Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2012, Article ID 235392, 17 pages
doi:10.1155/2012/235392

Research Article

Assessing the Open Source Development Processes Using OMM

Etiel Petrinja and Giancarlo Succi

Center for Applied Software Engineering, Free University of Bozen/Bolzano, 39100 Bolzano/Bozen, Italy

Correspondence should be addressed to Etiel Petrinja, etiel.petrinja@unibz.it

Received 14 May 2012; Revised 2 August 2012; Accepted 6 August 2012

Academic Editor: Gerardo Canfora

Copyright © 2012 E. Petrinja and G. Succi. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The assessment of development practices in Free Libre Open Source Software (FLOSS) projects can contribute to the improvement
of the development process by identifying poor practices and providing a list of necessary practices. Available assessment methods
(e.g., Capability Maturity Model Integration (CMMI)) do not address sufficiently FLOSS-specific aspects (e.g., geographically
distributed development, importance of the contributions, reputation of the project, etc.). We present a FLOSS-focused, CMMI-
like assessment/improvement model: the QualiPSo Open Source Maturity Model (OMM). OMM focuses on the development
process. This makes it different from existing assessment models that are focused on the assessment of the product. We have
assessed six FLOSS projects using OMM. Three projects were started and led by a software company, and three are developed by
three different FLOSS communities. We identified poorly addressed development activities as the number of commit/bug reports,
the external contributions, and the risk management. The results showed that FLOSS projects led by companies adopt standard
project management approaches as product planning, design definition, and testing, that are less often addressed by community
led FLOSS projects. The OMM is valuable for both the FLOSS community, by identifying critical development activities necessary

to be improved, and for potential users that can better decide which product to adopt.

1. Introduction

Free/Libre Open Source Software (FLOSS) development
approaches differ from the traditional software development
approaches [1] such as the waterfall or the spiral. The FLOSS
approaches have specific characteristics as the geographical
distribution of the development team [1]. The developers
usually do not know personally each other, there are no bud-
get constraints, and so forth. However, some traditional soft-
ware development issues as [2]: faults insertion, continuous
change of requirements, and growing complexity, are present
also in agile and FLOSS projects with additional critical
aspects that have to be addressed. Some of these, are for
example, issues related to a strongly distributed development
process, and absence of formal responsibility of developers
for meeting deadlines.

The software development process is increasingly being
defined and standardized [3]. Assessment models have been
defined for evaluating the quality of the software develop-
ment process. Only by assessing it, it is possible to identify
poorly implemented practices, identify missing practices,

and improve the development process. Only by assessing the
quality of the development process it might be possible to
optimise the use of resources and reduce the development
time. For successfully assessing the process, it is possible to
use an assessment approach that addresses key aspects of
the development process. For this reason, it is important to
modify an assessment approach or use different approaches
when assessing different types of software processes. One
standardized approach to assess the quality of the software
development process is the Capability Maturity Model
Integration (CMM/CMMI) [4]. It is both an assessment and
an improvement model for software development. CMMI is
increasingly being adopted by the software industry and the
number of experts that are knowledgeable in its structure and
usage is already large.

This paper presents a FLOSS-development-process assess-
ment and improvement model and shows its application on
three case studies. The Open Source Maturity Model (OMM)
[5, 6] was designed with the aim of increasing the perceived
quality of the FLOSS development process [7]. The trust-
worthiness of FLOSS is an important criteria when potential

users decide to download and try to use the FLOSS product
[8]. A study conducted on a large group of stakeholders,
both from the software industry, and members of FLOSS
communities [8], unveiled this. Specially stakeholders from
the software industry stressed the importance of quantitative
measurements of the quality of FLOSS. Without quality met-
rics potential users have problems when selecting and adopt-
ing FLOSS products. The main beneficiaries of the OMM
are potential users of FLOSS products, especially integrators
of FLOSS products. For example, software companies that
adopt FLOSS products and integrate them into composed
software products that can be either FLOSS or proprietary.
FLOSS communities can also benefit from a large number of
users attracted by a good OMM assessment, especially inte-
grators from the software industry that can contribute new
code to the project. The results of the conducted stakeholders
survey was an important source of information for the design
of a new assessment model. The large majority of metrics
listed in OMM are addressing quantitative measurements of
the FLOSS development process suggested by the stakehold-
ers included in the study.

The existent FLOSS assessment models have not yet been
largely adopted. However, when they are used, they provide
indications about the quality of FLOSS projects. The OMM
maintains some similarities with existent models. However
the advantages of OMM, if we compare it with other FLOSS-
oriented assessment models, is its particular focus on the
development process. The OMM prescribes practices as:
time-related implementation and management of the testing
process; support of good maintenance practices; measure
response time of the community to improvement sugges-
tions from the community, the performing of configuration
audits; inclusion of the plan for process quality; and so forth.
Available FLOSS models sometimes address similar aspects,
however at a coarser level of details. Aspects that distinguish
the OMM from other models are often related to the man-
agement and the improvement of adopted software develop-
ment practices.

The assessment of the development process can bring
benefits not just to the further improvement of the process
itself but also to an increase of the quality of the FLOSS
product. By omitting the analysis of process characteristics
as: the quality of the testing plan, the project, and the process-
planning characteristics, and others, we could miss aspects
related to the survivability [9] and the quality of the devel-
opment process. These aspects are useful indicators, not just
of the current quality of the project but also, of its potential
future evolution. The OMM helps when deciding to adopt a
FLOSS product, specially if the product will be integrated in
a composed product created by a software integrator. Com-
pared to CMMI, OMM addresses FLOSS-specific aspects that
are not addressed by CMMI. A CMMI assessment is usually
an extensive process that is not used for assessing small
software companies or single-software projects. On contrary,
OMM was designed specifically for assessing single FLOSS
projects, and the assessment process is considerably shorter
than the CMMI assessment. The OMM should cover all key
aspects of the FLOSS, however it should be flexible and allow
the assessment of just some parts of the development process.

Advances in Software Engineering

Despite OMM diverges in several aspects from CMMI,
there are similarities. The structure, the content of the model,
and the assessment process share common elements. Part of
the motivation for designing a similar model was based on
the fact that CMMI is currently the largely used software
development process assessment methodology. Although
there are still several problems adopting CMMI in the
software industry, there is already a considerable expertise
in the software industry that we wanted to benefit from.
Experts from the software industry that know CMMI can
easily become users of the OMM model.

Three key contributions of this paper are:

(1) A description of the QualiPSo OMM, a FLOSS-ori-
ented development process assessment model.

(2) A report of the application of the QualiPSo OMM on
six-case studies; assessing FLOSS projects started and
led by a software company (two SMEs and one large
software integrator company) and projects developed
by FLOSS communities.

(3) The presentation of improvement opportunities for
the assessed FLOSS projects.

Section 2 presents the related work. The third section
describes key characteristics of the used assessment model.
In section four, we present how the OMM model should be
used. In section five, we present six case studies. We present
the results of the assessment of the FLOSS projects in the
sixth section. The seventh section contains the discussion of
the most important results. In the section eight, we present
the threats to validity and finally we draw the conclusions and
propose the future work.

2. Related Work

The adoption of software assessment methodologies has
been studied extensively in the last decade [10-13]. Roberts
et al. [12] studied factors influencing the adoption of soft-
ware methodologies. They identified factors as: the organisa-
tional system development methodology (SDM) transition,
the functional management involvement/support the use of
models, and the external support. The study provided useful
indications to researches by identifying a list of measures
to be checked, and to developers by providing a guide to
aspects that should be considered when implementing a
system. The study conducted by Misra et al. [14] provides
a list of best practices and factors that influence the quality
of Agile software development. Most of those factors are
also part of the OMM model. Khalifa and Verner considered
human behaviour when analysing the adoption of the water-
fall and the prototyping methodologies [10]. By studying
the behaviour of developers and other stakeholders they
identified two factors that influence the perceived quality
of the development method: the facilitating conditions, and
the process quality. The product quality was not identified
as a statistically significant factor for explaining the usage.
Their work sheds some light on the perceived quality of the
development process and the impact of the methodology.
Their results show the importance of the development

Advances in Software Engineering

process adopted by software developers which was one
of our motivation factors when designing OMM. Matook
and Indulska conducted a study of the development and
measurement of the quality of process models by using the
quality function deployment approach and proposed a tool
that can be used for evaluating process models [11].

The quality of reference models can influence the final
quality of the developed software and reduce development
costs and development time. von Wangeheim et al. con-
ducted a study on the methodological support of creation
and modification of the software process capability/maturity
models (SPCMM) [13]. An important aspect they have
identified is that “SPCMM elements are not explicitly and
systematically related to quality and performance goals.” We
adopted some of the approaches proposed by the presented
studies. Several results are aligned with findings described in
the cited literature. The key difference is our focus on the
FLOSS development process.

The CMMI model has been increasingly adopted by
software companies [4]. The research of the applications
of CMMI showed that after a decade of the availability
of the CMM half of the companies involved in the SEI
study were classified in its lower maturity level [4]. Other
studies reported an even higher level of companies classified
as CMM level 1 [15]. Recently, discording studies of the
adoption of CMMI had been published; some studies found
a growth and improvement of the quality of assessed compa-
nies [16], on contrary Staples et al. [17] report that the adop-
tion of CMMI is still difficult for several reasons. For exam-
ple, one reason is the cost and the complexity of the CMMI
assessment process. Companies might not be interested to
adopt the CMMI model due to its complexity or because they
use other assessment and improvement models.

There are several studies presenting modifications or
extensions of reference models. Many of them analyse the
adoption of CMMI in small and medium enterprises (SMEs).
Staples et al. [17] and Guerrero and Eterovic reported
that the adoption of CMM is difficult in small enterprises
[18]. Methodologies are often adapted to specific assessment
needs or simplified methodologies are used [17]. Assessment
methodologies have been proposed also for the agile software
development approach [19]. Paulk studied the issues related
to the use of agile approaches and the CMM assessment
methodology [20]. He concluded that both methodologies
can benefit from each other. von Wangeheim et al. [21]
have studied the adoption of ISO/IEC 15504 in SMEs and
found that the adoption level of Reference models is much
lower in SMEs than in large companies. Dybé [22] presented
the adoption of process improvement methodologies in the
Scandinavian Context focusing on the quality management
aspects which we considered important when we designed
OMM. Contrary to other studies, he found that SMEs
implement process improvement elements efficiently as large
companies. Our paper describes the use of a reference model
dedicated to FLOSS projects. During the study we have
encountered many issues identified by the cited studies that
were all conducted on non-FLOSS software projects. Their
findings were important for understanding the issues that we
found during our research.

The Open Source Maturity Model (OSMM) assessment
methodology for FLOSS projects was presented by Cap Gem-
ini in year 2003 [23]. Afterwards several new methodologies
were proposed, some of them are: the Open Source Maturity
Model (OSMM) from Navica Inc. [24], the Methodology of
Qualification and Selection of Open Source software (QSOS)
[25], the Open Business Readiness Rating (OpenBRR) [26],
the Open Business Quality Rating (Open BQR) [27], the
Qualoss methodology [28], and the SQO-OSS quality model
[29]. To our knowledge there are only few studies analysing
and validating previously listed FLOSS assessment models. A
comparison study of OpenBRR and QSOS was performed by
Deprez and Alexandre [30]. Their study identified positive
and negative aspects of both models. A similar approach was
done by Petrinja et al. [6]. The authors of the study compared
the use of OpenBRR, QSOS, and OMM to assess two FLOSS
projects: Firefox and Chromium. Most of these models have a
repository available on the web where users can see examples
of assessments of popular FLOSS projects; there are, for
example, 101 available assessment results obtained using the
QSOS model.

Some of these methodologies were proposed by private
entities as, for example, the OSMM methodology. More
often they were proposed by research centres, universities, or
individuals. They share common aspects, the most important
is the set of software characteristics they measure. We
analysed those characteristics and reused some of them while
designing OMM. The reuse of characteristics included in
other methodologies was dictated by the aim of providing
an as possible complete measurement of the FLOSS process.

3. Characteristics of OMM

The OMM is a FLOSS assessment and improvement model
that was designed with the aim of being able to support
the assessment of the quality of the FLOSS development
process. FLOSS adoption is susceptible to the lack of trust
in its quality, both of the development process and of the
software product. The quality of the software product is
related to the quality of the development process that is
adopted to produce the software product. Our aim was not
just to improve the stakeholders perception of the quality of
FLOSS, by providing a detailed set of metrics characterising
the development process, but also of its quantitatively
measurable quality. The lack of trust in FLOSS is often
unjustified, and therefore, it is important to understand what
are the issues that hinder the trust.

3.1. The Inputs for Building the Model. The information
gathered for the design of the model was based on different
types of users, development approaches, and on previous
studies. We have conducted personal interviews with 52
individuals in the first iteration of the research [8]. The inter-
viewees were experts from the software industry (Siemens,
Engineering Ingegneria Informatica, Bull, Atos, IBM, Man-
driva, Thales, etc.) and members of FLOSS communities
(Apache HTTP Server, Eclipse, Emacs, Linux Kernel, Mozilla
project, GNOME, Debian, etc.). The two groups were equally
represented. The majority of participants covered managerial

and development roles. Some of them were working in
the industry and at the same time participating in FLOSS
communities. Following a predefined questionnaire, we
collected opinions and the practices interviewees use when
developing, using, or adopting FLOSS. During the interviews
we focused on: the quality, the FLOSS stakeholders, the
technology used, and the business aspects. However, the
whole questionnaire covered sixteen topics and contained
53 questions. Interviews were usually face to face and the
meetings lasted between one and two hours. There were
always at least two researchers participating to the meeting
and annotating the answers. After the meeting, the draft
of the answers collected during the interview was sent
to interviewees that had to confirm its correctness. We
conducted a second iteration of the information collection in
the form of a survey that we conducted with the help of a web
questionnaire. After analysing the results of interviews and
surveys we identified the areas of the FLOSS development
process that participants consider important for improving
the quality of FLOSS.

Other sources of information for the design of the
model were [7]: the literature review, and the study of
existent FLOSS assessment methodologies and standards as:
OpenBRR, QSOS, CMMI, ISO/IEC 15504, and so forth.
These sources were used when the answers from the experts
were lacking sufficient details about the development process
they mentioned.

Interviews and surveys were the main source for topics
that are important for FLOSS stakeholders. These topics
are measured on different granularity levels inside OMM.
The CMMI principles influenced the design of the OMM
structure and the assessment process. From the literature
review we gathered additional details about FLOSS practices
and the whole development process. These elements were
inserted into the OMM as questions on different levels of the
model.

3.2. High-Level Components of OMM. The key components
of OMM are elements focusing on important aspects of
the FLOSS development process. We identified a list of
elements that influence the perceived quality of the FLOSS
development process by a large group of stakeholders in
FLOSS projects. We name these components TrustWorthy
Elements (TWEs). From interviews and surveys, we obtained
a list of TWEs that were mentioned by a large percentage
of experts. We were able to compose a ranked list of topics
where some of the TWEs were considered important by a
large percentage of experts. The addressing of the needs of
software users and integrators, that are the first potential
users of OMM, influenced the type of elements inserted into
OMM. Some questions as for example: “check the availability
of the requirements specification” can be considered not
important for simple FLOSS projects. However, the majority
of successful FLOSS projects that have many users and
contributions, sometimes contributed by the software indus-
try, take in consideration aspects related to requirements
specification and other aspects important for a (FLOSS)
software project. Several elements in the structure of the
proposed model resemble elements in CMMI; OMM is

Advances in Software Engineering

Fulfilled OSS-TWEs: Fulfilled CMMI PAs:

From CMMI
level 2 and 3

From intermediate
level

Basic level

+ Intermediate From CMMI
REP, RDMP level level 2
STK, RASM

PDOC, STD .
QTP, CONT] Optional,
LCS, ENV rom CMMI
DECT, MST level 2

FIGURE 1: Three OMM maturity levels.

structured in levels, practices are important building blocks
of the model, they focus on elements that are assessed also
in the CMMI, and so forth. Both models aim to be usable
for assessment but also for improvement of the development
process. Similarly as in the CMMI model, we have proposed
alevel structure for the OMM model. We limit the number of
maturity levels to three (in CMMI there are 5 maturity levels)
(see Figure 1):

(1) the basic level with 11 TWEs,
(2) the intermediate level with 7 TWEs,
(3) the advanced level with 7 TWEs.

When we talk about maturity we used a simple definition
(Dictionary.com) that says that a software product or a
software process is mature when it has reached a high (or
full) development. The full development in OMM is when all
practices that are expected by stakeholders, quality standards,
and the technological process are fulfilled.

The TWEs were distributed into three maturity levels
according to their importance for interviewed and surveyed
stakeholders in FLOSS projects. TWEs considered important
for improving the perceived quality of the FLOSS devel-
opment process were inserted into lower OMM levels. For
example, license management was considered important for
a large percentage of participants to the initial research,
therefore we have decide to put the TWE LCS into the Basic
OMM level; the level that should be first implemented. We
based our classification of TWEs also on the complexity of its
implementation. Reputation of a FLOSS project has also an
important influence on the perceived quality of the assessed
FLOSS project, however, we decided to put the REP TWE
into the Advanced OMM level because it is not easy to build
the reputation of a FLOSS project. Our initial distribution of
TWEs in the three levels was tested during the validation of
the model. After collecting the results of the assessments we
identified few TWEs that had to be moved between levels.

The information about the maturity level reached by a
FLOSS project provides a single figure about its maturity.
Somebody can argue that the collection of TWEs and their
distribution into the three maturity levels is not the only
possible interpretation of the maturity of a FLOSS project.

Advances in Software Engineering

We think that a better source of information about the
quality and maturity of a FLOSS development process is
the whole set of assessment values for each TWE. These
values represent quantitatively measured characteristics of
the FLOSS project. We identified a set of 25 key TWEs:

(i) PDOC—Project documentation.
(ii) STD—Use of established and widespread standards.
(iii) QTP—AQuality of the testing process.

(iv) LCS—Licenses management.

(v) ENV—Environment.

(vi) DECT—Number of commits and bug reports.

(vii) MST—Maintainability and stability.
(viii) CM—Configuration Management.

(ix) PP1 and PP2—Product planning, project planning.

(x) REQM—Requirements management.

(xi) RDMP and RDMP2—roadmap.

(xii) STK—Stakeholders.
(xiii) PPQA—Process and product quality assurance.
(xiv) PMC—Project monitoring and control.
(xv) TST1 and TST2—Test.
(xvi) DSN1 and DSN2—Design.
(xvii)) CONT—Contributions.
(xviii) RASM—Results of third-party assessment.
(xix) REP—Reputation.
(xx) PI—Product integration.
(xxi) RSKM—Risk management.

Twelve TWEs address generic software development
practices, for example project management (PM) and risk
management (RSKM), the others address FLOSS specific
aspects as the contribution level (CONT) and the Licenses
management (LCS). The TWEs are high-level elements that
we specialized into smaller components that can be assessed
easier and increase the granularity level of the assessment.
The identification of components that address a small aspect
of the software development process limit the subjectivity of
the assessment. The smaller are the assessed components of
the development process, the more precise is the assessment.

Questions as: “Check the availability of FAQ documents”
can be simply answered by searching through the web pages
of the FLOSS project. The experience of an OMM assessment
team, gained with the assessment of several FLOSS projects,
help to precisely assign an assessment value to each practice.
Based on experiments conducted during the validation
of OMM [6] we identified that distinct assessors assign
similar grades for measured characteristic. The variability

of assessment values, based on the subjective perception of
questions and documents evaluated, is small.

3.3. Low-Level Components of OMM. We used the Goal
Question Metric approach (GQM) [31] to derive the com-
ponents of the OMM model that are part of the TWE
elements. In the GQM we have to identify the Goals that
we wish to achieve; the Questions to which we will have to
answer to be able to know if the Goal has been reached;
and the lower level is composed by metrics that have to be
measured to answer to the questions. The number of the
goals specified varies between one and five and depends on
the complexity of the TWE to which they belong. Some TWE
(e.g., Design 2 (DSN2) have 5 goals and addresses aspects as
requirements, components solutions, and design decisions)
have several goals, others (as Roadmap 2) have just one goal.
The elements were extracted by the interviews and surveys
conducted, from the literature study, from other models, and
from the experience of the team that designed the OMM.
Questions were written in a structured form and they were
circulated inside the team. A common agreement had to be
reached inside the team on the elements inserted into OMM.

We have designed the create, the manage, and the
improve set of questions and most TWEs contain a goal that
is addressing each of these three aspects. A similar design
is used in the CMMI. Goals first address aspects related
to the “creation” of: the documentation (e.g., the PDOC
TWE has a goal: “Create product documentation.”), software
components, processes, and so forth. The “manage” type of
goals address the management of already created elements.
The last type of goals addresses the activities related to the
“improvement” of the development practices adopted, the
software components created, the documentation, and so
forth. It was not always possible to include the three types of
goals for all TWEs but we followed this structure wherever
it was possible. Each goal is composed by one or more
practices. They specialize goals and characterize activities
that are usually conducted inside the FLOSS project. OMM
contains 122 practices for the complete assessment process.
The GQM approach requires the definition of “questions”
that inside the OMM are called “practices” for maintaining
the similarity with the CMMI naming convention. An
example of a practice from the PDOC TWE is:

Practice. PDOC.3.2—“Improve the support for
several natural languages.”

Metrics are the lowest level of the OMM model. In
the current version of the model there are 630 metrics.
The metrics are used to measure if a practice is fulfilled
completely, partially, or not at all.

The number of metrics is large and it may be perceived as
too large for a FLOSS assessment. However, the granularity
level of metrics in OMM is optional; assessors can decide to
assess just the practices and not consider metrics in details.
An assessment without metrics will be of smaller precision
and with less value for people reading the results, but it will
still give a usable OMM assessment result. The 122 questions
representing practices are comparable to the level of details of
methodologies as QSOS and OpenBRR and it can be assessed
in a time frame ranging from two to four hours depending on
the size of the assessed project.

3.4. The Rating Mechanism. In the OMM model each
assessed value can reach a specific threshold value. These
should be defined uniformly for the whole model to limit
the bias. We have decided to use a uniform threshold value
for the whole model; there are four possible assessment
values ranging from 1 to 4 with the possibility to assign
a 0 for metrics that do not apply in specific domains. For
example Practice ENV.1.3 (Select integrated management
and communication tools used in the project) in the
TWE assessing the Environment aspects contains several
metrics that should be searched and measured, for example:
Eclipse, BlueFish, Kdevelop, and others. A FLOSS project will
probably adopt just one of the development environments
and not all of them. During the assessment we have to
measure the diffusion of the use of the adopted environment;
all others will be considered not applicable (assessed with
0). The threshold value of 4 means that the implementation
of the requested elements is fulfilled more than 75%, value
3 means that it is fulfilled between 50% and 75%, value 2
between 25% and 50%, and value 1 that its implementation
is lower than 25% of what requested by the practice.

We have decided not to prescribe a complete list of
elements that have to be implemented in a project to reach a
specific threshold level as it is done in OpenBRR and QSOS.
The first version of the OMM model contained the exact
definition of threshold values, however the elements present
in each level were quite arbitrary and based on the results of
the first validations we decided to insert this information as
subprocess elements that have to be considered but are not
strictly prescribed for reaching a threshold level. Therefore,
the decision to assign a 1, 2, 3, or 4 value depends on the
decision of the assessment team based on the information
available. The assessor proposes an assessment value (1, 2,
3, or 4) based on his previous domain knowledge and the
assessment team can agree with the value or propose new
documents that support a different assessment value. The
documents showing the activity of the FLOSS project used
during the assessment should be collected and archived by
the assessors and made available as proof of the assessment
result.

A detailed description of all 25 TWEs will not be
provided in this paper (for details see the document: http://
www.qualipso.org/sites/default/files/Open Maturity Model
.pdf). We present here just part of the structure described in
previous sections that is schematically presented in Table 1.
We can see all four granularity levels of the OMM model
related to documentation aspects inside the FLOSS project:

(i) the TWE: PDOC: Project Documentation;

(i) description of the purpose of the PDOC TWE:
Develop and maintain project documentation, mak-
ing it readily accessible to the community;

(iii) the first goal PDOC.1: Provide high quality docu-
mentation;

(iv) the goal is specialised into three practices, the first
one is PDOC.1.1: Create development documenta-
tion;

Advances in Software Engineering

(v) the lowest granularity level (LookFors) contains
the set of documents we have to search in the
assessed project (for example: Check the availability
of requirements specification).

We can see in the example questions related to the
software product (check the availability of a user’s guide)
and questions related to the development process (check
the availability of work flow guidelines). The assessment
team must decide what is the quality and completeness of
the requirements specification documentation available in
the project based on the available documents and previous
experience of the team.

The OMM model divides the development process into
small activities that can be assessed quantitatively. The
experience of the assessor and the adoption of assessment
best practice guidelines guarantees a good precision of the
whole assessment process. Case studies and experiments
conducted [6] demonstrate that the value assessed by more
individuals does not vary strongly. Therefore, in general we
can be confident in the objectivity of the assessment result.

The rating (R) mechanism defines how to aggregate the
assessment values for the FLOSS development process by
aggregating the assessments on different granularity levels:
the OMM maturity level R(ML;), the TWE level R(TWE;),
the goal level R(G;), and the Practice R(P;) level. The rating
is performed by calculating the average value of the elements
aggregating the elements from the lower level (see (1) for
Practice rating, (2) for Goal rating, and (3) for TWE rating).

Calculation of the Rating of a Practice

zAll Metrices Metric,-
R(P;) = — 1
(P) number of Metrices L

Calculation of the Rating of a Goal

R(G)) = 2. Al Practices Pract}cei' o
number of Practices

Calculation of the Rating of a TWE

2 All Goals Goal; (3)

R(TWE,) = number of Goals’

The weighting of metrics (assigning different importance
to some metrics) is subjected to several potential risks [32]
that can distort the assessment result. We decided to do just
a simple averaging of metrics. Offering to readers of the
assessment results a preferred level of granularity provides
a more informative source of details about the assessed
FLOSS project. We are considering also additional weighting
mechanisms, but for an empirically supported mechanism
we need a large set of assessment data which will be collected
with a larger usage of the model.

The overall rating can be calculated to:

(i) identify the OMM maturity level of the FLOSS
project,

Advances in Software Engineering 7
TaBLE 1: Mobile OS project assessment results for the project documentation (PDOC) Trustworthy element.
PDOC: Project documentation 211
Purpose: Develop and maintain project documentation, making it readily accessible to the community.
Goal/practice Goal/practice description
Goal PDOC 1 Provide high quality documentation 2.67
Practice PDOC-1.1 Create development documentation 3
Check the availability of requirements specification 3
Check the availability of high level design/product architecture 4
LookFor Check the availability of detailed design 3
Check the availability of technical documentation (e.g., for use in debugging) 2
Check the availability of workflow guidelines (for checking, testing...) 4
Practice PDOC-1.2 Create user documentation 3
LookFor Check the availability of a user’s guide 3
Check the availability of FAQ documents 3

(ii) to identify the percentage of implementation of
specific TWEs or goals.

The calculation of the maturity level is not performed by
aggregating the values of TWEs in that maturity level but by
using (4):

Calculation of the OMM Maturity Levels

zAll practices b;
max zAll practices P;

R(ML) = (4)

There are two possible outcomes:

(1) OMM Level fulfilled: R(ML) = 90%,
(2) OMM Level not fulfilled: R(IML) < 90%.

There can be differences between FLOSS development
processes, therefore the assignment of the OMM maturity
level allows flexibility. For specific FLOSS projects some
practices can be of limited importance and the project is
not implementing them. The project can be otherwise of
high quality but because of just few not important practices
it would not reach a specific maturity level. By assigning
a maturity when fulfilling 90% of practices, the approach
provides some flexibility. The OMM model can be used
for assessing different FLOSS projects, therefore it is not
convenient to have a rigid set of practices that have to be
tulfilled in all types of FLOSS projects. By using (4), a FLOSS
project can fulfil an OMM maturity level if it implements
more than 90% of practices required for the specific level.

4. The OMM Assessment Process

There are two possible assessment approaches envisioned by
OMM:

(1) a complete (internal) OMM assessment where in the
assessment process participate individuals who have
access to all documents of the assessed project, and

(2) a partial (external) OMM assessment where the
assessors assess only documents available: on the web,
in mailing lists, in forums, in the source code, and so

forth.

The first approach is intended for companies or organi-
zations that want to integrate the assessed FLOSS tool with
their software products or they want to start contributing to
the FLOSS project. The first approach is also appropriate for
companies that have started a software project and they wish
to monitor its development. The second approach is more
common for individuals who are interested just in the overall
quality or in few specific quality aspects of the assessed soft-
ware project.

FLOSS projects usually publish their documents on the
web, however it is still not always possible to find information
about the project development process, as for example some
architectural decisions. This is especially the case for FLOSS
projects that are strongly supported by a software company.
Many decisions and activities, in this type of projects, are
taken according to companies’ rules and these information
are often not publicly available on the web.

The OMM assessment is done by using the assessment
questionnaire covering all TWEs. Each element has to be
assessed or identified as not applicable (for few cases). It is
not necessary to rate all metrics, however they should be
taken in consideration when assessing practices to which
they belong. All practices have to be assessed for obtaining
a complete OMM assessment.

The assessment team reviews relevant documents and the
information related to the assessed practice and has to meet
an agreed assessment value. After reviewing the available
documents and listening to the descriptions of the repre-
sentatives of the FLOSS project, the assessor proposes the
assessment value based on assessment rules and assessment
best practices. If the project representatives do not agree with
the assessment value they can object and present missing
documents or explanations. The last assessment should be
agreed between assessors. All the documents used during
the assessment should be collected and archived as source of
information for the assessment. Documents reviewed during

the OMM assessment are numerous, ranging from: the doc-
umentation available on the web, to bug/issue reports, the
concurrent versioning system logs, the mailing list archives,
the forum archives, the software code itself, and so forth.
Most of the information needed for assessing a FLOSS
project are available online. In FLOSS projects led by com-
panies few documents can be restricted and they cannot be
published, however for a complete assessment the assessment
team should be able to evaluate them.

5. Case Studies Design

We present the results of six case studies performed on
six FLOSS projects. We will use the following names to
refer to the projects: the Mobile OS Project, the Network
Monitoring Project, the Business Intelligence Project, the
Apache community Project, the SourceForge community
project, and the Mozilla community Project. The first three
projects were started by three software companies that still
have a leading role in the assessed FLOSS projects. Their
developments have been strongly influenced by decisions
taken by the three companies. The contributions from the
FLOSS community have grown slowly. The second three
projects are typical examples of community grown projects
hold in three different FLOSS projects web available reposito-
ries. The studies presented are not proper “Yin” case studies
but detailed inspections of software products and software
development processes. The assessments were conducted
by the designers of OMM together with people who are
involved in the assessed projects. The three companies
might use recognised assessment schemes such as 1ISO9001,
ISO15504, or CMMI for their development, however none
of these addresses FLOSS specific characteristics. The OMM
assessment of the three community grown projects were
conducted by the OMM designers with the help of master
students.

For the studies, we used two slightly different assess-
ment scales; for assessing the Business Intelligence and the
Network Monitoring projects we used a three-levels scale
(1-3), while when assessing the other projects we decided
to extend the scale to four levels (1-4). We have to take
in consideration this difference when comparing the results
of the six assessments. The comparisons we do between
the projects are limited to a simple observation of which
project obtained better grades for specific characteristics. The
difference of scales prevents us to do detailed comparisons,
however, this was not the purpose of this study. We just
assessed the projects for demonstrating the use of OMM,
and we present the results in common tables. We decided
to change the scale from three levels to four to study the
precision of the assessment results. The only difference is
in the middle value 2 that was split with the new scale
into two values: 2 and 3. In the new scale (1-4) value 1
is still 1 and value 3 became 4. By splitting the middle
threshold value into two thresholds assessors can specify if a
metric is above (obtaining a 3) or bellow (obtaining a 2) the
average implementation of the assessed metric. For a direct
comparison of assessed values from all projects we have to

Advances in Software Engineering

normalize the values. The normalized assessment values are
presented in Table 2.

The OMM assessment process usually lasts from 5 to 12
hours for larger FLOSS projects. In our case, the shortest
assessment time was needed for the Mobile OS project that
was finished in 5 hours, and the longest time was necessary
to assess the Business Intelligence project that was finished in
10 hours. The time necessary for the assessment is shortened
if the participants of the assessment team coming from
the assessed FLOSS project prepare for the assessment by
reading the OMM questions and preparing the documents
and figures required during the assessment.

During the assessment of industry based projects there
were participants from the team that built OMM and one or
more participants from the assessed FLOSS project. During
the assessment the OMM questionnaire was used. The cre-
ators of OMM were reading the questions and the members
of the FLOSS project provided answers and when available
showed documents and data to confirm their answers. Based
on the previous experience of assessors with the assessment
of other FLOSS projects and the documentation presented,
a grade was assigned for each characteristic measured by
OMM. The final grade was agreed inside the assessment
team. At the end of the assessment the values were aggregated
and the figures on different levels of granularity were
calculated. The assessment team prepared a consolidated
report with analysis of the assessments and improvement
suggestions for the FLOSS project. The members of the
assessed industry started FLOSS project had to review the
final assessment and to confirm the results.

5.1. The Mobile OS Project. The company developing the
Mobile OS Project was founded in 2002. The company has
grown to be an important mobile open source market player
with millions of downloads. It offers solutions based on a
dual license; the commercial software is used by companies
in the mobile industry, including software firms, device
manufacturers, service providers, system integrators, and
others. Currently it employees 85 professionals.

The Mobile OS project was started in the same year as the
company and it represents its key product.

5.2. The Network Monitoring Project. The company develop-
ing the Network Monitoring Project was founded in 1993.
From the beginning it was focused on the integration and
development of the information infrastructure for science.
It is implementing innovative technologies for the national
scientific network of a large European country. Currently it
employees 250 specialists.

The Network Monitoring project was started in 2006 and
it is one of several projects run by the company.

5.3. The Business Intelligence Project. The company develop-
ing the Business Intelligence Project was founded in 1980. It
is a multinational software integrator with 6300 employees
distributed in several countries worldwide. Its core business
is innovation in the ICT sector specialised in activities as
applied software research. The company is an international

Advances in Software Engineering

TasLE 2: Normalized assessment results of OMM trustworthy elements for all six projects.

Apache

OMM . Network Business . SourceForge Mozilla
trustworthy Mobqe 08 monitoring/inventory intelligence comm'umty community community
element project project suite project project project project
PDOC 2.11 2 1.89 1.89 2.89 2.89
STD 3.38 1.5 2.25 3 2.83 2.17
QTP 2.6 1.9 1.3 1.8 1.6 2
LCS 3.78 1.22 2.67 3.86 2.86 2.43
Basic ENV 2.83 2.42 2.33 2.67 2.33 3
OMM level DECT 2 1.8 1.8 1.78 3 2.22
MST 3.17 2.17 1.5 1.8 3.4 2
CM 3.43 2.43 2.57 2.43 3 2.14
PP1 3.22 2.33 2.11 1.67 2.11 1.44
REQM 3.5 2.25 1.75 1.25 2.75 1.75
RDMP 3.33 2.67 1.67 1 3 2.67
RDMP2 1.33 2 1 1 4 1
STK 3 1.4 1.3 1.7 2.4 1.6
Intermediate PPQA 2.67 1.67 1 1.5 1.67 1.5
OMM level PMC 3.63 2 1.63 1.5 2.13 1.75
TST 1 3 2.25 1.38 1.25 2.38 1.38
DSN 1 3.25 1.75 2.25 1.5 2.25 2
PP2 3.6 1.4 1.2 1.4 2 1.6
CONT 1.67 1 1.5 1.67 2.17 1.83
RASM 2.22 1.11 1.67 1.11 2 1.44
Advanced REP 3.2 1.6 1.6 2 2 2.6
OMM level PI 3.56 2.22 1.67 1.78 1.89 2.33
DSN 2 2.86 2.14 1.71 1.43 221 1.79
RSKM 1 1.29 1.57 1 1.29 1.14
TST2 3.6 2.4 2 1.2 2.6 2

player and the third IT operator in a large European country.
Its work is focused on the software value chain.

The Business Intelligence project was started in 2005 and
it represents only a small segment of the work performed by
the company.

5.4. The Apache Community Project. The Apache community
is part of the Apache Software Foundation (ASF) that was
established in 1999. The community has grown to be an
important supporter of the FLOSS development and it holds
currently more than 100 FLOSS projects. Some of them
are key building blocks of the FLOSS software suites as the
Apache http web server.

The assessed FLOSS project was started in the year 2000
and is an important component for software developers. In
the last years it has reached maturity and its development is
mostly dedicated to maintenance activities.

5.5. The SourceForge Community Project. The SourceForge
was for several years the largest web available repository of
FLOSS projects. It offers several tools for FLOSS development

and it holds at the moment more than 400.000 FLOSS
projects. There is not a unique SourceForge community;
there are thousands of small communities that form around
single projects. However, they usually use the available tools
and some developers participate in more than one project.
The service was established in the year 1999 and it soon
attracted thousands of participants.

The assessed project is a free and open source instant
messaging application. The project was started in the year
2005 and it is still evolving.

5.6. The Mozilla Community Project. Mozilla is a global
nonprofit organization connecting users, contributors, and
developers contributing to more than 240 projects. Some of
them popular as the Firefox web browser or the Thunderbird
mail client. The Mozilla was created in the year 1998 with the
release of the Netscape browser source code.

The assessed project was first released in the year 1998
and since than it is a popular tool for bug/issue management
used by software developers.

10 Advances in Software Engineering
TaBLE 3: Number of OMM practices reaching a specific threshold level.

OMM . NeFWOFk Business Apache SourceForge Mozilla
trustworthy MObl!e 08 momtormg/ intelligence community community community

element project 1nver%t0ry suite project project project project

project
Trjasl}:l‘;ld 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
PDOC 2 4 3 0 2 5 2 0 2 6 1 O 4 2 3 0 2 0 4 3 0 2 6 1
STD 0O 2 1 5 4 4 0 0 2 2 4 0 1 1.1 3 0 3 1 2 1 3 2 0
QTP o 6 2 2 2 4 3 0 7 3 0 0O 3 6 1 0 6 2 2 0 1 8 1 0
LCS o1 o0 8 7 2 0 O O 3 6 0O O O0O1 6 1 2 1 3 2 2 1 2
Basic ENV o 1 5 o0 o0 3 2 O O 4 2 0 0 3 2 1 1 3 1 1 0o 1 4 1
OMM level DFCT 0 5 0 0 2 2 1 0 2 2 1 0 4 32 0 0 3 3 3 1 5 3 0
MST 0o 1 3 2 1 3 2 0 3 3 0 O 1 4 0 0 0 1 1 3 0 5 0 O
CM 0 0 4 3 1 2 4 0 1 1 5 0 1 3 2 1 1 2 0 4 1 4 2 0
PP1 0 2 3 4 0 6 3 0 1 6 2 0 4 4 1 0 4 1 3 1 5 4 0 0
REQM o o0 2 2 0 3 1 0 1 3 0 0 3 1 0 O 0 2 1 1 1 3 0 O
RDMP 0 0 2 1 0o 1 2 0 1 2 0 0 3 0 0 O 1 0 0 2 0 1 2 O
RDMP2 21 0 0 0 3 0 0 3 00O O 3 0O O O O OO 3 3 000
STK o 2 6 2 4 2 2 0 7 3 0 O 4 51 0 1 3 3 2 4 6 0 O
Intermediate PPQA 0O 1 2 0 1 2 0 0 3 0 O O 3 3 0 O 2 4 0 O 3 3 0 O
OMM level PMC 0O 1 1 6 0 80 0 3 50 0 5 2 1 0 2 33 0 3 410
TST 1 1 21 4 0 6 2 0 5 3 0 0 6 2 0 O O 5 3 0 o6 1 1 O
DSN 1 0 0 3 1 1 30 0 1 1 2 0O 2 2 0 O 1 2 0 1 0 4 0 O
PP2 o o0 2 3 3 2 0 0 4 1 0 O 3 2 0 0 2 1 2 0 2 3 0 O
CONT 2 4 0 0 6 0 0 O 4 1 1 0 2 2 0 1 2 1 3 0 2 3 1 0
RASM 31 5 0 8 1 0 0 3 6 0 O 8 1 0 O 3 4 1 1 5 4 0 0
Advanced REP 0 0 4 1 311 0 2 3 0 O 1 3 1. 0 0 2 2 0 0 2 3 0
OMM level PI 0 0 4 5 2 3 4 0 4 41 0 3 5 1 0 4 3 1 1 0 6 30
DSN 2 o 4 8 2 2 8 4 0 6 6 2 0 94 1 0 2 7 5 0 4 9 1 0
RSKM 7 0 0 0O 5 2 0 0 3 4 0 0 7 O0OO0OO0O 5 2 0 0 6 1 00
TST2 o o0 2 3 0 3 2 0 1 31 0 4 1 0 0 O 3 1 1 O 5 0 O
6. Results threshold value 4 is valid for the Mobile OS project and

Table 1 presents the assessment results of the first Goal
(PDOC 1: Provide High-Quality documentation) of the
Project documentation TWE for the Mobile OS project.
We present the complete results for one TWE. We have
assessed the metrics (“LookFors”) and the practices and
calculated the goals and the TWEs. The OMM allows both
a staged and a continuous assessment approach. We used the
second approach where all OMM elements are assessed. We
decided to assess elements from all three maturity levels to
have a good understanding of basic and advanced practices.
The final value for the Project documentation (PDOC)
TWE of the Mobile OS project is 2,11 which means that
the aspects related to product documentation are averagely
addressed by the project and improvements are possible. We
see that some aspects related to the project documentation
are appropriately addressed by the Mobile OS project,
others needs improvement. Table 2 shows the normalized
assessment results for all six projects. In Table 3 we see the
assessment results of practices for the assessed projects. The

for the three community based projects. The Networking
Monitoring and the Business Intelligence projects have a
0 for all practices in the last column (4*). Table 3 is the
aggregation of the assessment results for the six projects.
Since we are validating the OMM, we grouped results of all
projects to be able to compare them. Figures 5, 6, and 7,
and Table 3 provides an overview of which practices have
to be improved in each FLOSS project. We present detailed
results for each project separately in the following sections.
We describe just the elements that obtained good and bad
assessments for each of the six projects.

6.1. The Mobile OS Project. Figures 2, 3, and 4 present
the basic, intermediate, and advanced OMM levels for the
Mobile OS project. Figures 5, 6, and 7 present the percentage
of practices reaching a specific-threshold assessment value
(1-4). The TWEs that have a large percentage of practices
assessed with a value 3 or 4 represent good coverage of TWEs
by the FLOSS project. The TWEs with a large percentage

Advances in Software Engineering

OMM basic level
Trustworthy elements assessment

4 378

Q
E
<
>
o
g
g
<
O e R R Z = R R~ -~ B B =
= Q &) %) =9
2 % 5 = 4z 2 0 & g2z
& S 2 &
Trustworthy elements
FIGURE 2: Mobile OS project OMM Basic level results.
OMM intermediate level
Trustworthy elements assessment
4
3.63 3.6
L
2
<
>
9
2
g
<

RDMP2 STK PPQA PMC TST1
Trustworthy elements

DSN1 PP2

FIGURE 3: Mobile OS project OMM Intermediate level results.

of practices assessed with values 2 or 1 represent FLOSS
development processes that should be additionally improved
by the FLOSS project.

In the second column of Table 2 we see the assessment
results for the mobile OS project trustworthy elements.

Basic Level. The project obtained high grades for: the
aspects related to the consistent adoption and management
of licenses (LCS 3,78), the management of requirements
(REQM 3,5), and the configuration management (CM 3,43).
Low values were obtained by: the TWEs related to commits
and bug reports (DFCT 2,0), and the documentation (PDOC
2,11).

Intermediate Level. Three best assessed trustworthy elements
were: the project monitoring and control (PMC 3,63), the
project planing (PP2 3,6), and the design of the product
(DSN1 3,25). A low value was obtained by the advanced
elements of the roadmap (RDMP2 1,33).

Advanced Level. The project obtained good assessments for:
the advanced testing (TST2 3,6), the product integration
(PI 3,56), and the reputation of the project (REP 3,2). Poor
results obtained two TWEs: the risk management (RSKM
1,0) and the contributions from external developers (CONT
1,67).

11
OMM advanced level
4 Trustworthy elements assessment
3.56 3.6
3.2

L
5 3 2.86
= 3
>
3 222
3
2 27 167

CONT RASM REP PI

DSN2 RSKM TST2
Trustworthy elements

FIGURE 4: Mobile OS project OMM Advanced level results.

From Figures 5, 6, and 6 we see how many practices
obtained good or poor assessments. The assessment value
of a trustworthy element displayed in Table 2, and the
percentage of practices obtaining a specific assessment value
are related. For the Mobile OS project we see that in the:

Basic Level. There are 2 practices assessed with the value
1 only in the product documentation trustworthy element
(PDOC). 6 practices in the quality of the testing plan (QTP)
and 5 practices in the number of commits and bug reports
(DFCT) TWE were assessed with the value 2. The highest
grades were obtained for the adoption and management
of aspects related to licenses (LCS) where 8/9 (8 out of 9
practices assessed in LCS) obtained the highest assessment
value 4.

6.2. The Network Monitoring Project. We present the results
for the other five Projects in the compact form of a table,
nevertheless the graphical representation is easier to be
interpreted.

In Table 2, we see the normalized results of the assess-
ment of trustworthy elements. In this section, we describe the
raw assessment data before the normalization.

Basic Level. Good results were obtained by: the roadmap
(RDMP 2,67), the configuration management (CM 2,43),
and the environment adopted (ENV 2,42). Poor results were
obtained by: the standards implemented (STD 1,5) and the
adoption and management of license aspects (LCS 1,22).

Intermediate Level. Only the testing trustworthy element
obtained a good result (TST1 2,25) but there are three poor
results: the stakeholders involvement (STK 1,4), the project
planning (PP2 1,4), and the product and process quality
assurance (PPQA 1,67).

Advanced Level. The advanced testing aspects were addressed
appropriately (TST2 2,4) and partially also the project inte-
gration (PI 2,22). There are several aspects that are almost
not addressed by the project, as: the external contributions
to the project (CONT 1,0), the assessment of the project
by external entities (RASM 1,11), and the risk management
aspects (RSKM 1,29).

12 Advances in Software Engineering
OMM basic level
Practices assessment value
14
2 _
£ 10 — :
o | 0%
b
S 8- ,
= — . . . 0%
€§ 6 . 09 004 .
% — - |57% 3%
g 2] 20 83% ' '
é 7] 33%
0 — b
PDOC STD QTP LCS ENV DFCT MST CM PP1 REQM RDMP
Trustworthy elements
[o2 O3 | 4
F1GURE 5: Mobile OS project OMM Basic level single practices threshold values.
OMM intermediate level OMM advanced level
Practices assessment value Practices assessment value
E 14 T E 14 T
g 127 g 127
g g,
£10 5410 ~
3 - 5 |
£ 87 El
= - = |
L
1] £ 47
g 24 g 2
< 0 - < 0 -
RDMP2 STK PPQA PMC TST1 DSN1 PP2 CONT RASM REP PI DSN2 RSKM TST2
Trustworthy elements Trustworthy elements
(S @2 o3 w4 |1 o2 o3 |4

FIGURE 6: Mobile OS project OMM Intermediate level single
practices threshold values.

In Table 3, we see results related to good- and poor-
assessed practices.

Basic Level. Configuration management (CM) with 4/7
(four out of seven) practices, and the roadmap (RDMP) with
2/3 practices obtained the highest possible value (3). There
are many poor values as: the standards implemented by the
project (STD) with 4/8 practices and the management of
licenses (LCS) with 7/9 practices that obtained the value 1.

Intermediate Level. There is only the testing TWE (TST1)
with all practices assessed with the values 2 and 3. Poor values
were obtained by: the stakeholders involvement (STK) with
4/8 practices assessed with 1, the product and process quality
assurance with all three practices assessed with either value
1 or 2, and the product plan TWE (PP1) with 3/5 assessed
with 1.

Advanced Level. There is only the testing TWE (TST2) that
fulfilled the majority of available practices. There are four

FIGURE 7: Mobile OS project OMM Advanced level single practices
threshold values.

TWEs that have to be improved: the contribution (CONT)
practices were not addressed at all by the project 6/6 obtained
1, external assessments of the project (RASM) 8/9 practices
obtained 1, for the reputation of the project (REP) 3/5
practices obtained 1, and the risk management (RSKM) was
addressed only marginally with 5/7 practices with 1.

6.3. The Business Intelligence Project. Some interesting results
for the Business Intelligence project are presented in the
following paragraphs. First we present the results for trust-
worthy elements.

Basic Level. Aspects as management of licenses (LCS 2,67),
configuration management (CM 2,57), and development
environment used (ENV 2,33) obtained relatively good
results. Two TWEs with low assessment values were: the qual-
ity of the testing plan defined (QTP 1,3) and maintainability
and stability (MST 1,5).

Intermediate Level. The Business Intelligence project
obtained only one good assessment result; the design TWE

Advances in Software Engineering

(DSN1 2,25). Other TWEs obtained poor results; the lowest
were: the advanced roadmap (RDMP2 1,0), the Product
and Process quality assurance (PPQA 1,0), and the process
planing (PP2 1,2).

Advanced Level. The assessment values for most of the
TWEs were similar; Advanced testing (TST2 2,0) obtained
the highest value, and the contribution level (CONT 1,5)
obtained the lowest value.

From Table 3, we see that the Business Intelligence
project reached a good fulfilment of practices mainly in the
basic level.

Basic Level. Standards implemented (STD) 4/8 obtained the
value 3, management of licenses (LCS) 6/9 with the value
3, and configuration management (CM) 5/7 with value 3.
The TWE:s that can be still improved are: the quality of the
testing plan (QTP) 7/10 practices obtained 1, the number of
commits and bug reports (DFCT) with the 4/5 values with
the value 1 or 2, and the maintainability and stability (MST)
with 3/6 practices assessed with 1.

Intermediate Level. Only design (DSN1) obtained a larger
part 2/4 of practices assessed with 3. Other TWEs obtained
poor values; 3/3 for the advanced roadmap (RDMP2), 7/10
for the stakeholders involvement (STK), and 3/3 for the
product and process quality assurance (PPQA), practices
were assessed with 1.

Advanced Level. Only the testing TWE (TST2) has a rela-
tively large percentage of practices 4/5 assessed with values
2 or 3. The majority of the practices were assessed with value
1.

6.4. The Apache Community Project. The results for the
Apache community project are presented in the following
paragraphs. The results for trustworthy elements are the
following:

Basic Level. The management of licenses (LCS 3,86) is
almost optimal, the configuration management (CM 2,43),
the development environment used (ENV 2,67), and the
standards implemented (STD 3,0) obtained good results.
Two TWEs with low-fourassessment values were: the
requirements management (REQM 1,25) and the roadmap
availability (RDMP 1,0).

Intermediate level. The project obtained only intermediate
results in the second OMM level. Only the stakeholders
involvement (STK 1,7) obtained some positive practices
assessments. Other TWEs obtained poor results; the lowest
were: the advanced roadmap (RDMP2 1,0), and the basic
testing aspects (TST1 1,25).

Advanced Level. The assessment values for most of the TWEs
were similar; The project’s reputation obtained the best value
(REP 2,0). Advanced testing (TST2 1,2), the results of third-
party assessment (RASM 1,11), and the risk management
(RSKM 1,0) obtained low assessment results.

13

From Table 3 we see that the Apache community project
reached a good fulfilment of practices only in the basic level.

Basic Level. Standards implemented (STD) 3/6 obtained the
value 4, and the management of licenses (LCS) 6/7 with
the value 4. The TWEs that can be still improved are: the
number of commits and bug reports (DFCT) with the 4/9
values with the value 1, the product documentation (PDOC)
with 4/9 with the value 1, and the project planning 1 (PP 1)
with 4/9 obtaining the value 1. Several other practices can be
addressed to increase the basic OMM quality of the Apache
community project.

Intermediate Level. Only the stakeholders involvement
(STK) and the project monitoring and control have obtained
a 3 for one practice. The rest of practices have been assessed
either with a 1 or 2. This means that the project should still
work on the improvement of the intermediate level practices.

Advanced Level. The contributions TWE (CONT) have
obtained one practice assessed with the highest grade. The
rest of the practices obtained poor assessments.

6.5. The SourceForge Community Project. The results for the
SourceForge community project are.

Basic Level. Four TWEs obtained good results in the basic
level; the number of commits and bug reports (DFCT
3,0), the maintainability and stability (MST 3,4), the con-
figuration management (CM 3,0), and the basic roadmap
(RDMP 3,0). Several other TWEs obtained relatively good
assessments. A problematic aspect was only the quality of the
testing process (QTP 1,6) that was not addressed sufficiently
inside the assessed SourceForge project.

Intermediate Level. The advanced aspects of the roadmap
(RDMP2 4,0) obtained an excellent result. A problematic
aspect of the intermediate OMM level was the process and
product quality assurance (PPQA 1,67).

Advanced Level. The advanced testing aspects (TST2 2,6)
obtained the highest grade in the advanced level. The worst
result was obtained by practices of the risk management
TWE (RSKM 1,29).

From Table 3, we see that the SourceForge community
project reached a good fulfilment of practices in the basic level
and just few in the intermediate level.

Basic Level. Many practices obtained the highest grade in
the basic OMM level; the Project Documentation (PDOC)
3/9, the Licenses management (LCS) 3/7, the Number of
commits and bug reports (DFCT) 3/9, the Maintainability
and Stability (MST) 3/5, and the Configuration Management
(CM) 4/7 aspects were addressed optimally by the assessed
SourceForge project. More than half of the practices of the
Quality of the testing plan (QTE) 6/10 TWE obtained, on
contrary, the lowest grade and should be better addressed by
the project’s community.

14

Intermediate Level. The advanced aspects of the roadmap
(RDMP2) 3/3 were optimally addressed. Apart the Stake-
holders involvement (STK) all other TWEs have a below-the-
average assessment value of the practices and can therefore be
additionally improved.

Advanced Level. In the advanced level the practices obtained
poor assessment results. Just the Contributions (CONT)
3/6 obtained the assessment value of 3, and the Reputation
(REP) 2/4 practices obtained the assessment value of 3 were
assessed with average assessment values. The other TWEs
were assessed below the average and should be further
improved.

6.6. The Mozilla Community Project. Some significant results
for the Mozilla community project are presented in the
following paragraphs.

Basic Level. Only the Product documentation (PDOC 2,89),
the environment (ENV 3,0) and the basic roadmap TWE
(RDMP 2,67) obtained an above-the-average grade. All the
other TWEs were not well addressed by the project. The basic
aspects of product planning, project planning (PP1 1,44)
obtained the lowest assessment result.

Intermediate Level. The intermediate level TWEs obtained
poor assessment result. The worst assessed TWEs were the
advanced roadmap aspects (RDMP2 1,0), and the basic
testing (TST1 1,38).

Advanced Level. The advanced TWEs were assessed just
slightly better than the intermediate TWEs. The best result
was achieved by the reputation TWE (REP 2,6). Two TWEs
that should be improved by the project are the third-
party assessment results available on the web (RASM 1,44)
and the risk management (RSKM 1,14) by the community
developing the project.

From Table 3, we see that the Mozilla community project
reached an above-average fulfilment of practices just in the
basic level.

Basic Level. The product documentation (PDOC) 6/9
obtained the value 3, the Environment (ENV) 4/6 obtained
the value 3, and the basic Roadmap practices (RDMP) 2/3
obtained the value 3, were assessed above the average. The
other practices obtained the assessment value 1 or 2. The
basic aspects of Product Planning, Project Planning (PP1)
can be still much improved since 5/9 practices obtained the
assessment value 1.

Intermediate Level. Just two practices of all assessed in the
intermediate level obtained the value 3 and none obtained a
4. The advanced roadmap (RDMP2) 3/3 obtained the value
1, and the basic-testing practices (TST1) 6/8 obtained the
value 1, should be improved by the developers.

Advanced Level. Three practices of the reputation (REP) and
the Product Integration (PI) TWEs were assessed with the
value 3. No practice of the advanced OMM level was assessed

Advances in Software Engineering

with a 4. The community should focus on the third-party
assessment (RASM) practices where 5/9 obtained the lowest
assessment value and the risk management (RSKM) TWE’s
practices where 6/7 obtained the assessment value 1.

7. Discussion

Based on the results we can identify aspects of the FLOSS
development process that were not addressed sufficiently
by the assessed projects. By aggregating all practices values
for each project using (4); the Mobile OS project obtained
the total value 2,88 (72%), the Networking Monitoring
project obtained 1,88 (63%), the Business Intelligence
project obtained 1,73 (58%), the Apache community project
obtained 1,73 (43%), the SourceForge community project
obtained 2,43 (61%), and the Mozilla community project
obtained the aggregated assessment value of 1,95 (49%).
The values in brackets present the percentage of the reached
assessment value normalized by the highest possible assess-
ment value; the percentages normalize the results for the
assessments removing the differences related to the two-
assessment scales used.

Critical TWEs in the Mobile OS project are the product
documentation (2,11), the development environment (2,83),
the number of commits and bug reports (2,00), and the
testing (2,60). Those TWEs should be first improved since
they are part of the Basic OMM level and as described
in Section 2 they are perceived as important by a large
percentage of potential FLOSS stakeholders. There are other
aspects that the Mobile OS project should improve, but, since
they are not part of the Basic OMM level, their improvement
can be done after the Basic-level TWEs are addressed.

Comparing the six assessments we see that the Mobile OS
project obtained the highest overall rating; the assessment
results (taking in consideration different scale levels) are
considerably higher than for the other industry led projects
started later (2005 and 2006) but also higher than for the
three community led projects that have started few years
before the Mobile OS project. An explanation can be the
importance of the assessed FLOSS project for the company.
While the Mobile OS project is the key product of the
first company and the main source of revenues, the other
two company-led projects are just one of many projects
developed by the two companies and are not critical for
their business. This argument holds also for the community-
led projects. The communities dedicate effort for the project
but they are usually not constrained by strict deadlines and
quality controls as an industry-led FLOSS project. Another
reason is that the company involved in the Mobile OS project
is more aware of FLOSS aspects addressed in OMM (as the
reputation and the use of open standards) than the other two
companies.

In all six cases there are several TWEs that obtained
low grades. The lowest assessment values were obtained by
the following TWEs (in brackets are the values for all the
projects): External contributions to the project (1,67; 1,0;
1,5; 1,67; 2,17; 1,83), the advanced Roadmap (1,33; 2,0;
1,0; 1,0; 4,0; 1,0), and the Risk management (1,0; 1,29;
1,57; 1,0; 1,29; 1,14), and so forth. The only exception is

Advances in Software Engineering

the advanced roadmap that was optimally addressed by the
assessed SourceForge community project. Some trustworthy
elements were graded better in the Mobile OS project and
partially in the three community-led projects than in the
other two industry projects; as for example the reputation
of the project (3,2; 1,6; 1,6; 2,0; 2,05 2,6). This result does
not surprise since the reputation usually grows with a longer
existence of a FLOSS project.

Differently from FLOSS focused TWEs, all three industry
projects cover well aspects addressed by traditional software
development TWEs as: the configuration management (3,43;
2,435 2,57; 2,43, 3,0; 2,14), the Product Planing (3,22; 2,33;
2,11; 1,67; 2,11; 1,44), and the testing (3,6; 2,4; 2,0; 1,2;
2,6; 2,0). We can see that the community-led projects
obtained lower assessment values for these TWEs. Other
TWEs obtained also high values in one or two projects
as: the licenses management that is appropriately addressed
by the Mobile OS (3,78) and the Business intelligence
(2,25) projects, and obtained a low value in the Networking
Monitoring project (1,22).

It is evident from the results that standard software
development process aspects regularly used in the software
industry are addressed appropriately by the three industry-
led FLOSS projects. These software aspects are characterized
by the following TWEs: the configuration management
(CM), the product plan (PP1), the basic testing (TST1),
the basic design (DSN1), the advanced testing (TST2), and
the advanced design (DSN2). The software development
processes used in the three companies leading a FLOSS
project are used also in this kind of projects. Some FLOSS
specific aspects as: the external contributions to the project
(CONT), the reputation of the project (REP), and the stake-
holders involvement (STK) on contrary are not addressed
sufficiently by the industry-led projects but are in general
better addressed by the three community-led projects.

Table 3 presents the level of fulfilment of all practices
for each Trustworthy element. One result of the OMM
assessment process conducted is a set of improvement
suggestions for the assessed projects. If we mention just the
TWEs that have to be improved first by each project we can
say that:

(i) the Mobile OS project should focus first on the
quality of the documentation (PDOC);

(ii) the Networking Monitoring project on the manage-
ment of Licenses (LCS); the Business intelligence
project on the quality of the testing plan (QTP);

(iii) the Apache community project on the practices of the
basic roadmap (RDMP);

(iv) the SourceForge community project on the quality of
the testing plan (QTP);

(v) the Mozilla community project on the basic Product
Planning, Project Planning (PP1).

According to OMM only after improving the basic level
practices the projects should focus on higher level practices.

15

8. Threats to Validity

The main type of threats faced in our research are internal.
The OMM model itself is subjected to construct validity
threats: are we really measuring what the metrics in the
OMM are supposed to measure. The threats described in
this section are of these two types. Due to the limitation of
our research, to three industry-led and to three community
initiated FLOSS projects, we cannot generalize the results to
all FLOSS projects, therefore we did not consider particularly
the external threats to validity.

An important threat to validity of our study is the
subjectivity of the assessment process. Different assessors
can interpret questions in a slightly different way and
therefore provide a different assessment result. This problem
is intrinsic to other software assessment methodologies as
the OpenBRR, the QSOS, but also to the CMMI. There
are however a series of measures adopted to minimise the
subjectivity of the assessment process. The most important
are: the standard and homogeneous formulation of questions
throughout the whole model; the extent of the development
process or documentation material that have to be analysed
to evaluate each question (questions are precise and limited
to one or few information sources); in the assessment process
participate two or more experts that should meet a common
assessment result. These are three elements mitigating the
subjectivity of the assessment. From experiments conducted
by comparing assessment results of several individuals
assessing the same process activities, it is evident that the
variability of assessment results is small [6].

An additional approach to mitigate the threat to validity
related to subjectivity of the assessment is the expertise
of assessors. The OMM model is new and therefore none
of the participating assessors have a vast experience with
its usage, however they were knowledgeable with CMMI
assessments that inspired many design decisions related to
the OMM model. Participants of the assessments were also
people involved in the development of the assessed FLOSS
project. They provided support when searching the needed
documentation and indicating sources of information.

The time constraints of the assessment may have limited
the precise assessment of few practices that would benefit
from a tool support. The OMM model is improved once
per year; the major improvement efforts are focused on the
creation of tools that can automatically extract information
as for example: the number of license files, the number of
contributors, the type and the number of documentation,
and so forth. At the time of assessment of the six projects
we did not use assessment tools and we assessed all metrics
manually, this could present a threat to the completeness of
some metrics that require a tedious measurement process.
However the number of these metrics is limited and it does
not considerably influence the final assessment result.

9. Conclusions

The OMM assessment results can bring benefits to FLOSS
users and to FLOSS communities. The assessments can be
beneficial also to potential software integrators when they are

16

deciding to use a FLOSS product. The final goal of the OMM
is an improved quality of the FLOSS development process
and therefore also the quality of the FLOSS products.

In this paper we present the results of six development
process assessments of FLOSS projects that are led by three
different software companies and by three different FLOSS
communities. The study was performed using the OMM
model analysing 25 process characteristics. The result of
the assessment is the collection of values related to the
FLOSS development process. The assessment results were
aggregated on four levels of granularity; in this paper we
present only two of them: the level of OMM Trustworthy
elements presented in Table 2, and the level of OMM
Practices presented in Table 3, visualizing the number of
practices that were fulfilled in each threshold level.

The main result of the OMM assessment is the creation
of a detailed picture of 25 aspects of the FLOSS development
process. Tables and figures present a clear overview on
aspects that have to be improved to arise the quality of the
development process and subsequently the quality of the
FLOSS product. From the figures we see which TWEs were
insufficiently addressed by the assessed projects. Those TWEs
were:

(i) the number of commits and bug reports (DFCT),
(ii) the external contribution to the project (CONT),
(iii) the risk management (RSKM).

Based on the results, the assessed FLOSS projects should
check which practices, or more specifically, which documents
are not available inside the project (in the Mobile OS project
for example, a road map document should be created,
and the technical documentation must be improved—see
Table 1).

From the comparison of the results for the assessed
projects we observed that specific FLOSS aspects obtained
lower assessment results than standard software development
practices. We can also see that the project that exists longer,
both the industry-led and the FLOSS communities led,
obtained better results related to the aspect of reputation.
The Mobile OS project generically obtained better results
from the other assessed projects; it appropriately imple-
mented 72% of the 122 practices.

The results for the six studies demonstrate the applicabil-
ity of the OMM and describe the benefits that FLOSS projects
can have from the assessment. The validity of the research
results is limited to the six studies; however the assessment
process of a FLOSS project, either industry or pure FLOSS
communities supported, would be conducted following a
similar approach. The results of the study will bring concrete
benefits to the quality of the three industry-led FLOSS
development processes and it can suggest improvement
activities necessary for the three community-led projects.
The results of the first assessment are good indicators of
which practices should be improved.

We plan to conduct a second set of assessments of the
six projects after one year from the first assessment and
compare the improvements of the development process. In
the following months we plan to perform other assessments

Advances in Software Engineering

of well-known FLOSS projects. Our aim is to use the model
to assess a larger number of FLOSS projects where the leading
role is maintained by the FLOSS community. We plan to
compare those results with the one presented in this paper
and further confirm the validity of the OMM model.

Acknowledgments

The research was conducted in the scope of the QualiPSo
project (FP-IST-034763). The authors are grateful to all
QualiPSo partners that contributed to the creation of the
assessment model and the participants from the assessed
FLOSS projects.

References

[1] E. S. Raymond, The Cathedral and the Bazaar: Musings
on Linux and Open Source by an Accidental Revolutionary,
O’Reilly & Associates, 2001.

[2] T. Dyb4 and T. Dingseyr, “Empirical studies of agile software
development: a systematic review,” Information and Software
Technology, vol. 50, no. 9-10, pp. 833-859, 2008.

[3] A. Fuggetta, “Software process: a roadmap,” in Proceedings of
the Conference on the Future of Software Engineering (ICSE 00),
pp- 25-34, ACM, Limerick, Ireland, June 2000.

[4] Process Maturity Profile of the Software Community 1999 Year
End Update, Software Engineering Institute, 2000.

[5] E. Petrinja, R. Nambakam, and A. Sillitti, “Introducing the

opensource maturity model,” in Proceedings of the ICSE Work-

shop on Emerging Trends in Free/Libre/Open Source Software

Research and Development (FLOSS °09) collocated with 31st

International Conference on Software Engineering, pp. 3741,

Vancouver, Canada, May 2009.

E. Petrinja, A. Sillitti, and G. Succi, “Comparing OpenBRR,

QSOS, and OMM assessment models,” in Proceedings of the

6th International Conference on Open Source Systems (0SS ’10),

pp- 224-238, Notre Dame, Ind, USA, May 2010.

[7] Qualipso Consortium: QualiPSo—Quality Platform for Open
Source Software, http://www.qualipso.org/index.php.

[8] E. Petrinja, A. Sillitti, and G. Succi, “Overview on trust in large
FLOSS communities,” in Proceedings of the 4th International
Conference on Open Source Systems (OSS 08), pp. 47-56,
Milan, Italy, 2008.

[9] U. Raja and M. J. Tretter, “Defining and evaluating a measure
of open source project survivability,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 163174, 2012.

[10] M. Khalifa and J. M. Verner, “Drivers for software develop-
ment method usage,” IEEE Transactions on Engineering Man-
agement, vol. 47, no. 3, pp. 360-369, 2000.

[11] S.Matook and M. Indulska, “Improving the quality of process
reference models: a quality function deployment-based
approach,” Decision Support Systems, vol. 47, no. 1, pp. 60-71,
2009.

[12] T. L. Roberts, M. L. Gibson, K. T. Fields, and R. Kelly Rainer,
“Factors that impact implementing a system development
methodology,” IEEE Transactions on Software Engineering, vol.
24, no. 8, pp. 640-649, 1998.

[13] C. G. Von Wangenheim, J. C. R. Hauck, A. Zoucas, C. E.
Salviano, E. McCaffery, and F. Shull, “Creating software pro-
cess capability/maturity models,” IEEE Software, vol. 27, no. 4,
pp. 92-94, 2010.

E)

Advances in Software Engineering

(14]

(19]

(25]
(26]

(27]

(28]

(31]

S. C. Misra, V. Kumar, and U. Kumar, “Identifying some
important success factors in adopting agile software develop-
ment practices,” Journal of Systems and Software, vol. 82, no.
11, pp. 1869-1890, 2009.

E. Yourdon, “Where’s the basis for year 2000 optimism?”
Computerworld, vol. 32, no. 7, p. 68, 1998.

M. Agrawal and K. Chari, “Software effort, quality, and cycle
time: a study of CMM level 5 projects,” IEEE Transactions on
Software Engineering, vol. 33, no. 3, pp. 145-156, 2007.

M. Staples, M. Niazi, R. Jeffery, A. Abrahams, P. Byatt, and R.
Murphy, “An exploratory study of why organizations do not
adopt CMMI,” Journal of Systems and Software, vol. 80, no. 6,
pp. 883-895, 2007.

E. Guerrero and Y. Eterovic, “Adopting the SW-CMM in a
small IT organization,” IEEE Software, vol. 21, no. 4, pp. 29—
35, 2004.

A. Qumer and B. Henderson-Sellers, “A framework to support
the evaluation, adoption and improvement of agile methods
in practice,” Journal of Systems and Software, vol. 81, no. 11,
pp. 1899-1919, 2008.

M. C. Paulk, “Extreme programming from a CMM perspec-
tive,” IEEE Software, vol. 18, no. 6, pp. 1926, 2001.

C. G. von Wangeheim, A. Anacleto, and C. F. Salviano, “Help-
ing small companies assess software processes,” IEEE Software,
vol. 23, no. 1, pp. 91-98, 2006.

T. Dyb4, “Factors of software process improvement success in
small and large organizations: An empirical study in the scan-
dinavian context,” in Proceedings of the 9th European Software
Engineering Conference Held Jointly with 11th ACM SIGSOFT
International Symposium on Foundations of Software Engineer-
ing, pp. 148-157, ACM Press, September 2003.

G. B. Dietrich, D. B. Walz, and J. L. Wynekoop, “The failure of
SDT diffusion: a case for mass customization,” IEEE Transac-
tions on Engineering Management, vol. 44, no. 4, pp. 390-398,
1997.

Navica Inc., The Open Source Maturity Model is a vital tool
for planning open source success, http://www.oss-watch.ac.uk/
resources/osmm.xml#body.1_div.2.

Atos Origin, Method for Qualification and Selection of Open
Source Software (QSOS), 2009, http://www.qsos.org/.

A. Wasserman, M. Pal, and C. Chan, Business Readiness Rating
Project, BRR Whitepaper 2005 RFC1, http://www.openbrr.org/.
D. Taibi, L. Lavazza, and S. Morasca, OpenBQR: A Framework
for the Assessment of OSS, Open Source Software 2007,
Limerick, Ireland, 2007.

D. Izquierdo-Cortazar, G. Robles, J. M. Gonzalez-Barahona,
and J.-C. Deprez, “Assessing FLOSS communities: an experi-
ence report from the QualOSS project,” Open Source Ecosys-
tems: Diverse Communities Interacting, vol. 299, p. 364, 2009.
I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos, “The
SQO-0SS quality model: Measurement based open source
software evaluation,” IFIP International Federation for Infor-
mation Processing, vol. 275, pp. 237-248, 2008.

J.-C. Deprez and S. Alexandre, Comparing Assessment Method-
ologies for Free/Open Source Software: OpenBRR and QSOS,
Book chapter in Lecture Notes in Computer Science, Springer,
Berlin, Germany, 2008.

V. R. Basili, “Software modelling and measurement: the Goal/
Question/Metric paradigm,” Computer Science Technical
Report Series CS-TR-2956 (UMIACS-TR-92-96), University
of Maryland, College Park, Md, USA, 1992.

17

[32] S. Morasca, “On the use of weighted sums in the definition

of measures,” in Proceedings of the 2010 ICSE Workshop on
Emerging Trends in Software Metrics (WETSoM ’10), pp. 8-15,
ACM Press, May 2010.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

