
ORIGINAL RESEARCH PAPERS

Methodology for Determining Dwell Times Consistent
with Passenger Flows in the Case of Metro Services

Luca D’Acierno1
• Marilisa Botte1

• Antonio Placido2
•

Chiara Caropreso1
• Bruno Montella1

Received: 13 October 2016 / Revised: 4 May 2017 /Accepted: 10 May 2017 / Published online: 27 May 2017

� The Author(s) 2017. This article is an open access publication

Abstract The importance of a mobility system based on

railway technology as the backbone of public transport is

now widely acknowledged. Indeed, rail systems are green,

high performing, smart and able to ensure a high degree of

safety. Therefore, modal split should be steered towards

rail transport by increasing the attractiveness of this

transport mode. In this context, a key element is repre-

sented by the timetabling design phase, which must aim to

guarantee an appropriate degree of robustness of rail

operations in order to ensure a high degree of system

reliability and increase service quality. A crucial factor in

the task of timetabling entails evaluating dwell times at

stations. The innovative feature of this paper is the ana-

lytical definition of dwell times as flow dependent. Our

proposal is based on estimating dwell times according to

the crowding level at platforms and related interaction

between passengers and the rail service in terms of user

behaviour when a train arrives. An application in the case

of a real metro system is provided in order to show the

feasibility of the proposed approach.

Keywords On-platform passenger behaviour � Dwell time

estimation � Timetable design � Rail system simulation �
Microscopic approach

1 Introduction

The key role of the timetabling design phase in rail trans-

port management lies in the fact that the results of this

planning task have a direct impact on service quality, hence

on passenger satisfaction [1]. The timetabling process is

made ever more difficult by the constant increase in travel

demand, and the consequent need to provide sufficient

transport capacity, avoid train and platform congestion and

guarantee a good level of service reliability is increasingly

felt. It is therefore necessary to develop suitable method-

ologies to enable service providers to provide a

timetable which is as robust and stable as possible, so as to

increase the attractiveness of rail systems.

Timetable planning consists in establishing for each train

line a feasible schedule of arrival and departure times at the

stations served consecutively, consistent with the safety and

signalling system, transfer connections and regulations. For

this purpose, several factors have to be taken into account,

such as train running times, blocking times and minimum

headway between two successive convoys, dwell times at

stations and possible buffer times. In particular, the paper

focuses on the dwell time estimation problem. However,

although mass transit agencies may adopt a statistical

approach for determining dwell times as a function of

confidence degrees (expressed, for instance, in terms of

percentiles), the planning phase is implemented when the

service is not yet in operation (for instance, in the case of a

new line, new services or new timetables), and therefore,

there are no available data for implementing such proce-

dures. Hence, in these cases, it is necessary to adopt a

modelling approach for simulating future and hypothetical

conditions. Our proposal aims to provide an analytical tool

for supporting planning phases. Moreover, since mass

transit agencies may adopt some control strategies to
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increase the compliant between the real and the scheduled

timetables, the use of a decision support system which

allows to estimate actual dwell times may direct the use of

proper intervention actions such as the adoption of addi-

tional rolling stock, the increase or reduction in stop

duration of a convoy or the limitation of passengers flows

on platform. In the literature, contributions on dwell times

follow mainly two kinds of approaches, namely regression

and micro-simulation methodologies. Methods based on the

former approach aim to provide, on the basis of the data

observed, a regression model which expresses dwell times

as a sum of constant and variable predictors. In particular,

fixed values are related to the unlocking, opening and

closing times of doors together with any planned buffer

times; indeed, they are invariant once rolling stock features

and train dispatching times are set up. By contrast, variable

parameters are a function of the users alighting and

boarding times which, in turn, depend on passenger flows.

Statistical techniques were the first kind of approach pro-

posed in the literature [2, 3] and were borrowed from the

bus service sector [4–6]. More recent contributions in this

field are provided by [7–10]. However, broadly speaking,

these methods are not generic enough to be applied in

contexts other than those in which they were developed,

and moreover, they provide no details about passenger

behavioural rules when a train arrives.

On the other hand, methods based on a micro-simulation

approach analyse pedestrian behaviour on platforms

explicitly, especially in crowded conditions [11, 12], and

relate it to delays and to other aspects of rail service

performance.

In this context, [13] extended the simulation methodol-

ogy proposed by [14], introducing the evaluation of the

mutual interaction between dwell times and train delays.

By contrast, [15] simulated the cooperation and negotiation

process between boarding and alighting passengers by

means of a cellular automata-based model and [16] pro-

posed a multi-agent simulation method which is able to

take into account passenger congestion both on the plat-

form and inside trains. Moreover, in order to overcome the

shortages of discrete approaches, [17] proposed an exten-

sion of a traditional floor field cellular automata pedestrian

model, which is specifically developed for simulating high-

density contexts. Furthermore, [18] addressed the problem

of defining passenger service time and other related factors

(i.e. user density on trains and platforms, pedestrian level

of service and passenger dissatisfaction) by combining

micro-simulation tasks with laboratory experiments.

Albeit based on statistical techniques, regression meth-

ods are mostly deterministic, in the sense that their results

can be viewed as the expected values of dwell times which

are required for completing the boarding and alighting

process. By contrast, micro-simulation approaches are

better able to take into account the stochasticity of the

analysed phenomenon which lies in several factors: the

temporal and spatial distribution of passengers, passenger

and train driver behaviours, and train delays. Stochastic

variations in dwell time are taken into account in [19],

while [20] addressed the problem by determining dwell

times by separating them into both deterministic and

stochastic sub-processes.

Other methodologies proposed in the literature for

estimating dwell times are based on the use of artificial

neural networks: [21] modelled human behaviour and

interaction between different groups of passengers by

applying artificial intelligence-based techniques and espe-

cially by means of a fuzzy logic approach, while [22]

addressed the problem by using the so-called Extreme

Learning Machine (ELM), a very fast training speed

algorithm described by [23].

From the above, we may identify some of the elements

which influence dwell times such as rolling stock and

passenger flows with their features. Rolling stock plays a

role in the problem of dwell time estimation due to many

factors: the control system, number and width of doors

[24], kind of service performed [25], horizontal and verti-

cal gaps between the train and platform [26, 27] and

interior layout of the convoy seen as number and position

of seats [28] or as passenger distance to exit doors and

potential free space that the passenger is inclined to occupy

[29]. As shown by [30], also fare collection methods may

influence dwell times at stations.

Moreover, the importance of considering the number

and characteristics of passengers (gender, age, mobility,

luggage) for determining alighting and boarding times is

self-evident [31]. This element is the hardest to evaluate,

since it depends on uncertain conditions such as the

interaction between different groups of passengers on the

same platform and between passengers on the platform and

those on the train [32].

An important factor to be taken into account is also the

forecast of queue length of passengers who fail to take the

train due to a lack of residual capacity on the convoy: these

users will influence the next alighting and boarding pro-

cess. In this regard, [33] proposed a methodology for

supporting pedestrian flow management which is able to

provide a theoretically quantitative prediction for the queue

length of stranded passengers by means of probabilistic

theory and discrete time Markov chain theory.

In addition, also station layout and rail operations affect

dwell times. The former includes the position of access/

egress facilities on the platform [34] and train stop type

(e.g. short stop or large stations [35]). The latter (i.e. rail

operation) presents a relationship of reciprocal influence

with dwell times at stations, which are key factors in order

to optimise the reliability of rail systems [36–39]. Dwell
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times play an important role especially in propagating

delays [40–43]. Indeed, when a first delay occurs, if the

timetable is neither stable nor flexible enough, the pertur-

bation propagates and generates secondary delays, reduc-

ing service quality and hence passenger satisfaction. In this

context, a careful estimate of dwell times, as a function of

passenger flows, is the most critical task in order to design

a robust timetable and make it able to absorb delays by

avoiding disturbance propagation.

Clearly, this requirement becomes increasingly felt with

the worsening of crowded conditions. Indeed, as shown by

[44], the dynamic interaction between passengers and the

rail service produces the so-called snowball effect: the

number of passengers on the platform influences the dwell

times of trains at stations which, in turn, cause increasing

delays; this implies an increase in headways which could

generate more passenger flows on the platform (generally

proportional to the headway increase), producing a further

extension of dwell times. However, the snowball effect

does not evolve indefinitely, but converges towards an

equilibrium state according to proper theoretical condi-

tions, as shown in Sect. 2.

Given the close relationship between dwell times, the

timetable and reliability of rail service [45, 46], togetherwith

the need to evaluate boarding and alighting times as a

function of passenger flows, the majority of contributions in

the literature have concentrated on dwell time estimation in

the planning phase: [47] focused on the definition of run

times and station dwell times in order to minimise transfer

waiting times, while [48] analysed the possibility of adjust-

ing dwell times so as to increase station capacity. Never-

theless, some have also proposed models for managing

disruptions [49] and real-time rescheduling tasks [50], or

even making more effective energy-saving measures [51].

In this context, this paper proposes a methodology

whose aim is to support the timetabling planning process

by providing an accurate estimation of train dwell times at

stations, so as to increase timetabling robustness and hence

rail service reliability. Dwell times are computed as a

function of travel demand flows evaluated by simulating

explicitly user behaviour on the platform when a train

arrives. Moreover, the proposed methodology also takes

account of station layout, assuming, as proposed by [34],

that passengers during the boarding process choose the

door on the basis of their exit position (for example, stairs

or elevator) in the alighting stop so as to minimise the

walking distance at their own destination station. Obvi-

ously, the choice of the preferred door cannot be always

satisfied, especially in high crowding conditions. Indeed, in

these cases, passengers tend to modify the selected door

(choosing adjacent doors and/or adjacent coaches) as a

function of the crowding degree in order to board as soon

as possible. Hence, in these contexts, the assumption on the

starting position of passengers on the platform (according

to the approach proposed by [34] or other equivalent

approaches) represents only the initialisation of the loading

algorithm.

The paper is structured as follows. Section 2 describes

the simulation framework for modelling the interaction

between rail system components, focusing on the estima-

tion of dwell times as flow-dependent variables and their

influence on the achievable service performance. Sec-

tion 3 shows the feasibility of the suggested approach by

recourse to an application in the case of a real metro line.

Finally, conclusions and future research are summarised in

Sect. 4.

2 Simulation of Interaction Between Rail System
Components

Rail service is characterised by a high degree of complexity

because of the large amount of interactions existing

between its components: infrastructure, signalling system,

rolling stock and timetable. In addition, the reciprocal

influence between rail service and travel demand has to be

taken into account: passengers on the platform influence

dwell times at stations and this represents one of the main

disturbances of high-frequency service lines. As a result, a

realistic analysis of rail operations should consider the

effects of delays resulting from travel demand both in the

phase of network design and in real-time management.

The proposed modelling framework is based on the

adoption of three different models (Fig. 1):

• a Supply Model;

• a Travel Demand Model;

• a Service Simulation Model.

The first two models provide, respectively, supply

characteristics and travel demand related to the analysed

context. By means of their interaction, it is possible to

evaluate passenger flows on the network and performance

of elements of the transportation systems analysed.

In particular, the Supply Model (SuM) provides the

features of all public transport systems within the study

area, including the rail system. In this way, split demand

among transport modes can be taken into account. Indeed,

rail and metro lines, particularly within cities, are part of

the public transportation system and cannot be considered

individually. Hence, knowing the characteristics of the

other transport modes can also provide better estimation of

the arrival rate at each station.

The Travel Demand Model is the most innovative part of

the procedure. It is split into two further sub-models: a Pre-

Platform Model (PPM) and an On-Platform Model (OPM).
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The former estimates the number of passengers arriv-

ing at stations as a result of the interaction with the

Supply Model (SuM) by reproducing the decision-making

process made by passengers who choose, among all

possible alternatives (i.e. different transport modes), the

one which maximises their utility. The results of this

model allow arrival rates of passengers at platforms to be

determined.

The latter explicitly simulates passenger behaviour on

the platform by considering the maximum capacity of each

train and estimating the dwell time required to complete

the boarding/alighting process. This model is based on a

First-In First-Out (FIFO) approach where it must be

considered that passengers on the same platform may have

different destinations and hence different alighting stations.

In this way, travel demand is simulated dynamically

according to rail service performance which, in turn, is

influenced by passenger flows.

This reciprocal interaction between travel demand and

rail service generates, as we will see, a fixed-point problem

and takes place in a simulation environment provided by

the Service Simulation Model (SeSM). Indeed, given their

complexity, railway systems cannot be described in terms

of a closed-form analytical solution, but it is necessary to

rely on specific simulation techniques. The SeSM is a

microscopic synchronous simulation model and is able to

provide rail network performance as a function of infras-

tructure, rolling stock, signalling system, planned

timetable and travel demand.

In our case, the simulation of the rail system can be

performed by using commercial software (such as

OPENTRACK
� software [52]), appropriately integrated with

ad hoc external tools in order to include travel demand as

input data and, therefore, to take into account variations in

dwell times at stations just due to variations in travel

demand. Moreover, both deterministic and stochastic sim-

ulations can be performed.

More detail on the formulation of these models can be

found in [53, 54]. However, it is worth pointing out that by

means of this new conception of the Travel Demand Model

and especially through the On-Platform sub-model, we

may capture the interaction between passenger flows and

the rail service taking place at stations. This phenomenon is

the key factor to be simulated in order to perform a reliable

estimation of dwell times. This will, in turn, generate a

robust timetable which is able to absorb delays, avoiding

their propagation.

Therefore, evaluation of dwell time is a fundamental

scheduling task of the wider process of timetabling which

directly influences service reliability and passenger satis-

faction. Herein lies the motivation behind our proposal.

In particular, the proposed methodology estimates dwell

times at station by considering, as input, passenger flows,

station configurations and a function expressing the

dependence of dwell times on the number of passengers at

the most loaded door.

Qualitatively, this function presents constant values of

dwell time for low passenger flows, and then, the dwell

time increases as the number of passengers rises. However,

since the factors which influence this relationship vary for

different railway networks, the function has to be suitably

calibrated on the specific system analysed.

Moreover, although interchange with bus services may

seem to transfer irregularity to a metro system, the low

values of transferred passengers (the capacity of a bus

generally has a lower order of magnitude than a metro

context) do not yield significant effects. Likewise, if in

the interchange node numerous bus lines converge, the

overlap of irregularities tends to compensate, and there-

fore, also in this case transfer irregularities can be

neglected. Finally, in the case of interchange with rail

systems (regional trains, metros or funiculars), where the

flows involved may be substantial, the regular structure of

arrivals tends to stabilise travel demand variations.

However, in order to prevent any kind of irregularity, we

propose to perform analyses by considering different

levels of travel demand in order to take even more severe

conditions into account.

In planning dwell times, the greatest challenge is to be

able to model the interaction between passengers and trains

during the boarding/alighting process by capturing the

above-mentioned snowball effect and the complex phe-

nomenon of negotiation and cooperation between passen-

gers. In particular, the proposed approach considers three

levels of interaction.

First of all, on the basis of the station configuration,

passengers move towards the door they prefer. In particu-

lar, the assumption is that passengers prefer to board the

train with their final destination in mind so as to maximise

their own utility, according to the theory of the rational

decision maker (see, for instance, [55]). Indeed, especially

commuters, who have experience of the system, choose the

door of the train which is as close as possible to the stairs or

the elevators so as to minimise their walking distance at the

alighting station. When in front of a door there is a larger

group of passengers than a set value (which, obviously,

varies from case to case), they start moving to the adjacent

Travel demand
model 

Supply
model 

Service simulation model 

Fig. 1 Modelling structure
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doors in the same coach. In the case of crowded situations,

the customer’s target is to get on the train as rapidly as

possible, trying to remain close to the first favourite door.

Once the capacity constraints of the coach are reached,

passengers move towards the other doors which attract flow

according to their available capacity. This means that the

emptier the coach, the more passengers will board it.

The assumption to be made, for the procedure in ques-

tion, is that the door chosen to board the train will be the

same as that to alight from it. This is supported by the lack

of freedom of movement for passengers within the coach,

especially in crowded conditions.

However, it is worth noting that, although in the liter-

ature there are few studies on the microscopic behaviour of

passengers on the platform, we adopted the proposal of

[34] for determining the initial position of passengers when

a train arrives. Another equivalent approach would be

based on distributing passengers uniformly on the platform.

Obviously, in the cases of low crowding conditions, each

passenger is able to board quickly through the preferred

door without affecting the dwell time duration, and there-

fore, the two approaches would provide similar results.

Likewise, in the case of high crowding conditions, the

congestion of doors and coaches affects user choices aimed

at reducing boarding times. Hence, also in these conditions,

the initial position of passengers on platform being calcu-

lated with both approaches would provide similar results in

terms of dwell time duration, since the loading algorithm

converges to a solution depending on the train congestion

level.

Therefore, by modelling the boarding/alighting process

as a threefold interaction phenomenon, we may compute

the number of passengers at the most loaded door and, by

means of the calibrated function (expressing the relation

between the number of passengers and dwell times for the

specific context analysed), provide dwell times for each

simulated train and at each station. In addition, by esti-

mating the door chosen to board the train, the proposed

model provides information about the crowding level

within each coach (Fig. 2). This result is extremely useful

for calculating the on-board disutility perceived by pas-

sengers and could enable a fleet composition to be planned

which is closer to customers’ needs. Furthermore, Intelli-

gent Transportation Systems (ITS) could also be designed

to inform customers about the crowding levels of the

approaching train and to suggest positioning along the

platform or which coach of the train should be preferred, so

as to optimise the boarding/alighting process and reduce

dwell times.

It is worth noting that, should the maximum capacity of

the train be reached, the proposed methodology is able to

estimate the passenger surplus (i.e. the number of passen-

gers who are forced to remain on the platform due to

capacity constraints of the whole convoy being reached)

who has to board following trains.

This task makes the simulation more realistic, especially

in the case of breakdowns, because it allows for propaga-

tion of the disturbance. Hence, besides the planning phase

addressed herein, the proposed model can be easily

adjusted to deal with rescheduling measures in an off-line

dimension (see, for instance, [56]).

From a mathematical standpoint, the snowball effect,

and therefore the reciprocal dependence between headways

and dwell times, results in a fixed-point problem formu-

lation. For this purpose, let

dwt ¼ # tdð Þ ð1Þ

be a function to be calibrated which expresses the depen-

dence of dwell times on the number of boarding/alighting

passengers, where dwt and td represent, respectively, dwell

time and travel demand vectors. Obviously, function # �ð Þ
has to consider that there is a threshold value of boarding/

alighting passengers below which the dwell time is

constant.

Likewise, let

hd ¼ w dwtð Þ ð2Þ

be the relation providing headways (i.e. vector hd) as a

function of dwell times (i.e. vector dwt) by means of the

simulation performed by the SeSM.

Since the frequency of a metro rail service strongly

affects the congestion level on the platform, assuming

within a short time interval the arrival rate of passengers at

station s as constant, the travel demand (i.e. the number of

passengers waiting on the platform) at each station s may

be calculated as:

tds;d;r ¼ upfs;d;r � hdr;s ð3Þ

where tds,d,r is the number of passengers arriving at the

platform of station s for travelling towards destination d

during the time interval between run r - 1 and run r;

upfs,d,r is the arrival rate of passengers at platform of station

s for travelling towards destination d during time interval

between run r - 1 and run r; hdr,s is the headway between

run r - 1 and run r at station s. Obviously, tds,d,r and hdr,s
express, respectively, the component of vector td and

Passenger 
flow 

Station 
configuration 

Calibrated 
function

THREEFOLD 
INTERACTION 

Dwell times 

Crowding 
level within
each coach 

Fig. 2 Simulation framework
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vector hd. Hence, Eq. (3) may be expressed in vector

notation as:

td ¼ c hdð Þ ð4Þ

Obviously, the PPM provides arrival rates (upfs,d,r)

associated with each origin–destination station and each

time interval between two successive runs.

Therefore, combining the above-mentioned functions,

the following is obtained:

dwt ¼ # tdð Þ
td ¼ c hdð Þ
hd ¼ w dwtð Þ

8
<

:
ð5Þ

or equivalently:

dwt ¼ # c w dwtð Þð Þð Þ ð6Þ

The explicit formulation of relations in Eq. (5), or

equivalently in Eq. (6), can be expressed in closed form in

the case of function # �ð Þ (whose details are provided in

Sect. 3) and function c �ð Þ (whose formulation is provided

in Eq. 3). Differently, function w �ð Þ may not be expressed

in closed form since it represents a system of differential

equations whose solution requires the implementation of

proper simulation software. In particular, in Sect. 3, we

propose the use of the commercial software OPENTRACK
�

[52] for solving this task numerically.

A first remark concerns the relationship between the

travel demand (in terms of arrival rate) in a station and the

related dwell time. Indeed, although Eq. (1) shows the

direct dependence of dwell times on travel demand (i.e. the

higher the travel demand, the higher the dwell time),

Eq. (3) (or, equivalently, Eq. 4) shows the direct depen-

dence of travel demand on headway which, by means of

Eq. (2), in turn depends on dwell times in previous stations.

Hence, the dwell time in a station is a function of the

arrival rate in that station, the arrival rates in the previous

stations and the framework of the travel demand (in terms

of alighting flows). For this reason, in general, it is not

possible to state that higher flows (in terms of arrival rates)

necessarily imply higher dwell times.

However, the problem formulated by Eq. (6) highlights

the need to find a dwell time vector which produces a

headway vector which generates travel demand on plat-

form which provides the initial dwell time vector.

According to the theory of the fixed-point problem, this

particular case is called ‘compound fixed-point problem’.

The mathematical conditions which ensure the existence of

the solution of (6) are expressed by Brouwer’s theorem

[57]. In our case, since all conditions are satisfied, we may

state that the snowball effect always evolves towards an

equilibrium condition. Likewise, Banach’s theorem [58]

(or equivalently its version in the case of weaker conditions

proposed by Cantarella [59]) allows us to state the

uniqueness of the fixed-point solution. However, in our

case, the uniqueness conditions are not satisfied and this

has an impact on the selected resolution procedure. More

specifically, two different methods were considered,

namely an ‘iterative algorithm’ and an ‘MSA (Method of

Successive Average) framework algorithm’ [59, 60]; for

both of them it is worth analysing convergence properties.

With respect to the iterative algorithm, the convergence

cannot be stated analytically, and hence, it cannot be

excluded that the algorithm diverges. On the other hand,

the issue of the convergence of the MSA algorithm requires

a more detailed assessment. Indeed if, in general, the

convergence of this algorithm for the resolution of the

compound fixed-point problem is guaranteed by Blum’s

theorem [61]; in our case, the convergence of the algorithm

cannot be demonstrated since, as explained above, the

uniqueness of the solution cannot be assured mathemati-

cally. However, this does not mean that the solution is not

unique, but that there are no mathematical bases to be sure

of this assumption according to traditional proof proposed

in the literature.

Hence, it is necessary to look for numerical evidence

that the solution of this fixed-point problem could be

unique. In particular, it is provided by [62] which applied

both algorithms in the case of a real metro line and verified

as well their convergence to the same configuration of

dwell time.

Moreover, in contrast to the iterative algorithm, the

MSA generates decimal values at each iteration. Obvi-

ously, such values need to be rounded up/down to the

nearest integer before being set up within the simulation

model. However, this process can cause theoretical prob-

lems for the achievement of the solution by causing a

slowdown in reaching convergence.

Therefore, the iterative algorithm appears easier and

faster than the MSA procedure, which was why it was

selected as the resolution approach to be adopted. How-

ever, obviously, in order to prevent the algorithm from

performing an infinite number of iterations, a termination

test has to be established, based on the maximum number

of solutions analysed.

3 Application of the Methodology in the Case
of a Real Metro Line

In order to show its feasibility, the proposed approach was

applied to Line 1 of the Naples metro system in its

17-station configuration. The line is about 18 km long and

has a somewhat directional travel demand since it connects

the suburbs (Piscinola) with the city centre (Garibaldi).

Hence, morning flows are directed towards the city centre

and afternoon/evening flows towards the suburbs. Figure 3
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shows the framework of Line 1, highlighting interchange

points with other transportation systems.

The choice of a metro network was no accident: due to

the close distance between two successive stations, dwell

times are frequently comparable to travel times. Thus, the

need to provide a reliable estimation of dwell times

becomes even more important.

Currently, for most of the days, there is a headway of

8 min between two successive convoys on the line. Toge-

ther with the demand flows involved, this makes the

snowball effects not very apparent. However, since our aim

is to verify the capacity of the methodology to capture this

phenomenon, in the application we stressed the system by

simulating a denser timetable, up to a headway of 3 min.

However, the application of the proposed methodology

has required two kinds of surveys: a survey of passenger

flows for estimating travel demand and a survey of

boarding/alighting flows and train stop durations for

determining the passenger flow dwell time function.

The first approach has been performed periodically in all

stations and in all time periods since 2012 by surveying

both the count of passengers waiting on platforms and

turnstile data. The second campaign was performed in a

shorter period (May–June 2013) by collecting 172 data

surveyed in 14 stations during the morning and afternoon

peak hours.

Travel demand was estimated according to [63], and the

simulation model was calibrated in terms of infrastructure,

signalling system, rolling stock and timetable as shown by

[64]. Moreover, in order to investigate the sensitivity of the

methodology to different crowding conditions, the pro-

posed approach was applied in relation to three different

levels of travel demand obtained by means of the first type

of surveys, whose results, expressed in terms of a distri-

bution function, are shown in Fig. 4.

The capacity constraints set for simulating the threefold

interaction between passengers and convoys in this specific

network are as follows:

• 20 passengers per door (according to the experimental

evidence during surveys);

• 216 passengers per carriage (according to the capacity

of the rolling stock adopted on the line);

• wherever the capacity of the carriage was reached, the

surplus is distributed in proportion to the residual

capacity of the remaining wagons.

The function expressing the relation between passen-

ger flows and dwell times in this specific network was

calibrated by adopting the second kind of surveys (cali-

bration details may be found in [56]), whose results are

shown in Fig. 5. In particular, the analytical formulation

is:

dwts ¼
5 if 0� tdmax

s �3:5279
0:8602 � tdmax

s þ1:9653 if 3:5279\tdmax
s �2 �Caprc

�

ð7Þ

where tdmax
s represents the sum of passengers boarding and

alighting at the most loaded door (obviously expressed in

terms of passenger number instead of passenger flow);

Caprc is the capacity of the rail coach which represents the
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maximum number of boarding passengers or, equivalently,

the maximum number of alighting passengers. Hence, the

worst case consists in a completely full coach, which first

unloads all passengers and then loads them again (in this

case, the number of transiting passengers is equal to

2 � Caprc). This implies that, since tdmax
s has a maximum

value, the dwell time is upper bounded.

However, the R2 test in the case of function (7) has

provided a result equal to 0.81.

The basic idea of the following application is to stress

the system in order to point out the presence of the

snowball effect and the fact that dwell times need to be

planned according to travel demand flows, rather than as

fixed values. For this purpose, we analysed different
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timetables with a decreasing value of headways between

two successive convoys and a fixed planned dwell time for

each station and for each run, without any differences

between peak hours and off-peak hours.

Hence, for each timetable, by means of the above-

mentioned modelling framework and the implementation

of the iterative algorithm, we simulated the threefold

interaction between passengers and trains and solved the

fixed-point problem (6), estimating dwell time as well for

each station and for each run as a flow-dependent value.

Our simulation focused on the morning peak hour

(6.00–9.00). As we will see, the resulting dwell times,

which are estimated by simulating rail service performance

dynamically according to passenger flows, represent much

more reliable values to be set into the timetable, in order to

improve its robustness and resilience to delays.

The steps of the procedure are as follows. First of all, a

starting random value of the dwell time vector dwt0 is set

up, and then, the SeSM evaluates the new headways

according to the dwell time vector dwt i provided at itera-

tion i. The next step consists in simulating the threefold

interaction between passengers and the train so as to esti-

mate a new dwell time vector, that is dwt iþ1ð Þ, based on the

headways obtained by SeSM.

At this point, the termination test has to be verified, that

is:

maxj
dwtiþ1

j � dwtij

dwtij

 !

\0:01 or i[M ð8Þ

where M is a set number which expresses the maximum

number of iterations (for instance, M = 1000). Therefore,

if the test is satisfied the algorithm stops; otherwise, it is

necessary to calculate the new headways. However, to be

more accurate, it is worth noting that the proposed proce-

dure has the following limitation: since the dwell time is a

random variable, the value obtained should be considered

as the expected value of the dwell time required for the

boarding/alighting process, and thus, information about its

statistical distribution is not available.

The iterative algorithm, whose flow chart is shown in

Fig. 6, was implemented for each planned headway anal-

ysed (i.e. from 8 to 3 min) and for each level of travel

demand (i.e. 50th, 85th and 95th percentile), amounting to

a total of 18 processed scenarios (i.e. algorithm

implementations).

The number of runs for each planned headway is shown

in Table 1 (detailed for the outward and return trip),

together with the number of iterations which need to be

implemented to solve the fixed-point problem in the case of

each planned headway and each travel demand level.

Interestingly, the maximum number of iterations, which is

set as a termination test requirement, is never reached, and

therefore, the algorithm reaches the convergence in each

scenario analysed. As can be seen, the number of iterations

varies from a minimum of 6 to a maximum of 18, pre-

senting a significant increase with the reduction in the

planned headway due to growing system instability.

Obviously, the lower is the planned headway to be anal-

ysed, the higher the number of runs and hence the com-

putational time. However, since our proposal addresses a

planning task, time is not the main variable to be

considered.

In terms of analysis of results, it is worth noting the

asymmetry between outward and return trips due to the

asymmetry in the network. In particular, the depot (i.e. the

place where each rail convoy starts the service every day

and is housed every night) is located at one end of the line

(i.e. at the beginning of the outward trip). Hence,

achievement of the frequency regime conditions requires a

transitory phase which implies a different number of runs.

The outcome of the addressed fixed-point problem is

represented by an estimation of dwell times for each station

and for each run. By way of illustration, Tables 2, 3 and 4

show the converging dwell times for a planned headway of

8 min, detailed for the three levels of travel demand

analysed. Obviously, this type of result was also produced

for the other planned headways tested: the structure and the

rationale are the same, but the numerical values provided

are different and the number of runs rises as the headway

decreases.

Moreover, since we also considered rolling stock con-

straints and hence the real use of trains, it is important to

NO YES 
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SeSM 

Simulation of the threefold 
interaction during the 

boarding/alighting process 

New Dwell Time

Termination test STOP

Fig. 6 Graphic representation of the iterative algorithm

Urban Rail Transit (2017) 3(2):73–89 81

123



provide also dwell times in the case of the first station in

order to show that the timetable was planned to ensure the

preservation of headways (i.e. the train is able to perform

the outward trip, the return trip and the outward trip again

without being delayed).

The dwell times can be observed to vary both along

the columns (i.e. the stations) and rows (i.e. the runs

with a certain planned departure time associated). This

implies that dwell times experience both spatial and

temporal variabilities. Moreover, the same run at the

same station could have a different dwell time on dif-

ferent days, according to the travel demand level at that

time and hence the flows of boarding/alighting passen-

gers involved.

As shown in the tables, dwell times in some cases can

reach also values above 90 sec. The reason lies in the fact

that these values represent the converging dwell times, i.e.

the dwell times reached at the end of the evolution of the

snowball effect, which, as mentioned before, magnifies the

involved quantities.

Moreover, these values are amplified by the congestion

which affects the alighting/boarding time and makes this

process very chaotic. Indeed, as shown by [24, 65], this is a

nonlinear phenomenon: a certain number of users, which

constitutes a mixed flow (i.e. some users must board and

others must alight), needs a greater time, with respect to the

case that they represent an unidirectional flow, for going

through the same door.

In addition, also the congestion inside the coach (i.e.

standing passengers on-board close to doors) and on the

platform extends dwell times. In particular, in the analysed

context, the former is accentuated by the fact that doors do

not open on the same side in all stations, hence could

happen that passengers who boarded on the right side must

to move inside the coach in order to alight on the left side

or vice versa, while the latter is due to the fact that pas-

sengers are not aware of the exact position of each door

while the train is approaching, and therefore, they walk on

the platform in a chaotic way.

Furthermore, it is worth nothing that, even if generally

dwell times increase as the travel demand increases, as

stated in Sect. 2, the dwell time in a station depends on

arrival rates in that station, the arrival rates in the previous

stations and the framework of the travel demand (in terms

of alighting flows).

Hence, it is not possible to identify a simple evolution in

dwell time values because these values represent the con-

verging values at the equilibrium state. Therefore, since the

equilibrium points of investigated flows are different (be-

cause boundary conditions are different), the comparison

between results related to different percentiles is nonsense.

This makes each solved fixed-point problem as stand-alone

and prevents a comparison between results related to dif-

ferent conditions. Therefore, results show the uniqueness of

each condition and confirm the necessity to make use of

suitable simulation techniques which are able to reproduce

Table 1 Number of runs for

each planned headway and

number of iterations for each

analysed scenario

Planned headway [min] Number of runs Travel demand level Number of iterations

Outward trips Return trips

8 23 19 50th 6

85th 7

95th 6

7 26 21 50th 6

85th 8

95th 6

6 30 25 50th 7

85th 13

95th 10

5 36 29 50th 17

85th 10

95th 15

4 45 36 50th 8

85th 10

95th 18

3 60 48 50th 8

85th 15

95th 12
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the complexity of phenomenon and catch its

unpredictable evolution.

The possible variation in dwell times between two suc-

cessive runs may generate variations in headway in each

station. However, the timetable was planned so as to ensure

that headway was constant on average. In order to highlight

this phenomenon, Figs. 7, 8 and 9 show for each planned

headway and for each travel demand level, the maximum

Table 2 Converging dwell

times (in sec) for a planned

headway of 8 min—50th

percentile

Station sequence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Outward run

1 44 37 13 12 29 19 39 43 59 45 11 28 29 76 36 32 50

2 44 37 13 12 29 19 39 43 59 45 11 28 29 76 36 32 50

3 44 37 13 12 29 19 39 43 59 45 11 28 29 76 36 32 50

4 44 37 13 12 29 19 39 43 59 45 11 28 29 76 36 32 50

5 44 37 13 12 29 19 39 43 59 45 11 28 29 76 36 32 50

6 44 37 13 12 29 19 39 43 59 45 11 28 29 76 36 32 50

7 44 37 13 12 29 19 39 43 59 45 11 28 29 76 36 32 50

8 44 37 13 12 29 19 39 43 59 45 11 28 29 76 36 32 50

9 44 37 13 12 29 19 39 43 59 45 11 28 29 76 36 32 50

10 44 37 13 12 29 19 39 43 59 45 11 28 29 76 36 32 50

11 44 37 13 12 29 19 39 43 59 45 11 28 29 76 36 32 50

12 44 37 13 12 29 19 39 43 59 45 11 28 29 76 36 32 50

13 44 37 13 12 29 19 39 43 59 45 11 28 29 76 36 32 50

14 44 37 13 12 29 19 39 43 59 45 11 28 29 76 36 32 50

15 44 37 13 12 29 19 39 43 59 45 11 28 29 76 36 32 50

16 44 31 8 8 26 17 39 42 57 44 11 27 29 74 36 32 49

17 44 38 9 13 36 24 30 73 96 43 11 32 29 77 36 32 50

18 38 35 8 12 35 22 29 69 88 38 16 30 17 73 37 29 49

19 38 36 8 12 35 23 30 71 90 38 22 31 19 76 58 59 63

20 38 36 8 12 35 23 30 70 90 38 22 31 18 76 39 40 40

21 38 36 8 12 35 23 30 70 90 38 22 31 18 76 39 40 40

22 38 36 8 12 35 23 30 48 65 27 20 13 9 26 32 35 34

23 38 36 8 6 22 6 17 23 31 15 15 7 7 17 24 25 16

Return run

1 65 27 36 45 22 23 28 19 48 50 25 26 43 24 22 52 80

2 65 27 36 45 22 23 28 19 48 50 25 26 43 24 22 52 80

3 52 22 26 33 59 19 24 17 62 39 16 14 53 16 15 61 65

4 52 22 27 33 60 19 24 17 62 39 16 14 53 16 15 61 66

5 52 22 27 33 59 19 24 17 62 39 16 14 53 16 15 61 65

6 52 22 27 33 59 19 24 17 62 39 16 14 53 16 15 61 65

7 52 22 27 33 60 19 24 17 62 39 16 14 53 16 15 61 66

8 52 22 27 33 59 19 24 17 62 39 16 14 53 16 15 61 65

9 52 22 27 33 59 19 24 17 62 39 16 14 53 16 15 61 65

10 52 22 27 33 60 19 24 17 62 39 16 14 53 16 15 61 66

11 52 22 27 33 59 19 24 17 62 39 16 14 53 16 15 61 65

12 52 22 27 33 60 19 24 17 62 39 16 14 53 16 15 61 66

13 52 22 27 33 59 19 24 17 62 39 16 14 53 16 15 61 65

14 52 22 27 33 60 19 24 17 62 39 16 14 53 16 15 61 66

15 52 22 27 33 59 19 24 17 62 39 16 14 53 16 15 61 65

16 52 22 27 33 60 19 24 17 62 39 16 14 53 16 15 61 63

17 52 22 27 33 59 19 24 17 62 39 16 14 52 15 14 58 58

18 52 22 27 33 60 19 24 17 50 33 9 9 41 10 10 39 34

19 52 22 24 25 16 10 10 6 25 13 6 6 16 6 6 16 20
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and the minimum actual headways obtained by imple-

menting the converging dwell times in the simulation model

and then selecting the maximum and minimum values

among all the resulting headways (i.e. for each run and for

each station). Moreover, it is shown that average values of

actual headways coincide perfectly with planned ones.

This outcome points out the fact that an erroneous

estimation of dwell times makes the system unstable and

Table 3 Converging dwell

times (in sec) for a planned

headway of 8 min—85th

percentile

Station sequence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Outward run

1 44 35 14 18 43 17 22 52 66 55 11 35 19 65 36 34 59

2 44 35 14 18 43 17 22 52 66 55 11 35 19 65 36 34 59

3 44 35 14 18 43 17 22 52 66 55 11 35 19 65 36 34 59

4 44 35 14 18 43 17 22 52 66 55 11 35 19 65 36 34 59

5 44 35 14 18 43 17 22 52 66 55 11 35 19 65 36 34 59

6 44 35 14 18 43 17 22 52 66 55 11 35 19 65 36 34 59

7 44 35 14 18 43 17 22 52 66 55 11 35 19 65 36 34 59

8 44 35 14 18 43 17 22 52 66 55 11 35 19 65 36 34 59

9 44 35 14 18 43 17 22 52 66 55 11 35 19 65 36 34 59

10 44 35 14 18 43 17 22 52 66 55 11 35 19 65 36 34 59

11 44 35 14 18 43 17 22 52 66 55 11 35 19 65 36 34 59

12 44 35 14 18 43 17 22 52 66 55 11 35 19 65 36 34 59

13 44 35 14 18 43 17 22 52 66 55 11 35 19 65 36 34 59

14 44 35 14 18 43 17 22 52 66 55 11 35 19 65 36 34 59

15 44 35 14 18 43 17 22 52 66 55 11 35 19 65 36 34 59

16 44 35 9 14 31 13 23 55 67 60 11 31 19 66 36 34 59

17 44 50 10 16 41 18 42 64 72 47 11 31 18 68 36 34 58

18 44 45 10 16 45 32 47 84 87 48 8 31 18 79 31 32 56

19 33 42 9 16 46 34 50 82 92 50 12 32 25 74 54 60 66

20 33 42 9 16 46 34 50 82 92 50 12 32 25 74 36 41 44

21 33 42 9 16 46 34 50 82 91 50 12 32 25 74 36 41 44

22 33 42 9 16 46 34 50 54 54 33 9 14 21 44 29 36 31

23 33 42 9 7 28 7 22 29 24 19 8 8 20 14 24 31 20

Return run

1 51 28 48 57 28 15 19 19 47 43 28 28 30 24 22 44 62

2 51 28 48 57 28 15 19 19 47 43 28 28 30 24 22 44 62

3 55 30 36 34 38 22 22 20 53 50 21 20 53 20 18 59 71

4 55 30 37 32 49 22 25 24 55 52 21 19 58 20 18 72 78

5 55 30 37 32 49 22 25 23 54 52 21 19 57 19 18 71 76

6 55 30 37 32 49 22 25 23 54 52 21 19 57 19 18 71 76

7 55 30 37 32 49 22 25 23 54 52 21 19 57 19 18 71 76

8 55 30 37 32 49 22 25 23 54 52 21 19 57 19 18 71 76

9 55 30 37 32 49 22 25 23 54 52 21 19 57 19 18 71 76

10 56 31 38 33 49 22 25 24 55 53 21 19 58 20 18 72 79

11 54 29 36 30 50 21 25 22 54 50 20 18 56 19 18 70 73

12 55 30 37 32 49 22 25 23 55 52 21 19 57 19 18 71 77

13 55 30 37 32 49 22 25 23 54 52 21 19 57 19 18 71 76

14 55 30 37 32 49 22 25 23 54 52 21 19 57 19 18 71 76

15 55 30 37 32 49 22 25 23 54 52 21 19 57 19 18 71 76

16 55 30 37 32 49 22 25 23 54 52 21 19 57 19 18 71 74

17 55 30 37 32 49 22 25 23 54 52 20 18 55 17 16 65 65

18 55 30 37 32 49 22 25 15 38 44 12 12 40 10 10 39 33

19 55 30 15 17 22 13 13 7 17 17 7 7 22 7 7 22 13
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hence unreliable in the minds of passengers, since the

planned timetable is not being respected. The phenomenon

which takes place is so-called platooning: trains no longer

travel evenly spaced but in bunches. Indeed, the headway

between two successive convoys fluctuates so strongly

between low and high values that some trains are very

close, while others are very far apart. This entails an

increase in both the mean and variance of passenger

Table 4 Converging dwell

times (in sec) for a planned

headway of 8 min—95th

percentile

Station sequence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Outward run

1 51 50 16 15 35 16 24 44 59 35 10 39 19 63 37 34 58

2 51 50 16 15 35 16 24 44 59 35 10 39 19 63 37 34 58

3 51 50 16 15 35 16 24 44 59 35 10 39 19 63 37 34 58

4 51 50 16 15 35 16 24 44 59 35 10 39 19 63 37 34 58

5 51 50 16 15 35 16 24 44 59 35 10 39 19 63 37 34 58

6 51 50 16 15 35 16 24 44 59 35 10 39 19 63 37 34 58

7 51 50 16 15 35 16 24 44 59 35 10 39 19 63 37 34 58

8 51 50 16 15 35 16 24 44 59 35 10 39 19 63 37 34 58

9 51 50 16 15 35 16 24 44 59 35 10 39 19 63 37 34 58

10 51 50 16 15 35 16 24 44 59 35 10 39 19 63 37 34 58

11 51 50 16 15 35 16 24 44 59 35 10 39 19 63 37 34 58

12 51 50 16 15 35 16 24 44 59 35 10 39 19 63 37 34 58

13 51 50 16 15 35 16 24 44 59 35 10 39 19 63 37 34 58

14 51 50 16 15 35 16 24 44 59 35 10 39 19 63 37 34 58

15 51 50 16 15 35 16 24 44 59 35 10 39 19 63 37 34 58

16 51 51 11 10 26 11 24 44 59 28 10 37 19 61 37 34 58

17 51 41 15 12 46 13 37 50 55 42 10 32 18 58 37 34 57

18 51 38 36 16 42 19 40 69 55 44 8 33 18 52 25 32 55

19 39 33 29 44 50 23 43 70 70 47 12 41 26 81 32 41 58

20 39 34 11 50 43 22 43 67 63 49 12 39 26 61 19 27 36

21 39 34 11 40 39 22 46 75 70 52 12 36 26 79 19 27 36

22 39 34 11 18 51 17 51 46 31 28 9 16 22 36 12 22 23

23 39 34 10 8 31 8 24 32 12 21 9 9 22 16 12 22 23

Return run

1 51 36 51 55 28 17 21 19 49 40 30 30 30 24 23 41 70

2 51 36 51 55 28 17 21 19 49 40 30 30 30 24 23 41 70

3 65 35 38 59 37 23 26 21 40 33 24 24 52 21 20 59 65

4 65 35 27 39 39 22 23 19 53 50 20 20 55 21 20 62 77

5 65 35 27 39 49 23 26 28 57 62 25 23 56 22 20 80 94

6 65 35 27 39 49 23 26 27 56 61 24 22 55 21 19 77 90

7 65 35 27 39 49 23 26 27 56 61 24 22 55 21 20 78 90

8 65 35 27 39 49 23 26 27 56 61 24 22 55 21 20 78 90

9 65 35 27 39 49 23 26 27 56 61 24 22 55 21 20 78 90

10 65 35 27 39 49 23 26 27 56 61 24 22 55 21 20 78 90

11 65 35 27 39 49 23 26 27 56 61 24 22 55 21 20 78 90

12 65 35 27 39 49 23 26 27 56 61 24 22 55 21 20 78 90

13 65 35 27 39 49 23 26 27 56 61 24 22 55 21 20 78 90

14 65 35 27 39 49 23 26 27 56 61 24 22 55 21 20 78 90

15 65 35 27 39 49 23 26 27 56 61 24 22 55 21 20 78 90

16 65 35 27 39 49 23 26 27 56 61 24 22 55 21 20 78 88

17 65 35 27 39 49 23 26 27 56 61 24 22 52 19 17 70 76

18 65 35 27 39 49 23 26 15 36 51 13 13 35 11 11 40 39

19 65 35 18 20 26 15 15 8 20 20 8 8 26 8 8 26 16
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waiting times and the presence of overcrowded trains fol-

lowed by empty ones, with a further decrease in the pro-

vided level of service.

This proves the importance of computing dwell times as

flow-dependent factors so as to optimise the timetabling

design phase and increase system reliability.

Finally, although it is not possible to state that there is a

simple dependence between arrival rate in a station and

related dwell time at the equilibrium conditions, it is pos-

sible to highlight that in some interchange points (i.e.

Piscinola, Vanvitelli and Garibaldi which are, respectively,

the 1st, the 9th and the 17th station in the outward trip) we

obtained great values of dwell times. However, the gen-

erally low values in the other transfer stations (i.e. Chia-

iano, Medaglie d’Oro and Museo which are, respectively,

the 2nd, the 8th and the 13th station in the outward trip)

may be related to low interchange flows due to the low

quality of bus (Chiaiano and Medaglie d’Oro) and metro

(Museo) services. Obviously, similar remarks can be car-

ried out also in the case of the return trip.

4 Conclusions and Research Prospects

The paper addressed the importance of estimating dwell

times at rail stations as flow-dependent factors, rather than

as fixed values, providing a methodology which is able to

capture the threefold interaction between passengers and

trains and the associated snowball effect. The effectiveness

of the proposed approach was confirmed by a test appli-

cation on a real metro line.

Providing an accurate estimate of dwell times is a fun-

damental task to perform in order to design a robust

timetable which presents a high degree of flexibility and

resilience to propagation of disturbances. It is thus possible

to ensure a high-quality service and increase the attrac-

tiveness of the system.

Given the significance of dwell times within the

timetable planning phase, the suggested approach has

considerable potential which is worth investigating in

greater depth in forthcoming works. First of all, it would be

possible to include the rail crowding theory in the proposed

modelling architecture by providing further important

information which would enrich the analysis, enabling an

estimate of en route passenger discomfort, perhaps even

differentiating between passengers standing or sitting. This

could contribute to improve the traditional approach pro-

posed in the literature, according to which waiting time is

worth three times on-board time.

Moreover, the rail crowding model would also enable

overcrowding conditions to be simulated, in which passen-

gers could decide not to take the first arriving train, but wait

for the following one (hoping it will be less crowded),

although this would entail an increase in their waiting time.

In this way, the simulation could become even more real-

istic. Another important research prospect consists in
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operationalising the proposed simulation tools for support-

ing the planning of energy-efficient driving measures so as

to increase their effectiveness, or for assisting the design of

dedicated ITS systems which could inform passengers about

crowding conditions on the train. Furthermore, it would be

interesting to strengthen the random component of the pro-

cedure by enabling it to estimate the probability distribution

of dwell times and not only their average value. Finally, as

future developments, we propose to investigate other reso-

lution methods for the fixed-point problem and test the

procedure on different network contexts.
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