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Abstract
The total number of active satellites, rocket bodies, and debris larger than 10 cm is currently
about 20,000. If all resident space objects larger than 1 cm are considered, this number
increases to an estimate of 700,000 objects. The next generation of sensors will be able
to detect small-size objects, producing millions of observations per day. However, due to
observability constraints, long gaps between observations will be likely to occur, especially
for small objects. As a consequence, when acquiring observations on a single arc, an accurate
determination of the space object orbit and the associated uncertainty is required. This work
aims to revisit the classical least squares method by studying the effect of nonlinearities in
the mapping between observations and state. For this purpose, high-order Taylor expansions
enabled by differential algebra are exploited. In particular, an arbitrary-order least squares
solver is implemented using the high-order expansion of the residuals with respect to the
state. Typical approximations of differential correctionmethods are then avoided. Finally, the
confidence region of the solution is accurately characterizedwith a nonlinear approach, taking
advantage of these expansions. The properties and performance of the proposed methods are
assessed using optical observations of objects in LEO, HEO, and GEO.

Keywords Numerical methods · Statistical methods · Computer methods

1 Introduction

Since the era of space exploration started, the number of Earth-orbiting objects has on average
grown (Liou et al. 2013). Amore crowded space environment raises the possibility of satellite
collisions, thus seriously threatening the viability of space activities. Tracking andmonitoring
Earth-orbiting objects is therefore essential. For this purpose, catalogs of as many resident
space objects (RSOs) as possible have been built and are continuously maintained. Such
catalogs are used to enable safe space operations, e.g., to predict orbital conjunctions (Hobson
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et al. 2015). The utility and reliability of these catalogs depend on the accuracy and timeliness
of the information used tomaintain them.Regular and direct observation of RSOs is therefore
a crucial source of information to perform orbit determination (OD) and maintain the above-
mentioned catalogs. In theOD process, we can differentiate initial orbit determination (IOD)
and accurate orbit estimation (AOE). The former is typically employed to estimate the value
of all six orbital parameters (the unknowns) from six independent scalar observations (e.g.,
three pairs of right ascension and declination), when a priori information on the orbit is not
available. It is worth noting that some techniques have been developed, which provide an
IOD solution even when the processed observations are less than six, as it happens with the
admissible region (Milani et al. 2004). However, the orbit is not fully resolved unless some
additional constraints are available. The IOD gives a first estimate, and this solution is then
used to obtain follow-up observations and refine the OD process. In contrast, the AOE is
used to obtain a better estimate of a priori orbital parameters from a large set of tracking data
(Montenbruck and Gill 2000). The AOE requires that RSOs be observed on a regular basis
and observations belonging to the same object identified. The latter task is known as data
association.

Currently, more than 20,000 man-made objects larger than 10 cm in size are tracked by
the US space surveillance network (SSN) (Fedrizzi et al. 2012). However, since the size of
launched spacecraft is continuously decreasing [e.g., constellations ofCubeSats such as Flock
1 or future mega-constellations like OneWeb (Radtke et al. 2017)], RSOs of small dimen-
sion will need to be tracked as they can yield catastrophic collisions. Due to observability
constraints, observations of such small objects may be characterized by long observational
gaps. Thus, a future challenge will be to accurately determine the orbit of the object with a
single passage of the object above an observing station, when a short arc is observed. The
estimated number of RSOs larger than 1 cm is around 700,000 (Pechkis et al. 2016; Wilden
et al. 2016). This large number of objects will turn the data association problem into an even
more challenging task. Realistic description of the uncertainties of IOD solutions is required
to perform reliable data association, as well as to initialize Bayesian estimators for orbit
refinement (Schumacher et al. 2015). However, when the initial orbit solution is based on
observations spread over a short arc, only partial information about the curvature of the orbit
can be inferred and, thus, the estimated orbit will be affected by a large uncertainty.

One common approach to handle very short arcs is based on attributables and admissible
regions (Milani et al. 2004). An attributable is defined as a f our -dimensional vector with
data acquired from a short arc. In the case of optical observations, an attributable contains
two angles (e.g., right ascension and declination) and their angular rates, A = (α, δ, α̇, δ̇).
Regardless of how many measurements are acquired for a newly observed object, only four
quantities are kept in the attributable. The resulting orbit is then undetermined in the range
ρ, range-rate ρ̇ space. The two degrees of freedom of the attributable thus generate the 2D
plane in which the admissible region lies. The region is bounded by some physical constraints
such as semiaxis and eccentricity (DeMars and Jah 2013). For each point in the admissible
region, we can define a virtual debris (VD), made of a (ρ̄, ¯̇ρ) pair and an attributable, that
defines the admissible region. Because all six components are defined, the VD has a known
orbit.

In this work, we focus on observation scenarios inwhich observations span arc lengths that
are long enough to allow us to solve a least squares (LS) problem, but too short to accurately
determine the orbits. We refer to this situation as short arc observations (in contrast with
too short arc observations, in which an orbit cannot be determined). In this framework, we
propose to (1) solve a LS problem using all observations belonging to the same tracklet with
an arbitrary-order solver, and (2) nonlinearly characterize the confidence region of the LS
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solution.Ourmain objective is thus to shed some light on the effects of nonlinearities resulting
from observations on short arcs. Unless differently specified, we will assume Gaussian,
uncorrelated and zero mean measurement noise throughout the paper (which is a common
assumption and not directly affected by the separation between observations) such that the
non-Gaussianity of the determined state will be only due to the effect of nonlinearities, which
is the main focus of our work. The LS solver is implemented to make the most of differential
algebra (DA) techniques (Berz 1986, 1987, 1999) and high-order terms are exploited to
provide an accurate description of the confidence region. In particular, by using DA we can
approximate the LS target function as an arbitrary-order polynomial, thus enabling a high-
order representation of the confidence region. This accurate representation of the confidence
region directly in IOD is of crucial importance for observation correlation and initialization
of Bayesian estimators (Schumacher et al. 2015).

After finding the OD solution and its uncertainty region, in most practical applications
it is necessary to draw samples according to OD statistics. These applications include ini-
tialization of particle filters (Simon 2006) and computation of collision probability (Jones
et al. 2015). In this work, we propose four methods for the nonlinear representation of the
LS confidence region. The first method is based on the concept of gradient extremal (GE)
(Hoffman et al. 1986), which has already been introduced in astrodynamics under the name
of line of variation (LOV) (Milani et al. 2005). Due to the effect of nonlinearities, the numer-
ical procedure to determine samples on the LOV is quite complex for short arcs (Milani and
Gronchi 2010). DA techniques are introduced here to simplify this numerical procedure by
taking advantage of the polynomial representation of the involved quantities. The developed
technique can then be applied along any eigenvector of the solution covariance matrix. In
the second method, the concept of LOV is extended to cases in which the confidence region
is shown to be two-dimensional, by introducing the gradient extremal surface (GES) The
third approach combines a mono-dimensional LOV with its or a high-order DA polynomial
to obtain a two-dimensional sampling. Finally, a method to enclose the confidence region in
a six-dimensional box is introduced. This approach could be particularly useful for applica-
tions in which high accuracy is required, e.g., the computation of low collision probabilities.
The proposed algorithms for solving the LS problem and the nonlinear representation of the
confidence region are accompanied by the definition of indices to estimate the relevance of
high-order terms and to determine the dimensionality of the confidence region.

The work presented in this paper is based on preliminary results shown in Principe et al.
(2016, 2017). In representing the confidence region, new algorithms are presented taking
advantage of, and extending, the concept of GE. The effectiveness of this approach is tested
with even shorter arc lengths than inPrincipe et al. (2016). Furthermore, indices are introduced
to establish the most suitable description of the confidence region.

The paper is organized as follows. First, a description of theLSmethod and the confidence
region of the LS solution is given. The DA implementation of the LS solver is presented
next, followed by some algorithms used to nonlinearly characterize and sample the confidence
region. An introduction to the indices and our strategy for dealingwith IODproblems on short
arcs conclude this section. The properties and performance of the proposed approaches are
assessed using a realistic observational scenario of four objects in different orbital regimes.
Some final remarks conclude the paper.

123



41 Page 4 of 29 G. Principe et al.

2 Classical least squares

We need to find the solution of the OD problem in order to track RSOs. Thus, given some
observations, the aim is to compute the orbit of an object. The orbit is expressed in terms
of an n-dimensional state vector at a reference epoch x(t0). Different ways of expressing
the state vector can be used, e.g., in the modified equinoctial elements (MEE) (Walker et al.
1985), or as a position-velocity vector (r, v) in the Earth-centered inertial (ECI) coordinates.

TheOD problem is generally addressed by using theLSmethod, devised byGauss (1809).
Input of the algorithm is a tentative value x = x(t0). Then, the predicted observations
are computed at each observation epoch. Let y be an m-dimensional vector containing the
predicted observations, that is y = h(x), where m is the number of measurements. Note
that h is a nonlinear function that composes the propagation from the reference epoch to
observation epochs with the observations space projection. The differences between the
actual observations yobs and the predicted ones y are referred to as residuals. The residuals
are collected in the m-dimensional vector ξ = yobs − y. The LS solution is the state vector
x∗ that minimizes the target function

J (x) = ξ T (x)ξ(x). (1)

We can find the minimum of J (x) by computing its stationary points, i.e.,

x∗ : ∂ J

∂x
(x∗) = 0. (2)

It is worth noting that x∗ can be aminimum,maximum, as well as a saddle. Thus, to ensure
that x∗ is a minimum, it is required that the Hessian of the target function in the stationary

point, H∗ = ∂2 J
∂x2

(x∗), is positive definite.
To solve the systemof nonlinear equations given byEq. (2), we can use an iterativemethod,

e.g., Newton’s method. Convergence of this method is ensured if a suitable initial estimate
is available. This estimate is usually obtained by solving the IOD problem, in which the
number of observations is minimum, m = n. The solution of the iterative method is (Milani
and Gronchi 2010)

xi+1 = xi − C−1FT ξ , (3)

where xi is available from previous iterations or is the IOD solution when i = 1. F is an
m x n matrix with the partial derivatives of the residuals with respect to the state vector
components, that is

Fpq = ∂ξp

∂xq
(xi ) for p = 1, . . . ,m and q = 1, . . . , n. (4)

C is the n x n normal matrix,
C = FT F + ξ T (xi )S, (5)

and S an m x n x n array with elements

Spqr = ∂2ξp

∂xq∂xr
for p = 1, . . . ,m and q, r = 1, . . . , n. (6)

The full Newton’s method is generally not used for OD problems, because of practical prob-
lems in the computation of the second derivatives in matrix S (Milani 1999). For this reason,
the term ξ T S in Eq. (5) is often neglected. This quantity is negligible when the residuals
are small. The resulting method is called the differential correction technique (Milani and
Gronchi 2010) or Gauss–Newton method (Hansen et al. 2013).
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2.1 Confidence region and statistical properties of the LS solution

The solution of the LS x∗, although minimizing the cost function, does not generally cor-
respond to the true orbit, which lies within an uncertainty set around the LS solution, the
so-called confidence region. From an optimization perspective, followingMilani andGronchi
(2010), the confidence region includes orbits with acceptable target functions. To determine
the confidence region, the target function J (x) is expressed as

J (x) = J ∗ + δ J (x), (7)

where J ∗ = J (x∗) and δ J (x) is called the penalty. Then, the confidence region Z is defined
as the region in which δ J is smaller than or equal to the control value K 2 (a method to
determine K 2 is provided in Sect. 4). Thus,

Z(K ) = {x ∈ A ⊆ R
n : δ J (x) ≤ K 2}, (8)

where the subset A depends on the chosen orbital elements. The target function J (x) is
usually expanded around x∗ at second order, i.e., linearizing the mapping between the state
and observation, resulting in

J (x) ≈ J ∗ + ∇ J (x − x∗) + 1
2 (x − x∗)T H(x − x∗), (9)

where ∇ J = ∂ J
∂x (x∗) and

Hpq = ∂2 J

∂xp∂xq
p, q = 1, . . . , n. (10)

The Hessian matrix H can be expressed as

H = 2(FT F + ξ T ξ) = 2C . (11)

Reminding that ∂ J
∂x (x∗) = 0, the confidence region definition becomes

δ J (x) ≈ (x − x∗)T C(x − x∗) ≤ K 2. (12)

This expression can be then manipulated by taking advantage of the eigen decomposition
theorem:

C = VCdV
−1 = VCdV

T . (13)

V is a square matrix, whose columns are the eigenvectors ofC , whileCd is a diagonal matrix
containing eigenvalues of C (Franklin 1968).

Hence, the confidence region expression becomes

δ J (x) = (x̃ − x̃∗)T Cd(x̃ − x̃∗) ≤ K 2, (14)

where
(x̃ − x̃∗) = V T (x − x∗). (15)

Because C is positive definite, all of its eigenvalues are positive and Cd can be expressed as

Cd =

⎡
⎢⎢⎢⎢⎢⎣

1
γ 2
1

0 . . . 0

...
. . .

...
...

. . .
...

0 . . . . . . 1
γ 2
n

⎤
⎥⎥⎥⎥⎥⎦

, (16)
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where γ 2
1 , . . . , γ 2

n > 0. Then, Eq. (14) becomes

n∑
i=1

(x̃i − x̃∗
i )2

γ 2
i

≤ K 2. (17)

In conclusion, due to the quadratic form of the penalty, the confidence region is represented
by an ellipsoid with axes aligned with the columns of V and size determined by

x̃i = x̃∗
i ± Kγi ,with i = 1, . . . , n. (18)

TheLSmethod can also be endowedwith a probabilistic interpretation, inwhich its solution is
a random vector due to the random nature of the measurements. If the mapping between state
and residuals is linearized and the measurement noise is assumed to be randomly distributed,
uncorrelated, and with zero mean value, then the first two statistical moments of the solution
can be straightforwardly derived from those of the measurements. Specifically, x∗ is the
solutionmean and the covariancematrix is given by the inverse of the normalmatrix P = C−1

(Montenbruck and Gill 2000). Moreover, with the additional assumption of Gaussian noise,
theLS solution is distributed according to amultivariateGaussian probability density function
(PDF) p(x) (Gauss 1809), and the first two statistical moments fully statistically describe
the solution. Then,

p(x) = 1√
(2π)n |P|e

− 1
2 (x−x∗)T P−1(x−x∗), (19)

where |P| is the determinant of P . In this case, contour levels of δ J (x) are also contour levels
of p(x), thus ellipsoids with equal residual values (boundaries of the confidence region) are
surfaces of equal probability.

3 Least squares solution with differential algebra

DA techniques enable the efficient computation of derivatives of functions within a computer
environment. The unfamiliar reader can refer to Berz (1999) for theoretical aspects and to
Armellin et al. (2010) for a self-contained introduction for applications in astrodynamics.
Here we take advantage of DA techniques to develop a high-order iterative algorithm to
solve LS problems. We first describe a general procedure that finds the solution of a system
of nonlinear equations, g(x) = 0, in the DA framework. This algorithm was presented in
Principe et al. (2016) and is recalled here for the sake of clarity. The algorithm is as follows:

1. Given the solution xi (from the previous iteration, or from the initial guess when i = 1),
initialize the state vector xi as a kth-order DA vector and evaluate the function g in the
DA framework, thus obtaining the kth-order Taylor expansion of g, T k

g :

g ≈ T k
g (xi ). (20)

2. Invert the map (20) to obtain
xi ≈ T k

xi (g). (21)

3. Evaluate T k
xi (g) at g = 0 to compute the updated solution as

xi+1 = T k
xi (g = 0). (22)

4. Repeat (1)–(3) until a convergence criterion is met or the maximum number of iterations
is reached.
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After convergence, the algorithm supplies x∗, the solution of the system g(x) = 0, as well
as the high-order Taylor expansion of the function g around x∗, T k

g (x∗). When solving the
LS problem, we need to find the stationary point of the target function J (x). Thus, we need
to solve the system of nonlinear equations ∂ J

∂x (x) = 0. We can hence set g(x) = ∂ J
∂x (x) in

the algorithm and obtain an arbitrary-order solver of the LS problem. It will be referred to
as the differential algebra least squares (DALS) solver.

The DALS solver’s main advantage is its polynomial approximation of the objective
function J (x). Thus, we can take advantage of the analytical expression of J (x) in the
neighborhood of a minimum and analyze the nonlinear description of the confidence region.
In addition, as the objective function J (x) is expanded up to an arbitrary order, the correct
(full) expression of the Hessian matrix H is available. We can then check whether H(x∗)
is positive definite, i.e., x∗ is actually a minimum. This feature is not a natural part of the
differential correction algorithm, as the full expression of H is not available. However, the
algorithm can be extended and the Hessian computed in order to categorize x∗.

We implemented two convergence criteria: one based on the correction size, one based
on the target function variation. Thus, the iterative process is halted when at least one of the
two following requirements is met:

‖xi+1 − xi‖∞ ≤ εx ,

|Ji+1 − Ji | ≤ εJ , (23)

where εx and εJ are established tolerances.
In this section, we presented an algorithm that can work at arbitrary order. However,

including terms above the second order did not improve the convergence rate of the algorithm
while significantly enlarged the execution time. Thus, a second-order DALS solver is used
in this work. Note that, in order to exploit high-order terms, it would be necessary to use
step-size control mechanisms, which have not been implemented yet.

After convergence of the second-orderDALS solver, a kth-order Taylor expansion of J (x)

around the optimal solution can be computed.

4 Confidence region representation

When we deal with short observational arcs, nonlinearities in the mapping between obser-
vations and state are relevant. Thus, we need to take into account terms above 2nd-order in
the expression of J (x). Due to the non-negligible high-order terms, even when the measure-
ment noise is assumed to be Gaussian, the solution statistics are no longer guaranteed to be
Gaussian and surfaces of equal probability are no longer guaranteed to be ellipsoids. In this
section we show some algorithms to accurately describe the confidence region of the LS
solution. For this purpose, we take advantage of the high-order representation of the target
function J (x) supplied by the DALS. Such algorithms are essential in many applications,
e.g., to draw samples when correlating observations or to initialize a particle filter (Simon
2006).

The algorithm exploits the kth-order Taylor expansion of J (x) around the optimal solution
provided by DALS after convergence

J (x) = J ∗ + δ J (x) ≈ J ∗ + T k
δ J (x), (24)

where x = x∗ + δx. In Eq. (24), terms up to order k are retained.
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The F-test method (Seber and Wild 2003) can be used, with the assumption of Gaussian
measurement noise, to determine the value of the control parameter K 2, introduced in Eq.
(8), corresponding to the desired confidence level even when high-order terms are retained
in the representation of the penalty. For a confidence level of 100(1 − α)%, we have

T k
δ J (x) ≤ n

m − n
J ∗Fα

n,m−n = K 2, (25)

in which Fα
n,m−n is the upper α percentage point of the F-distribution.

4.1 Line of variation

The LS confidence region is in general described as an n-dimensional region. However, this
region is sometimes stretched along one direction, which is called the weak direction and
defined as the predominant direction of uncertainty in an orbit determination problem (Milani
et al. 2005). In other words, the weak direction is the direction along which the penalty δ J
is less sensitive to state vector variations.

The confidence region is an ellipsoid if the purely quadratic terms are retained in the
expression of δ J . Thus, sampling along the weak direction consists in sampling the semi-
major axis of the ellipsoid. However, the second-order approximation may not be accurate
enough to properly represent the target function. When high-order terms are retained in the
expression of J , the weak direction is point dependent (i.e., we can define a local weak
direction) and the resulting curve may not be a straight line. Even a very small deviation
from the above-mentioned curve causes the target function to quickly increase. Thus, due to
the steepness of J , the sampling process along the weak direction is not straightforward.

The graph of the function J can be thought of as a very steep valley with an almost flat
river at the bottom (Milani and Gronchi 2010). Thus, when the confidence region is stretched
along one direction, samples can be obtained by looking for points on the valley floor. The
valley floor of a function is the line that connects points on different contour subspaces for
which the gradient’s absolute value isminimum. This locus of points is called a function’sGE
(Hoffman et al. 1986). A GE intersects every contour line where the gradient is smallest in
absolute value compared to other gradient values on the same contour (Hoffman et al. 1986).
The concept of GE was already used in astrodynamics to perform a mono-dimensional
sampling of the LS confidence region, and it is known as LOV (Milani et al. 2005).

Let CS be the contour subspace, that is the nonlinear subspace defined by contour lines of
J (x), where J (x) = const. Note that at every point xGE on CS the gradient is perpendicular
toCS . For a point xGE to belong to the valley floor, the norm of the target function’s gradient
|∇ J | needs to be extremal, and therefore

xGE = {x ∈ CS : ∇ J (x) = min
x∈CS

|∇ J (x)| = min
x∈CS

∇ J (x)2}. (26)

Let R(x) be the projecting matrix onto the space tangent to CS at x and R0(x) be the
projecting matrix in the direction of ∇ J . Equation (26) can be written as

xGE = {x ∈ CS : R(x)∇(∇ J )2 = 0}, (27)

in which we omitted the dependency of J on x to simplify the notation. The quantity∇(∇ J )2

can be expressed as
∇(∇ J )2 = 2H∇ J , (28)
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that is the product of the Hessian and the gradient of J . This quantity can then be decomposed
in a projection parallel to ∇ J ,

R0H∇ J = λ∇ J , (29)

and a projection perpendicular to ∇ J ,

RH∇ J = H∇ J − λ∇ J . (30)

Thus, the condition in Eq. (27) becomes

H∇ J = λ∇ J . (31)

Equation (31) must hold for every point on a GE. Thus, a GE is a locus of points where
the gradient of J (x) is an eigenvector of the Hessian of J (x), a one-dimensional curve in
an n-dimensional space (Hoffman et al. 1986). Let vi be an eigenvector of H and g = ∇ J ,
then the necessary and sufficient condition for a point to belong to the GE can be rewritten
as

gT v j = 0 for j = 1, . . . , n; j �= i . (32)

Equation (32) is a system of (n − 1) conditions that define a one-dimensional curve and it
is apparent that there are n different curves, corresponding to the n different eigenvectors of
the Hessian matrix. In the literature, the LOV is typically the GE corresponding to v1, the
eigenvector associated with the minimum eigenvalue of the Hessian matrix. This direction
identifies the weak direction of the OD problem. It is worth remarking that n LOVs can be
computed, one for each of the n eigenvectors of the Hessian matrix. However, as the length
of the LOV is shorter for the eigenvectors associated with higher eigenvalues, nonlinearities
are likely to be significant only in the computation of the first LOVs.

The LOV definition can be generalized to m ≤ n dimensions by allowing i in Eq. (32) to
take m values. These conditions define an m-dimensional surface where gradient g at each
point lies in the linear subspace spanned by m eigenvectors of the Hessian H . It is apparent
that each LOVi lies totally on a higher-dimensional surface. As already explained in Milani
et al. (2004), the uncertainty region with short arcs tends to a bi-dimensional set. Thus, in
these cases we can extend the LOV concept to the GE surface identified by v1 and v2, the
two eigenvectors associated with the two smallest eigenvalues of H . We will refer to this
surface as the GES.

4.1.1 Line of variation algorithm

Wepropose an algorithm to compute theLOV (along an arbitrary eigenvector), taking advan-
tage of DA tools. The algorithm assumes that the DALS solver has been used to obtain the
reference solution xi = x∗ of the LS problem and the kth-order Taylor approximation of
δ J , T k

δ J (x). Thus, the algorithm proceeds as follows:

1. Let Kγ1 be the length of the second-order ellipsoid along the eigenvector v1(x∗) as
shown in Eq. (18), and Δx = Kγ1

h with h depending on the desired sampling rate.
2. Extract from T k

δ J (xi ) the Taylor approximation of the Hessian T k
H (xi ) of J and calculate

its eigenvectors and eigenvalues at xi . Compute the point x′i+1 = xi ± Δx v1, in which
v1(xi ) is the eigenvector corresponding to the minimum eigenvalue.

3. Let L(x′i+1) be the hyperplane spanned by the eigenvectors v j (x′i+1) with j = 2, . . . 6
and passing through x′i+1, i.e.,

L(x′i+1) = { y| ( y − x′i+1) · v1(x′i+1) = 0}. (33)
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Compute the point xi+1, belonging to L(x′i+1) and such that ∇J (xi+1) ‖ v1(xi+1).
This is equivalent to finding the solution of the system

{
(xi+1 − x′i+1) · v1(xi+1) = 0
∇ J (xi+1) · v j (xi+1) = 0 j = 2, . . . , 6.

(34)

4. Repeat steps (2)–(3), until the value of δ J (xi+1) ≈ T k
δ J (xi+1) ≤ K 2, i.e., the boundary

of the confidence region is reached.

The output is a set of points xLOV
i , with i = 1, . . . , l that describe the LOV. It is worth

mentioning that the approximation T k
δ J , initially provided by theDALS solver, is recomputed

whenever a point of the LOV falls outside the region where the truncation error of the
polynomial approximation is acceptable. The estimated truncation error is computed using the
approach described in Wittig et al. (2015). Although the algorithm presented here describes
the computation of the LOV1, i.e., the GE along v1, it can be run along any eigenvector
direction, thus providing up to six LOVs.

4.2 Gradient extremal surface algorithm

When the confidence region is not accurately described by one LOV, it is often sufficient to
adopt a 2-D description of the region. This region can be represented by the GES defined by
v1 and v2 (the two eigenvectors associated to the smallest eigenvalues of H ). This surface
has the property that, at each of its points, the gradient of J lies on the plane spanned by v1
and v2. The following algorithm is proposed to compute the points belonging to this surface:

1. Run the algorithm described in Sect. 4.1.1. The resulting set of l points is referred to as
xLOV 1 .

2. Take a point of xLOV 1 as initial point, xi,0 = xLOV 1
i .

3. Compute x′i,k+1 = xi,k ± Δx v2, in which Δx is a chosen length as in 4.1.1.
4. Let L(x′i,k+1) be the hyperplane spanned by the eigenvectors v j (x′i,k+1) with j =

3, . . . 6 and passing through x′i,k+1. Compute the point xi,k+1, which belongs to
L(x′i,k+1) and such that ∇J (xi,k+1) is orthogonal to it. This is equivalent to finding
the solution of the system

⎧⎨
⎩

(xi,k+1 − x′i,k+1) · v1(xi,k+1) = 0
(xi,k+1 − x′i,k+1) · v2(xi,k+1) = 0
∇ J (xi,k+1) · v j (xi,k+1) = 0 j = 3, . . . , 6.

(35)

4. Repeat steps (3)–(4), until the value of δ J (xi,k+1) ≈ T k
δ J (xi,k+1) ≤ K 2, i.e., the bound-

ary of the confidence region is reached.
5. Repeat the steps (2)–(5) for all points xi,0 = xLOV 1

i , i = 1, . . . , l.

This algorithm allows us to obtain a two-dimensional description of the confidence region,
even when LOV2 is not a straight line. However, this procedure is computationally intensive
as the set of nonlinear equations Eq. (35) need to be solved for every point on the surface.
However, it is worth noting that Eq. (35) is a set of polynomial equations (as we are working
with Taylor approximations), and this makes the algorithm viable from a computational time
standpoint. Moreover, when LOV2 approximates a straight line, the more efficient algorithm
in Sect. 4.3 can be used to sample the uncertainty region.
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4.3 Arbitrary direction sampling

When nonlinearities are significant only along the weak direction but the confidence region
cannot be represented as a one-dimensional curve, a simplified version of the algorithm
described in Sect. 4.2 can be adopted. This algorithm will be referred to as the arbitrary
direction (AD) algorithm and is summarized as follows:

1. Run the algorithm described in Sect. 4.1.1. The resulting set of l points is referred to as
xLOV .

2. Take one point from xLOV as initial point, xi,0 = xLOV
i .

3. Select a direction v in the state vector space alongwhichwewant to sample the confidence
region. This direction can be v2 (i.e., the eigenvector corresponding to the second smallest
eigenvalue of H ) or any other direction of interest, including a random one.

4. Generate a set of samples xi,k+1 = xi,k ± Δxv in which Δx is a fraction of Kγi along
v. Stop when J (xi,k+1) ≥ J (x∗) + K 2.

5. Repeat steps (3)–(4) for the desired number of directions.
6. Repeat steps (2)–(5) for all points xLOV

i with i = 1, .., l.

This algorithm avoids solving the system of nonlinear equations (35). However, it can be
applied to accurately sample the confidence region onlywhen the curvature along the selected
directions is negligible. In addition, by generating a set of random directions, the algorithm
can be used to produce samples at the confidence region boundaries for different confidence
levels.

4.4 Full enclosure of the confidence region with ADS

The LOV is a one-dimensional representation of the LS confidence region. When this is not
a good approximation, the GES approach enables a bi-dimensional representation. In some
cases (e.g., for the computation of low collision probabilities or the initialization of particle
filters in state estimation), it may be necessary to consider a full n-dimensional representation
of the confidence region. We can apply automatic domain splitting (ADS) techniques (Wittig
et al. 2015) to enclosure this region with a set of boxes on which the penalty function is
accurately represented by multiple Taylor polynomials. These boxes can be obtained using
the following steps:

1. Let H(x∗) be theHessian of the target function evaluated at x∗. Compute the eigenvectors
of H(x∗) and store them column-wise in the matrix V .

2. Compute an n-th dimensional box enclosure of the LS confidence region. This is
achieved by determining the box D that encloses both the second-order confidence
region expressed by Eq. (18), and (when necessary, see Sects. 4–5 for details) the LOV j

expressed in the eigenvector space. This last set of points is obtained by multiplying the
LOV j points by V T :

x̃
LOV j
i = V T x

LOV j
i , for i = 1, . . . , l and j = 1, . . . , n. (36)

3. Compute the high-order expansion of the penalty in the eigenvector space, T k
δ JV

(x̃), with

x̃ = V T x.
4. Apply ADS to the Taylor expansion T k

δ JV
(x̃) over the domain D to ensure that the

truncation error is below a given threshold on D. As a result, D is split into a set of
subdomains and a corresponding set of Taylor approximations of δ JV (δ x̃) are computed.
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5. Find the minimum of T k
δ JV

(δ x̃) over each subdomain and retain only the subdomains in

which the minimum is smaller than J (x∗) + K 2. This step is obtained by running an
optimizer (e.g., MATLAB fmincon function) on each local Taylor polynomial.

The result of the algorithm is a set of subdomains that cover the nonlinear LS confidence
region. Note that, as D encloses both the LOV j and the second-order confidence region, it
will likely enclose the full nonlinear confidence region. In addition, it is worthmentioning that
D is defined in the eigenvector space to reduce the wrapping effect. Once we have enclosed
the uncertainty domain in the box D and computed the accurate polynomial representation
of the penalty in this domain, we can introduce the high-order extension of the solution pdf,
pk(x). By analogy with the Gaussian representation introduced at the end of Sect. 2.1, we
make the assumption that pk(x) can be expressed as:

pk(x) = 1∫
D e− 1

2T
k
δJ (x)dx

e− 1
2T

k
δJ (x). (37)

Although not rigorously the pdf of x, our assumption is motivated by the fact that, in this
way, surfaces of equal residuals (nonlinear confidence region boundaries) remain surfaces
of equal probability and that Eq. (37) returns the normal distribution p(x) of Eq. (19) when
the high-order terms in J (x) are negligible. The integral, introduced to normalize the pdf to
1 over D, is evaluated by means of Monte Carlo integration:

∫
D
e− 1

2T
k
δJ (x)dx ≈ 1

N

∑
i

e− 1
2T

k
δJ (xi )

q(xi )
, (38)

where N is the number of samples generated according to the importance sampling distri-
bution q(x). The normal multivariate distribution p(x) defined in Eq. (19) is selected as the
importance sampling distribution to speed up the Monte Carlo integration convergence rate.
Note that the integral in Eq. (38) could be approximated usingDA integration tools. However,

this would require the Taylor expansion of e− 1
2T

k
δJ (x), which would generate a large number

of subdomains for an accurate representation.

5 Strategy for confidence region representation

OD problems do not always need high-order methods to describe the confidence region.
Similarly, the descriptionof the confidence regiondoes not always require ann-th dimensional
representation. In this section, we first introduce some indices to capture the main features of
the uncertainty region and thenwedescribe our strategy to describe it balancing computational
effort and accuracy.

5.1 High-order index

After computing the DALS solution and the polynomial approximation of J , we want to
define an index to assess the relevance of high-order terms. Recalling Eqs. (19) and (37), we
define the index

ΓH =
∫ ∞
−∞

∣∣∣e− 1
2T

k
δJ (x) − e− 1

2T
2
δJ (x)

∣∣∣ dx
∫ ∞
−∞ e− 1

2T
2
δJ (x)dx

. (39)
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This index quantifies the effect of nonlinearities by measuring how much the statistics
of LS solution deviate from Gaussianity when high-order terms are retained in the penalty
expression. The integral in the denominator in Eq. (39) is

√
(2π)n |P|, whereas the integral

in the numerator is computed via a Monte Carlo method by generating a cloud of N samples
distributed according to the second-order representation of J , i.e., according to p(x) =
N (x∗, P). After some manipulation, the index can be approximated as

ΓH ≈ 1

N

N∑
i

∣∣∣e− 1
2

(
T k

δJ (xi )−T 2
δJ (xi )

)
− 1

∣∣∣ . (40)

ΓH indicates whether high-order terms in J provide significant contribution over the entire
uncertainty domain. This check is relevant, for instance, when we sample the solution pdf
in the initialization of a particle filter. When the index shows that high-order terms are not
relevant, we rely on a second-order representation of the LS confidence region. Otherwise,
high-order analyses are performed starting with the computation of the LOV along the v1
direction. Thus, to avoid wasting computational time on cases for which high-order terms
are not relevant, the index is computed for k = 3.

5.2 LOV index

Whenhigh-order terms turn out to be relevant,wemight need to compute theLOVs associated
with different eigenvectors to correctly represent the confidence region’s structure. However,
high-order terms might only be relevant along certain directions. In particular, after sorting
the covariance eigenvalues in decreasing order, if the high-order terms are neglected for
specific eigenvectors, then they can be neglected for all subsequent ones.

Due to high-order terms, the LOVs may depart significantly from the second-order con-
fidence ellipsoid axes. In particular, the LOVs could be stretched and/or curved. An index
to assess the effect of nonlinearities on the LOV computation, ΓLOV , can be defined as the
relative error between the second-order and the kth-order representation of the pdf evaluated
at the LOV points:

ΓLOV =
∑

i

∣∣∣e− 1
2T

k
δJ

(
xLOV
i

)
− e− 1

2T
2
δJ

(
xLOV
i

)∣∣∣
∑

i e
− 1

2T
k
δJ

(
xLOV
i

) . (41)

ΓLOV can be used to assess how much the LOV departs from the confidence ellipsoid axis:
the larger ΓLOV , the more relevant the curvature and/or stretching is. As mentioned earlier,
this index is first computed for the LOV1, i.e., along v1. The LOV2 and its index are only
computed when the result forLOV1 shows significant stretching or curvature. The procedure
is halted when the index computed for a given LOV shows negligible effects from higher-
order terms.

In the LOV algorithm, the polynomial expression of the target function J is recomputed
when necessary. The need for recomputing can be quantified by substituting both the second-
order and kth-order approximations of J in Eq. (41) without recomputing the polynomial.

5.3 Dimensionality index

The full representation of the confidence region requires generating samples that accurately
describe the n-th dimensional confidence region. It is apparent that a huge number of samples
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may be required for a six-dimensional confidence region. To alleviate this problem, it is
important to understandwhen a lower-dimensional sampling is sufficient (Milani et al. 2004).
However, determining the dimensionality is not a trivial task as it strongly depends on the
problem at hand, the coordinate representation, and the units and scaling factors adopted.

Here, an index is introduced based on the fact that a variation of an orbit’s semi-major
axis causes its uncertainty region to quickly stretch along the orbit, making follow-up obser-
vations challenging. For this reason, we look at the impact the uncertainty along the different
eigenvectors or LOVs has on the orbit semi-major axis. In particular, the index is defined as
the variation of the mean anomaly M after one orbital period T due to the variation of the
orbit’s semi-major axis associated with the i th direction, Δai :

Γ i
D =

∣∣∣∣
180

π
ΔMi

∣∣∣∣ ≈ 180

π

∣∣∣∣
∂n∗

∂a

∣∣∣∣ Δai T ∗

= 3

2

180

π

n∗

a∗ Δai
2π

n∗ = 540
Δai

a∗ [deg], (42)

inwhich n is themeanmotion, and the starred quantities indicate properties of theLS solution.
For example, an index value above one corresponds to a stretching of the uncertainty region
of more than one degree after one orbital revolution along the LS solution orbit.

5.4 Summary of the algorithm

In Fig. 1, a summary of the proposed algorithm is shown:

1. Collect the observations (spread over a short arc).
2. Run the IOD and DALS solvers using all the observations acquired. As a result, the LS

solution and the polynomial approximation of the target function are obtained.
3. Compute the index ΓH . If ΓH is smaller than a given threshold, the second-order descrip-

tion of the confidence region is adopted. Else, a high-order analysis is carried out.
4. Start from i = 1 and compute the LOVi until ΓLOVi is smaller than an established

threshold.
5. Sample the region using one of the proposed algorithms.

6 Simulation results

For all the following test cases, optical observations (i.e., right ascension and declination)
were simulated from Teide observatory, Tenerife, Canary Islands, Spain (observation code
954). Four different orbits were used as test cases: a low Earth orbit (LEO) (NORADCatalog
number 04784), a geostationary Earth orbit (GEO) (NORAD Catalog number 26824), a
geostationary transfer orbit (GTO) (NORAD Catalog number 25542), and a Molniya orbit
(NORAD Catalog number 40296). In Principe et al. (2016), the same objects in LEO,
GEO and Molniya were considered. However, in this work all algorithms were tested with
shorter observational arcs. This section is divided in two parts: in the first one we analyze
the convergence properties of the DALS algorithm, whereas in the second one we apply the
strategy described in Sects. 4–5 to characterize the uncertainty region of the LS solution.
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Fig. 1 Flowchart of the proposed algorithm
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Table 1 Test cases, observation
window

Test case First observation Δt σα,δ

yr mo day0 hr0 s arcsec

LEO 2017 Jun 04 22.07 5 5

GEO 2015 May 21 02.35 40 0.5

GTO 2016 Jan 14 21.58 40 0.5

Molniya 2017 Jun 04 21.01 40 0.5

6.1 DALS convergence properties

The observation strategy adopted forGEO,GTO andMolniya objects involves re-observing
the same portion of sky every 40s, which is compatible with Siminski et al. (2014) and
Fujimoto et al. (2014). The measurement noise is Gaussian with zero mean and standard
deviation σ = 0.5 arcsec. The object in LEO is assumed to be observed with a wide field-
of-view camera, which takes observations every 5 s and has an exposure time of 3 s. In this
case, σ = 5 arcsec. In both cases, two scenarios with 8 or 15 observations are reproduced.
In the 8-observation scenario, the arc length of the observation ranged from 1.09◦ for the
Molniya orbit to 3.95◦ for the GTO; in the 15-observation scenario, the arc length ranged
from 2.14◦ for theMolniya orbit to 7.44◦ for theGTO. In Table 1, the observation conditions
are summarized.

The results discussed in this section assume the availability of an initial orbit, obtained
by solving an IOD problem. In the computation of this preliminary solution, a high-order
algorithm that solves two Lambert’s problems between the central epoch and the two ends
of the observed arc is used. For more details, the reader can refer to Armellin et al. (2016). It
is finally worth noting that Kepler’s dynamics are considered throughout this section, even
though the proposed approach does not rely on any Keplerian assumption.

For each test case shown inTable 1, synthetic observationswere generated by addingGaus-
sian noise to ideal observations and 100 simulations were run. The DALS solver estimated
the orbit at the center of the observation window (at observation #4 for the 8-observation
scenario and #7 for the 15-observation one). This approach proved to optimize both the algo-
rithm performance and robustness. The tolerances εx and εJ were such that convergence was
reached when at least one of the following conditions was met:

||Δx||∞ ≤
{

1 m for position,
1 mm/s for velocity

ΔJ ≤ m
( σ

100

)2
,

where m is the number of measurements and σ the standard deviation of the sensor noise.
The DALS solver always converged with LEO, GTO and Molniya orbits, while with

GEO the convergence rate was 92%. The solver took on average 6 iterations. Thus, the
observation arcs were long enough to guarantee a good convergence rate for the DALS
solver. Note that the convergence of the algorithm does not provide any information on the
quality of the solution. In Table 2, the median absolute error with respect to the reference
orbit in position (km) and velocity (m/s) is reported for all test cases and scenarios. The
estimation errors of the DALS solution were generally lower than those of the IOD solution,
proving that including all the observations can improve the orbit estimation even for short
arcs. In addition, the enhancement in accuracy granted by the LS was greater for longer
observational arcs. For shorter observation arcs (8 observations), the median error was up
to thousands kilometers, which hardens the task of performing follow-up observations. As
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Table 2 Median absolute value of the error (with respect to the true solution) in position (km) and velocity
(m/s), for IOD and DALS solutions

Number of observations

8 15

IOD DALS IOD DALS

LEO Pos 1.633e+02 1.218e+02 4.810e+01 2.313e+01

Vel 3.905e+02 3.085e+02 1.042e+02 5.835e+01

GEO Pos 2.920e+03 2.805e+03 9.999e+02 5.642e+02

Vel 2.210e+02 2.059e+02 7.601e+01 4.364e+01

GTO Pos 2.893e+01 2.544e+01 1.005e+01 5.399e+00

Vel 1.578e+01 1.485e+01 5.154e+00 2.663e+00

Molniya Pos 7.331e+02 6.533e+02 1.641e+02 1.236e+02

Vel 7.685e+01 7.300e+01 1.830e+01 1.397e+01

Table 3 Maximum median of the
absolute value normalized
residuals

Number of observations
8 15

LEO ξα [1/σ ] 1.2663 1.2686

ξδ [1/σ ] 1.0002 1.1644

GEO ξα [1/σ ] 1.1484 1.0919

ξδ [1/σ ] 1.0405 1.2384

GTO ξα [1/σ ] 1.2598 1.2945

ξδ [1/σ ] 1.0645 1.2016

Molniya ξα [1/σ ] 1.3445 1.1082

ξδ [1/σ ] 1.5258 1.1679

expected, orbit estimation is more accurate for longer observation arcs, as the median error
decreased with the number of observations.

As the true solution is supposed to be unknown in a real-world scenario, the solution
accuracy was assessed by analyzing the absolute values of the residuals scaled by the mea-
surementsσ . Themaximummedian of absolute valueswas found for each test case among the
100 simulations and reported in Table 3. These values are compatible with the measurement
statistics.

Figure 2 reports the results of simulations for an 8-observation Molniya orbit scenario.
The statistics of the absolute value normalized residuals are plotted and compared against
the IOD solutions. The residuals of the IOD solutions vanished at observations #1,4,8,
i.e., the observations used for the IOD solver. This is down to the fact that IOD solutions
are deterministic and exactly reproduce the observations adopted for IOD. However, the
residuals considerably went up at other observation epochs. In contrast, the LS residuals
were on average smaller and more uniformly distributed. Thus, the LS solution was a better
estimate of the orbit compared to the IOD solution, even when only few measurements
distributed on a short arc were available.
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Fig. 2 Statistics of the absolute
value normalized residuals on α

and δ for the IOD and DALS
solutions. Observed object on a
Molniya orbit

6.2 Confidence region representation

This section is devoted to analyze the representation of the confidence region. The object
in Molniya orbit is used as test case, as it is characterized by the shortest observational arc.
The DALS solver was run with 8 observations 40s apart, and σ = 0.5 arcsec. The DALS
solution led to J ∗ = 5.008. In confidence region definition, a value K = 3.1 was chosen
to ensure a confidence level of 95 percent (see Eqs. (8) and (25)). The state vector was
represented in Cartesian coordinates, while results are shown on the ρ − ρ̇ plane, where the
largest uncertainty was expected (Milani et al. 2004; Worthy and Holzinger 2015).

First, the relevance of high-order terms was evaluated. Using a third-order polynomial
approximation of J and a cloud of 50,000 samples led to ΓH = 0.563, which means that
the relative impact of the third-order terms was around 56%. This suggested that high-order
terms were relevant for an accurate analysis, and a high-order description of the confidence
region should be adopted. In contrast, the same test case performed with observations 420s
apart (i.e., spread over a longer arc) led to ΓH = 0.003.

Next, the algorithm described in Sect. 4.1.1 was run. The polynomial approximation of
J was recomputed five times to ensure an estimated truncation error of 10−2. The resulting
LOV1 is plotted in Fig. 3 and compared against the semi-major axis of the second-order
ellipsoid. The curvature and stretching of LOV1 led to ΓLOV1 = 0.119. If we replace the
second-order approximation of J with its 6th-order counterpart in the calculation of this
index without recomputing the polynomial, we obtain a value of 0.169. This result further
proved the need for recalculating the Taylor expansions to achieve accurate results. The
same algorithm was run along v2, the second main direction of uncertainty. The resulting
set of points is plotted in Fig. 4. These points mostly lay on the axis of the ellipsoid, giving
ΓLOV2 = 0.0021. Consequently, it was not necessary to run the algorithm along v3. In case
of observations spread over a long arc, also the first LOV lay on the semi-major axis (see
Fig. 5), leading to ΓLOV1 = 0.0015. This confirmed that the second-order approximation
was accurate enough in case of long observation arc.

The third step was evaluating the uncertainty set’s dimensionality by computing Γ i
D . The

confidence region was very large along v1, with Γ 1
D = 481◦. Γ 2

D was 49◦, while Γ i
D ≈

0.1◦ − 0.2◦ for i = 3, . . . , 6. Thus, a two-dimensional description of the confidence region
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Fig. 3 LOV1 and semi-major
axis of the second-order ellipsoid
in the ρ − ρ̇ plane for an object in
Molniya orbit (NORAD Catalog
number 40296). The DALS was
run with 8 observations 40s apart
and σ = 0.5 arcsec

Fig. 4 LOV2 and second axis of
the second-order ellipsoid in the
ρ − ρ̇ plane for an object in
Molniya orbit (NORAD Catalog
number 40296). The DALS was
run with 8 observations 40s apart
and σ = 0.5 arcsec

seemed to be appropriate. The confidence region turned out to be much smaller for the long
observation arc. Along v1, Γ 1

D = 3.73◦, whereas along the other directions Γ i
D ≤ 0.5◦ for

i = 2, . . . , 6. A mono-dimensional approximation of the confidence region may thus be
sufficiently accurate in the case of long arc.

As the confidence region was shown to be two-dimensional in the short arc case, the meth-
ods introduced in Sect. 4 can be applied to fully characterize the uncertainty set. In Fig. 6,
samples generatedwith a second-order approximation are plotted in the ρ−ρ̇ plane, while the
performances of the algorithms described in Sect. 4 are compared in Fig. 7. The second-order
approximation did not allow us to sample the whole uncertainty set, as suggested by the value
of ΓH . In contrast, both the GES and AD algorithms provided a more reliable description
of the region. The two high-order methods performed equally well because Γ 2

LOV was very
small, meaning that nonlinearities could be neglected along v2. The higher computational
cost of the GES could thus be avoided. Table 4 shows the computational time of the algo-
rithms obtained on a Windows desktop with a 3.20 GHz Intel i5-6500 processor and 16 GB

123



41 Page 20 of 29 G. Principe et al.

Fig. 5 LOV1 and semi-major
axis of the second-order ellipsoid
in the ρ − ρ̇ plane for an object in
Molniya orbit (NORAD Catalog
number 40296). The DALS was
run with 8 observations 420s
apart and σ = 0.5 arcsec

Fig. 6 Sampling of the
confidence region based on a
second-order approximation. The
colormap refers to e−(Ji−J∗).
The object was in Molniya orbit
(NORAD Catalog number
40296), and the DALS was run
with 8 observations 40s apart and
σ = 0.5 arcsec

memory. Note that polynomial evaluations were performed in MATLAB, and not optimized
for efficiency.

The next analysis considers the representation of the full n-dimensional uncertainty region
by ADS. The first step was to enclose the uncertainty domain with a box defined in the
eigenvector space. This was achieved by considering the enclosure of the LOVs and the
second-order ellipsoid.TheADSwas then run to obtain an accurate polynomial representation
of J on the entire domain, using 10−2 as accuracy threshold of the estimated truncation error.
In Fig. 8, the resulting subdomains are shownboth in theρ−ρ̇ and v1−v2 planes. Subdomains
inwhitewere discarded (minimum larger than the confidence region threshold), while colored
subdomains were retained. The colormap refers to the ratio J∗

Ji
, with Ji being the minimum

value of J within each subdomain. The domain was only split along v1, the main direction
of uncertainty. The LOV crossed 5 subdomains, the same number of times the polynomial
expansion of J was recomputed when running the LOV algorithm.

Within the domain, the accurate representation of the target function allowed us to obtain
the solution pdf using Eq. (37) once the integral of Eq. (38) is computed. In this case, we
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Fig. 7 Sampling of the
confidence region by means of
GES algorithm and AD
algorithm. The colormap refers to
e−(Ji−J∗). The object was in
Molniya orbit (NORAD Catalog
number 40296), and the DALS
was run with 8 observations 40s
apart and σ = 0.5 arcsec

Table 4 Computational time of the different sampling algorithms. In each column, the number of times an
operation was run in the corresponding algorithm is reported

Operation Time [s] LOV GES ADS AD

T k
δ J 0.3 5 5 – 5

Eq. 34 0.03 M M – M

Eq. 35 0.03 - ML – –

T k
δ J via ADS 1.99 – – 1 –

Minimum in subdomain 0.2 – – 6 –

Grid along fix direction 0.07 – – – M

M is the number of points on LOV1 while L is the number of points on LOV2. In the execution of the GES
and AD algorithms, M, N ≈ 30. The discretization of the grid along fix direction was such as to obtain 31
points
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Fig. 8 Splitting of the domain in
the ρ − ρ̇ and v1 − v2 planes
performed by the ADS, compared
against the LOV. The colormap
refers to the value of J . The color
of the subdomains depends on the
ratio J∗

Ji
, with Ji being the

minimum value of J within the
subdomain, while white
subdomains were discared. The
observed object was in Molniya
orbit (NORAD Catalog number
40296) and the DALS was run
with 8 observations 40s apart and
σ = 0.5 arcsec

used 5× 104 samples and computed
∫
D e− 1

2T
k
δJ (x)dx = 4.6× 10−7. The relative difference

with respect to the second-order value provided by
√

(2π)n

|C | was 0.084. For the long-arc case,

the relative difference reduced to 4 × 10−12.

6.3 Effect of state representation

The choice of state representation significantly affected the confidence region description.
In Sect. 6.2, the polynomial approximation of J was expressed in Cartesian coordinates,
in which the effect of high-order terms was found to be less relevant. However, the MEE
representation is a more suitable choice when it comes to propagating the confidence region.
MEE absorb part of the nonlinearity of orbital dynamics and, thus, bring benefits when
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Fig. 9 LOV1 and semi-major
axis of the second-order ellipsoid
in the ρ − ρ̇ plane for an object in
Molniya orbit (NORAD Catalog
number 40296). The DALS was
run with 8 observations 40s apart
and σ = 0.5 arcsec, using MEE

propagating the region (Vittaldev et al. 2016). In this section, the same object as in Sect. 6.2
is analyzed. However, the state vector was expressed in MEE.

The third-order polynomial approximation of J led to ΓH ≈ ∞, meaning that the size of
third-order terms was large and the accuracy of the Taylor expansion low (the approximation
of J also assumed negative values within the sampled domain, which explains the very
large number obtained for ΓH ). In Figs. 9, 10, the resulting LOVs along v1 and v2 are
plotted and compared against the axes of the second-order ellipsoid on the plane ρ − ρ̇. The
LOV1 strongly differed from the semi-major axis of the ellipsoid, more than with Cartesian
coordinates (compare Fig. 9 with Fig. 3). The corresponding value of ΓLOV1 was 0.983. As
shown in Fig. 10, the LOV2 also diverged from the ellipsoid axis, with ΓLOV2 = 0.686,
while the effect of high-order terms along v3 was negligible (with ΓLOV3 = 1× 10−4). Note
that the ellipsoid axes computed in MEE coordinates were not straight lines when projected
onto the ρ − ρ̇ plane due to the nonlinearities in the coordinate transformation. This is also
the reason why MEE are less appropriate in confidence description.

As for the uncertainty set’s dimensionality, the size of the confidence region along v1 was
such that Γ 1

D = 562◦, thus comparable to the confidence region with Cartesian coordinates.
In contrast, along v2 the confidence region in MEE was smaller, with Γ 2

D = 2.4◦. Along
the other directions, Γ i

D ≤ 0.3◦ for i = 3, . . . , 6. Thus, also with MEE a two-dimensional
approximation of the confidence region seemed to be reasonable with short arc.

TheGES algorithmwas more accurate than theAD algorithm in sampling the uncertainty
set, due to the relevance of high-order terms along v2. Figure 11 compares the two resulting
samplings. The GES algorithm succeeded in generating samples in the whole uncertainty
region, so justifying its computational cost. It is worth noting that Fig. 11 is related to
a scenario in which observations are 60s apart rather than 40. This choice was adopted
because, in the latter case where theGES algorithm was applied to theMEE representation,
the solution of the nonlinear system in Eq. (35) failed to converge for some points of the
uncertainty set.

In summary, the Cartesian coordinates proved to be amore suitable choice when it came to
describe the confidence region of an OD solution, with nonlinearities playing a less relevant
role. However, also with Cartesian coordinates, a high-order approach is recommended when
accurate results are required.
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Fig. 10 LOV2 and second axis of
the second-order ellipsoid in the
ρ − ρ̇ plane for an object in
Molniya orbit (NORAD Catalog
number 40296). The DALS was
run with 8 observations 40s apart
and σ = 0.5 arcsec, using MEE

6.4 Effect of observation separation

In Sect. 6.2, analysis of the confidence region with short arc was compared to results obtained
when observations were spread over a larger arc, suggesting that the observation separation
may significantly affect the uncertainty set. In this section, the effect of the observation
separation on the indices described in Sect. 5 is analyzed. The DALS solver was run with 8
observations of the object in Molniya orbit (NORAD Catalog number 40296) and σ = 0.5
arcsec. Different angular separations were simulated. In Fig. 12, the trends of ΓH and ΓLOV1
for different observation separations are plotted. The effect of high-order terms significantly
decreased for observations spread over a larger arc and, consequently, the LOV’s departure
from the semi-major axis of the second-order confidence ellipsoid was less evident. The
values of both indices were smaller when a Cartesian representation was adopted, meaning
that Cartesian coordinates could allow us to neglect high-order terms with shorter arcs. In
Fig. 12(a), ΓH tended toward infinity when MEE were used. This happened because the
third-order approximation of J can turn into negative values within the domain of interest. It
is a hint that we need to recompute the polynomial expression of J when running the LOV
algorithm. In contrast, in Fig. 12(b), ΓLOV1 tended toward 1 because the term e− 1

2T
2
δJ

(
xLOV
i

)

became negligible with short arcs.
In Fig. 13, Γ 1

D , Γ
2
D and Γ 3

D are plotted. The values of these indices decreased for longer
observation separations with both Cartesian coordinates and MEE, meaning that the uncer-
tainty set shrank when observations were spread over a longer arc. Γ 3

D was also relatively
small with short observational arcs, which justified the two-dimensional description of the
confidence region suggested in this work. Finally, it is worth noting that, with longer arcs,
Γ 2
D became small enough that also the second dimension was negligible. This behavior was

more evident when MEE were used, showing that a mono-dimensional representation may
be appropriate in this case, due to the alignment of one coordinate with the semi-major
axis.
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Fig. 11 Sampling of the
confidence region by means of
GES algorithm and AD
algorithm. The colormap refers to
e−(Ji−J∗). The object was in
Molniya orbit (NORAD Catalog
number 40296), and the DALS
was run with 8 observations 60s
apart and σ = 0.5 arcsec, using
MEE

7 Conclusions

In this work, we focused our investigation on theOD problem when optical observations are
taken on observation arcs that are long enough to solve a least square problem, but too short
to accurately determine the orbits.

We formulated a classicalLS problem and implemented an arbitrary-order solver (referred
to as DALS solver). In doing so, we avoided the approximation of classical differential
correctionmethods. The formulation of aLS problem and its solution via theDALS improved
on average the available IOD solution. Thus, including all acquired observations in the OD
process turned out to be useful even on short arcs.

We have introduced nonlinear methods in the representation of the LS solution’s con-
fidence region. DA techniques allowed us to retain high-order terms in the polynomial
approximation of the target function. These terms are typically neglected by linearized the-
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Fig. 12 Trends of ΓH and
ΓLOV1 as functions of
observation separation for both
Cartesian and MEE
representation. Values larger than
106 were omitted

ories, but they can be relevant for the accurate description of the confidence region of orbits
determined with short arcs.

To this aim, we have introduced four algorithms based on DA techniques to nonlinearly
describe the confidence region. The first one is a DA-based implementation of the LOV. We
used DA to effectively solve the set of nonlinear equations required to capture the departure
of the LOV from the axis of the second-order ellipsoid. In this algorithm, the polynomial
approximation of the target function is recomputed only when necessary, based on accu-
racy requirements. The concept of LOV was then extended to two dimensions, introducing
the GES. Another approach combined the LOV with a high-order polynomial to obtain a
two-dimensional sampling without the computational cost of GES. Finally, a method was
proposed to fully enclose the n-dimensional uncertainty set and accurately represent the
target function over it by using ADS.
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Fig. 13 Trend of ΓD as a
function of observation
separation for both Cartesian and
MEE representation

As high-order computations require extra computational cost, we have introduced an index
to guide the choice between second-order and high-order representation of the uncertainty
set. Through this index, it was shown that the effect of nonlinearities decreases significantly
for longer observational arc and that Cartesian coordinates are a better choice than MEE.
An additional index was introduced to determine the uncertainty set’s dimensionality based
on the along-track dispersion associated with uncertainties in the determination of the orbit
semi-major axis. This choice is strongly connectedwith the possibility of acquiring follow-up
observations. Analysis of the dimensionality index demonstrated that a two-dimensional rep-
resentation of the uncertainty region can be sufficiently accurate, depending on the telescope
properties and the adopted observation strategy. With longer arcs, the uncertainty region
could even be approximated as a mono-dimensional set, in particular when MEE are used.

The methods we have introduced come at the cost of intensive computations and the loss
of a closed-form representation of the state statistics. However, the accuracy gained by the
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retention of nonlinear terms may play a key role in the development of reliable tools for
observations correlation and for the initialization of nonlinear state estimation techniques,
such as a particle filter. Future effort will be dedicated to the development of a full nonlinear
mapping between sensor noise and object state, which will allow us to consider measurement
noise with arbitrary statistics.
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