, which is known to induce new core level components [26, 27],
was excluded on the basis of temperature programmed desorption experiments. On the basis
of Rh adatom diffusion coefficients data [28] the sample temperature during deposition was
maintained at 20 K, in order to exclude adatom surface diffusion and annihilation, by coalescence
with steps and/or recombination. In order to minimize the phonon broadening the Rh3d5/2

photoemission measurements were also carried out at the same temperature. The overall
experimental energy resolution was 60 meV. The spectra were fitted by using a sum of Doniach–
Sunjic (DS) [29] functions, convoluted with a Gaussian, which accounts for instrumental
resolution and phonon/inhomogeneous broadening. A DS function is characterized by two
parameters, the singularity index α, describing the asymmetry due to the final-state screening of
the core-hole and the Lorentzian width �, due to the finite core-hole lifetime.A linear background
was also subtracted.

In order to obtain a more quantitative understanding of the CLSs stemming from the
different atomic configurations, we have also performed in-depth DFT calculations. Surface
atomic structures, electron densities of states and core-electron eigenvalues were obtained using
DFT-ultrasoft pseudo potential calculations [30] based on the local density approximation of
the exchange and correlation functionals of Perdew et al [31], as implemented in the Quantum-
ESPRESSO suite of codes [32]. The Kohn–Sham equations are solved self-consistently using
a plane-wave basis set restricted to a kinetic energy cutoff of 30 Ryd. The Brillouin zone
integration for the (1 × 1) cell was approximated through a sampling at a finite number of
k points using a (12 × 12 × 2) Monkhorst–Pack grid, resulting in 21 special k-points in the
irreducible wedge [33]. We have used a Methfessel and Paxton smearing function [34] of order 1
with a width σ = 0.03 Ryd. The (100) and (111) Rh surfaces were represented by 7-layer repeated
slabs with (4 × 4) in-plane periodicity, one adatom (or dimer) per unit cell (adsorbed on one side
of the slab), and a vacuum region equal to five atomic layers; as previously found [35, 36], this
vacuum thickness was sufficient to avoid interactions between neighbouring slabs. Final state
core level binding energies (BEs) can be accurately computed in the pseudopotential formalism
adopted here by describing the excited atom by a pseudopotential generated in the core-excited
configuration [37]. In this formulation the core-level BE, including final state effects, is given
by the pseudopotential total energy difference supplemented by an additive constant that can be
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determined for the isolated atom and cancel out when computing BE differences. Initial state
contributions can also be extracted by a frozen-density calculation. Full details of the method
used can be found in [35]. The partial density of states we calculate is defined as the projection
of the density of states on to the atomic wave-function φat

i :

ni =
∑

n

∫

BZ

δ(E − En(�k))|〈φat
i |ψn(�k)〉|2d�k,

where ψn(k) is the crystal wavefunction of the nth band at wavevector k. We define the pth
moment of the density of states ni(E) as µp = ∫ εpni(ε) dε; µ0 and µ1/µ0 give the total number
of states in the band and the centre of gravity position Bd, respectively.

3. Experimental results

High-energy resolution Rh3d5/2 core-level spectra of the Rh(100) surface with different coverage
of deposited Rh atoms are shown in figure 1. In the clean surface spectrum (a), the lower BE
component Rhs originates from first-layer surface atoms, while the higher BE peak is due to
the superposition of bulk (at 307.15 eV) and second-layer atoms’ contributions (at + 100 meV
with respect to the bulk peak), as previously demonstrated [26]. Upon Rh deposition (b), the
3d5/2 lineshape clearly changes, as shown by the difference spectrum d1 in figure 1. The growth
of new core-level components, both at lower and higher BEs with respect to the Rhs peak, is
compensated by a decrease of the surface component and a drop of the spectral weight at the
second-layer peak position, as expected. Longer Rh deposition times (c and d) result in further
lineshape modifications, with an enhanced shoulder at low BE and an increased spectral weight
in between the bulk and surface peaks.

Spectral multi-peak fitting is a delicate process that requires extreme care for extracting
accurate and meaningful quantitative information. For this reason we have used a multi-
dimensional least-square analysis of our data. This analysis is needed because of the number
of independent components, each defined by different parameters, associated to a specific local
atomic configuration. Since the peaks are close to each other, the lineshape parameters of these
components can be correlated when performing the fit. In order to rationalize the data analysis
procedure, we have mapped the evolution of the chi-square χ2 as a function of each of the
parameters, following the procedure proposed in [38]. The only constraint was to force the
lineshape parameters of the adatom- and addimers-induced CLSs (α, � and the Gaussian width)
to be equal to those of the surface component, while the energy position of each peak was
allowed to vary, in order to obtain an estimate of the accuracy of the determined BE (±30 meV).
For example, as shown in figure 2(a) for the Rh(100) spectrum corresponding to a Rh coverage
of 0.095 ML, the two-dimensional χ2/χ2

min contour plot (adatom-induced CLS versus addimer-
induced CLS) shows a pronounced and localized minimum, contrary to what observed in the
plot (figure 2(b)) relative to the correlation between Gaussian width of the surface peaks versus
adatom-induced CLS.

This procedure is based on the analysis of a large set of spectra measured at different photon
energies (325–385 eV) and polar emission angles (20◦–55◦ off-normal). Different experimental
conditions result in an intensity modulation of the different core level peaks, which facilitates the
process of disentangling the different spectral components. The procedure allows (i) to determine
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Figure 1. Rh3d5/2 core level spectra corresponding to clean (a) and different Rh
covered Rh(100) surface (b)–(d). Dashed lines indicate bulk and second layer
components, while coloured curves originate from Rh atoms in different local
coordination. Individual components are plotted without the linear background.
The spectra were acquired at 380 eV photon energy. Polar emission angles was
55◦ with respect to the surface normal. The curve d1, obtained as the difference
between spectrum b and a, is also reported.

the number of core level components necessary to fit each spectrum, (ii) to extract reliable values
of the different CLS components, and (iii) to highlight existing correlations between different
fitting parameters. It is important to note that, in general, the intensities of the different spectral
components cannot be linked in a straightforward way to the number of emitting atoms, as
photoelectron diffraction effects are known to play an important role [39]. This is particularly
relevant at low photoelectron kinetic energies [40]–[42], e.g. the ones we used in the present
study to achieve high-energy resolution and surface sensitivity.

The low adatom coverage spectrum (figure 1, curve b) can be fitted only by using two extra
components at −1030 meV and at −400 meV, with respect to the bulk peak. In the approximation
that all the atoms are isolated, we assigned these two components to adatoms (yellow atoms with
coordination number n = 4) and to surface atoms just below the adatoms (light-blue atoms
with n = 9). Accordingly, we label these spectral components Rh4 and Rh9 respectively; Rhn
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Figure 2. Two-dimensional χ2/χ2
min contour plots referred to the fit of the

Rh(100) spectrum corresponding to a Rh coverage of 0.095 ML. (a) Adatom-
induced CLS versus addimer-induced CLS shows a pronounced and localized
minimum. (b) On the contrary to the plot in (a) the Gaussian width of the surface
peaks parameter does not depend strongly on the adatom-induced CLS.

will be used in the following to indicate the spectral component arising from Rh atoms with
coordination number n. The local configuration of atoms that give rise to the Rh8 (= Rhs)

component is the same as for the clean surface atoms; in this case we can therefore use the
related intensities as a measure of the atomic densities, as previously successfully done [43].
The 13.8% decrease of the intensity of the Rh8 component with respect to the clean surface
corresponds, in a random distribution model [44], to an overall Rh coverage of 0.035 ML. We
have run a simulation of the deposition process, which shows that, under these conditions,
90% of the deposited adatoms are indeed isolated. Using this method, we can evaluate the Rh
coverage for longer deposition times. At 0.095 ML (figure 1, curve c), two additional peaks,
Rh5 at −810 meV and Rh10 at −145 meV, are needed to obtain a fitting residual with negligible
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Figure 3. Rh3d5/2 core level spectra corresponding to clean (a) and Rh covered
Rh(111) surface (b) and (c). Dashed lines indicate bulk and second layer
components, while coloured curves originate from Rh atoms in different local
coordination. Individual components are plotted without the linear background.
The spectra were acquired at 380 eV photon energy. Polar emission angles were
35◦ (spectra a and b) and 20◦ (spectrum c), with respect to the surface normal.

modulation. We interpret these additional components as due to the formation of ad-dimers
(orange atoms, n = 5, and blue atoms,n = 10). At this coverage, the Rh4 and Rh9 components
are still present, albeit the Rh9 component is slightly shifted to lower BE. At 0.25 ML (figure 1,
curve d), the Rh3d5/2 spectrum can be satisfactorily fitted with the same components used for
0.095 ML, by allowing the intensities to vary. The analysis shows that the ratio of ad-dimers
(Rh5) to adatoms (Rh4) populations increases, as expected for higher Rh coverage.

In order to extend our study to the case of very low atomic coordination, we investigated
also the Rh(111) surface (figure 3). As previously determined [38] the clean surface (curve a)
can be fitted with three components: a lower BE component Rhs, originating from first-layer
surface atoms, and two higher BE components, corresponding to bulk and second-layer atoms’
(+88 meV) contributions, similarly to the (100) surface.

At an adatom coverage of 0.040 ML (figure 3, curve b), we find two new core level shifted
components: Rh3 at −1080 meV and Rh10 at −380 meV. Rh3 is assigned to single adatoms
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(b)

(a)

Figure 4. (a) Experimental and calculated CLSs versus nominal atomic
coordination number. (b) Calculated CLSs versus effective coordination.

(red atoms) with coordination equal to 3, while Rh10 is tentatively interpreted as due to surface
atoms (green atoms) nearest-neighbours of the adatoms. The ratio between the Rh3 and Rh10

intensities does not seem to support this interpretation, as it is apparently smaller than the expected
value of 1/3 (there are three ‘green’ atoms for each ‘red’ atom). However, as stated above, it
should be remembered that peak intensities in photoemission spectra are always affected by
photoelectron diffraction effects. Therefore it is not possible to draw straightforward conclusions
on simple coverage arguments for atoms in inequivalent structural configurations [39]–[42].
An example of this is shown in figure 3, spectrum c, which was measured from the same
layer and at the same photon energy of spectrum b, simply changing the polar emission angle
(	 = 20◦ instead of 35◦). A further complication affecting the Rh10 peak is its precise BE
position. Indeed, this peak is expected to be originated by two different kind of ‘green’atoms that
most likely exist on the surface at 20 K, when both fcc (face centred cubic) and hcp (hexagonal
close packed) sites can be occupied, giving rise to different core level shifted components. In
order to exclude possible artefacts, we therefore excluded the Rh10 component from our further
consideration.

4. Theoretical results and discussion

In figure 4(a) we plot the experimentally determined CLSs (empty orange circles)
together with the calculated ones (filled black circles), which include both initial and
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final state effects. Differences are always within error bars (which we estimate to be
± 30 meV for both experimental and calculated CLS values). For all the structures, core hole
screening contributions are of the order of 60 meV (with a scatter of ±30 meV). Therefore, as
previously reported for flat surfaces [45, 46], we find that Rh CLSs are dominated by initial
state effects. The behaviour of CLSs versus the atomic coordination number shown in figure 4(a)
is intriguing. It is approximately linear, as previously observed by Gustafson et al [47] for Rh
atoms at stepped surface and for coordination n � 7. However, our low coordination data points
(n � 5) are clearly positioned on a different line with respect to the higher coordination results
(n � 8) and therefore the overall deviations are well outside the error bars. Besides, the different
data corresponding to atoms at full (n = 12) nominal coordination (bulk and second layer atoms
of the (111) and (100) surfaces) differ by ∼ 200 meV. A simple electronic structure tight binding
model (neglecting final state effects) would predict a linear dependence of CLSs from atomic
coordination number.

We conclude that other effects must be contributing to the overall CLSs. A strong interplay
between coordination number and local bond strain can be anticipated.Atoms at low coordination
sites are subject to large relaxations owing to the more open local structure and reduced symmetry.
Indeed, our DFT calculations show that Rh atoms, at low coordination, undergo compressive
deformation, relative to the ideal geometry, resulting in a interatomic-distance change of −6 and
−7% for adatoms and ad-dimers, respectively. A similar decrease has been found by Richter
et al [5] for Rh clusters deposited on oxide substrates.

To take into account relaxation effects on the interatomic bond lengths, we introduce an
effective coordination of the i site, borrowing ideas from the embedded-atom method (EAM)
approach [48]–[50] that successfully models the cohesive energy of metals by considering each
atom as embedded in a host whose effect on it is determined by the charge density at the atomic
site generated by the host atoms alone. In the practical implementation of EAM this charge
density is then approximated by the superposition of atomic charge densities of the host atoms.
This definition naturally assigns larger contributions to closer atoms and smoothly phases out
farther ones.

We therefore define our effective coordination as ne (i) = ∑
j ρat

Rh(Rij)/ρ
at
Rh (Rbulk), where

the sum is calculated over all the nearest-neighbours j of atom i and ρat
Rh (R) is the computed

spherical charge density distribution of an isolated Rh atom as function of the distance R

from the nucleus, Rij is the distance of the j nearest-neighbour from the i atom and Rbulk

is the bulk interatomic distance. With this definition the effective coordination is normalized
in such a way to agree with the nominal one for atoms in the bulk. Since at the relevant
interatomic distance the isolated-atom charge density distribution can very well be described
by a simple exponential, of decaying constant b, the expression for the effective coordination
further simplifies as ne(i) = ∑

j exp [b(Rbulk − Rij)].
In figure 4(b) we plot the calculated CLSs as a function of ne. The linear behaviour obtained

in this way shows that CLSs strongly depend on both coordination and local interatomic distances,
in a combined way which highlights the common origin of the two effects, from the changes in
the interatomic matrix elements describing bonds between an atom and its nearest-neighbours.
We note that, when plotted against effective coordination, CLSs originating from bulk and second
layer atoms of both (111) and (100) surfaces (all with nominal coordination n = 12) also fall on
the same straight line.

Recently, it has been demonstrated that a number of basic local electronic structure
indicators, such as the d band centre and d band width, depend on local coordination and
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(a)

(b)

Figure 5. (a) Projected density of states per Rh atom on to the 4d orbitals for
atoms in all the considered geometrical configurations. The index n indicates,
in each case, the number of nearest–neighbours and the thick lines indicate the
d-band centre position Bd. (b) Calculated shift �Bd of the d-band centre versus
the effective atomic coordination number ne. Using our binding energy scale �Bd

is defined as Bsurf
d − Bbulk

d .

strain [13], [51]–[53]. In order to evaluate the relationship between CLSs and these relevant
chemical and physical quantities, we have calculated the projected density of states (per Rh
atom), onto the 4d orbitals, for all the different atomic configurations considered in our study.
As shown in figure 5(a), on increasing the coordination number, the projected density of states
width increases considerably, while its centre of mass (tick marks) shifts to higher binding energy.
In figure 5(b) we plot the shift of the projected d band centre versus the effective coordination
number of Rh atoms in the different atomic configurations. The relationship is clearly linear. This
implies that the effective coordination number ne should be considered as an indicator of local
electronic structure properties. In the last few years, a number of landmark papers have shown
that the d-band centre is also a reliable descriptor of local chemical reactivity [13], [51]–[53].
Therefore our results show that a careful analysis of CLSs provides, for systems where final state
effect contributions can be neglected, a spectroscopic measure of chemical reactivity changes,
at the atomic level.
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5. Conclusions

We have shown that high-resolution core level spectroscopy can be successfully used for
investigating local chemical and physical properties of under-coordinated surface atoms. In
particular we have detected, for the first time, the spectral contribution of atoms at the lowest
coordination numbers (n = 3, 4 and 5). We have also carried out in-depth DFT calculations,
which fully confirm our interpretation of the experimental data. Besides, the calculations have
allowed us to introduce the effective coordination number ne, which has been shown to be a
reliable descriptor of local electronic structure at the atomic level. On the basis of these results,
we believe that CLSs can become a powerful tool for characterizing nanostructured surfaces.
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