Chapter 7)
Dynamic Application Autotuning ez
for Self-aware Approximate Computing

Davide Gadioli

Abstract The energy consumption limits the application performance in a wide
range of scenarios, ranging from embedded to High-Performance Computing. To
improve computation efficiency, this Chapter focuses on a software-level method-
ology to enhance a target application with an adaptive layer that provides self-
optimization capabilities. We evaluated the benefits of dynamic autotuning in three
case studies: a probabilistic time-dependent routing application from a navigation
system, a molecular docking application to perform virtual-screening, and a stereo-
matching application to compute the depth of a three-dimensional scene. Experi-
mental results show how it is possible to improve computation efficiency by adapting
reactively and proactively.

7.1 Introduction

The increasing demand for computation power shifted the optimization focus towards
efficiency in a wide range of energy-constrained systems, from embedded platforms
to High-Performance Computing (HPC) [1]. A promising way to improve energy
efficiency is approximate computing [2], which aims at finding a good enough solu-
tion, avoiding the unnecessary computation effort. It is possible to approximate the
computation at different levels: from approximate hardware [3] to software tech-
niques such as loop perforation [4]. Moreover, a large class of applications exposes
software parameters that define an accuracy-throughput trade-off, especially in the
multimedia field [5]. In this chapter, we focus at the software-level, where an appli-
cation exposes software-knobs [6] that can alter its extra-functional behaviour. In this
context, the definition of application performance includes several extra-functional
properties (EFPs) in conflict to each other.

The value of an EFP might depend on the underlying architecture configuration,
the system workload, and the features of the current input. Since this information
usually changes at runtime, it is not trivial to find a one-fits-all configuration of

D. Gadioli ()
Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Italy
e-mail: davide.gadioli @polimi.it

© The Author(s) 2020 91
B. Pernici (ed.), Special Topics in Information Technology, PoliMI SpringerBriefs,
https://doi.org/10.1007/978-3-030-32094-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32094-2_7&domain=pdf
mailto:davide.gadioli@polimi.it
https://doi.org/10.1007/978-3-030-32094-2_7

92 D. Gadioli

the application software-knobs at design-time. This is a well-known problem in the
autonomic computing field [7], where researchers investigate approaches to pro-
vide self-optimization capabilities to a target application, for identifying and seizing
optimization opportunities at runtime.

In this context, we propose a methodology to enhance an application with an
adaptation layer that exposes reactive and proactive mechanisms to provide con-
tinuously the most suitable software-knobs configuration according to application
requirements. The decision process is based on the application knowledge, which
describes the relationship between software-knob configurations and EFPs. It is pos-
sible to learn the application knowledge either at design-time, by using well-known
Design Space Exploration techniques [8], or at runtime by using an external compo-
nent that coordinates a distributed DSE [9]. The benefits of the latter approach are
the following: (1) the application can observe its behaviour with the same execution
environment of the production run, (2) it can leverage features of the production
input, and in the context of a distributed computation, (3) it can leverage the number
of application instances to lower the learning time.

‘We evaluate the benefits of the methodology implementation, named mARGOt, in
three real-world case studies. In particular, we use a stereo-matching application [5] to
assess the benefits of reactive adaptation mechanisms, with respect to changes of both
application requirements and performance. We use a probabilistic time-dependent
routing stage in a navigation car system [10] to evaluate the benefits of the proactive
adaptation mechanisms. Finally, we use a molecular docking application for virtual
screening, to assess the benefits of learning the application knowledge at runtime.

The remainder of the Chapter is organized as follows. First, Sect.7.2 provides
an overview of autonomic computing, focusing on application autotuning and high-
lighting the main contributions of the proposed methodology. Then, in Sect. 7.3, we
formalize the problem and describe the mARGOt framework. Section 7.4 discusses
the benefits of the proposed methodology. Finally, Sect.7.5 concludes the chapter.

7.2 Autonomic Computing and Application Autotuning

In the context of autonomic computing [7], we perceive a computing system as an
ensemble of autonomous elements capable of self-management. The main idea is to
enable the system to perform autonomously a task which is traditionally assigned
to a human, to cope with the increasing complexity of computation platforms and
applications. For example, if the system is able to incorporate new components
whenever they become available, the system has the self-configuration ability. To
qualify for the self-management ability, a system must satisfy all the related self-*
properties. How to provide these properties is still an open question and previous
surveys [11, 12] summarize the research effort in this area.

In this chapter, we focus on the self-optimization property at the software-level,
which is the ability to identify and seize optimization opportunities at runtime. The
methodologies to provide self-optimization properties are also known in the literature

7 Dynamic Application Autotuning for Self-aware ... 93

as autotuners. It is possible to categorize autotuners in two main categories: static
and dynamic.

Static autotuners aim at exploring a large space of software-knobs configura-
tion space to find the most suitable software-knob configuration, assuming a pre-
dictable execution environment and targeting software-knobs that are loosely input-
dependent. Among static autotuners, we might consider the following works. Auto-
Tune [13] targets multi-node applications and it leverages the Periscope frame-
work [14] to measure the execution time. It targets application-agnostic param-
eters exposed by the computation pipeline such as communication buffers and
OpenHMPP/MPI parameters. QuickStep [15] and Paraprox [16] perform code trans-
formations to automatically apply approximation techniques for enabling and lever-
aging an accuracy-throughput trade-off. OpenTuner [17] and the ATF framework [18]
explicitly address the exponential growth in the complexity of exploring the param-
eters space, by using an ensemble of DSE techniques and by taking into account
dependencies between software-knobs. Although very interesting, these approaches
work at design-time and they usually target a different set of software-knobs with
respect to dynamic autotuners.

The methodology proposed in this chapter belongs to the category of dynamic
autotuners, which aim at changing the software-knobs configuration during the appli-
cation runtime according to the system evolution. Therefore, they focus on providing
adaptation mechanisms, typically based on application knowledge. Among dynamic
autotuners, we might consider the following works. The Green framework [19] and
PowerDial [6] enhance an application with a reactive adaptation layer, to change the
software-knob configurations according to a change on the observed behaviour. The
IRA framework [20] and Capri [21] focus instead on providing proactive adaptation
mechanisms to select the software-knob configuration according to the features of
the current input. On the other hand, Petabricks [22] and Anytime Automaton [23]
are capable to adapt the application reactively and proactively. However, they require
a significant integration effort from the application developers. Moreover, they are
capable to leverage only accuracy-throughput trade-off. All these previous works
are interesting and they have significantly contributed to the field, according to their
approach on how to provide the self-optimization capabilities. The main contribu-
tions of mARGO}t is to provide a single methodology to provide an adaptation layer
with the following characteristics:

e The flexibility to express the application requirements as a constrained multi-
objective optimization problem, addressing an arbitrary number of EFPs and
software-knobs. Moreover, the application might change the requirements at run-
time.

e The capability to adapt the application reactively and proactively, where the user
might observe the application behaviour continuously, periodically or sporadically.
Moreover, the reaction policies are not only related to the throughput, but they are
agnostic about the observed EFP.

e To minimize the integration effort, we employ the concept of separation of con-
cerns. In particular, application developers define extra-functional aspects in a

94 D. Gadioli

configuration file and the methodology is capable to generate an easy-to-use inter-
face to wrap the target region of code.

Furthermore, being possible to define the application knowledge at runtime, mARGOt
can use an external component to orchestrate a distributed DSE at runtime, during
the production phase.

7.3 The mARGOt Autotuning Framework

This section describes how the proposed methodology can enhance the target appli-
cation with an adaptation layer. At first, we formalize the problem, the application
requirements and how the mARGO¢ interacts with the application. Then, we describe
the main components of the framework and how they can adapt the application reac-
tively and proactively.

7.3.1 Problem Definition

Figure 7.1 shows the overview of the mARGOt and how it interacts with an applica-
tion. To simplify, we assume that the application is composed of a single computation
kernel g that reads a stream of input i to produce the required stream of output 0. How-
ever, mMARGO}t is capable to manage several regions of code independently. More-
over, the target kernel exposes a set software-knobs X that alter the extra-functional
behaviour. Since a change of the configuration of these knobs might lead to a different
quality of the results, we might define the application as o = g(i, x).

Given this definition, the application requirements are expressed as a constrained
multi-objective optimization problem described in Eq.7.1:

max(min) r(%; 7 | f)
st.Cr:wi(x;m| f) o ky with oy confidence
C:oyx;m| f) « ks (7.1)

Co:w,(x;m| f) o kg

where r denotes the objective function to maximize (minimize), 7 is the vector of
metrics of interest (i.e. the EFPs), and f is the vector of input features. Let C be the
set of constraints, where each constraint C; is expressed as the function w; over m
or x, that must satisfy the relationship «xe {<, <, >, >}, with a confidence «;, if w;
targets a statistical variable. If the application is input-dependent, w; and r depend
on its features.

In this context, the goal of the autotuner is to solve the optimization problem
by inspection, using the application knowledge. The application always needs a

7 Dynamic Application Autotuning for Self-aware ... 95

Telemetry Configuration/ Application
inforn:ation to explore / knowledge

o0 v_

: Application
; Local-handler ,

Data Input

________ > t‘:\i Y
Application Application Computation |
Managers Monitors ! kernel E

t

Application Application Requirements
Knowledge maximize throughput

s.t. num_threads < 3 E
quality > 4.5 i Data Output

Extra-functional domain Functional domain

Fig.7.1 The overview of the proposed autotuning framework. Green elements represent framework
components, while blue elements represent application components (Color figure online)

software-knob configuration, therefore if the problem is unfeasible, mARGOt can
relax the constraints, according to their priority, until it finds a valid solution.

We implemented mARGO¢ as a standard C++ library that should be linked to the
target application. Being the time spent by the framework to select the most suitable
software-knob configuration stolen from the application, the mARGOt implementa-
tion has been designed to be lightweight and to minimize the introduced overhead.
We publicly released the framework source code [24].

7.3.2 Application-Knowledge

To solve the optimization problem we need a model of the application behaviour.
However, the relationship between software-knobs, EFPs, and input features is com-
plex and unknown. Therefore, mARGOt defines the application-knowledge as a list
of Operating Points (OPs). Each OP 6 corresponds to a software-knob configura-
tion, together with the reached EFPs. If the application is input-dependent, the OP
includes also the information on the related input features: 6 = {x, m, f}.

This representation has been chosen for the following reasons: it provides a high
degree of flexibility to describe the application behaviour, mARGOt can solve effi-
ciently the optimization problem described in Eq.7.1 and it prevents the possibility
to select an invalid software-knob configuration.

96 D. Gadioli

The application-knowledge is considered an input of mARGO¢, and there are
several tools that can explore the Design Space efficiently. In particular, nARGOt uses
the XML format of Multicube Explorer [25] to represent the application-knowledge.
Moreover, it is possible to learn it at runtime, as described in Sect.7.3.4.

7.3.3 Interaction with the Application

The core component of mARGOt is the application manager, which is in charge of
solving the optimization problem and of providing to the application the most suit-
able software-knob configuration. The application is able to change the application
requirements at runtime according to the system evolution. Moreover, if the EFPs
are input-dependent, the application can provide features of the actual input to adapt
proactively [9].

To enable the reactive adaptation, mARGOt must observe the actual behaviour
of the application and compare it with the expected one. In particular, we compute
a coefficient error for each observed EFP as e, = Z;f:fx”dl , where e, is the error
coefficient for the i-th EFP. Under the assumption of linear error propagation among
the OPs, mARGO}¢ is able to adapt reactively.

The methodology implementation provides to application developers a suite of
monitors to observe the most common metrics of interest, such as throughput or
performance events using PAPI [26]. The customization of a monitor to observe an
application-specific EFP, such as the accuracy, is straightforward.

7.3.4 Runtime Application-Knowledge Learner

The mARGOt flexibility enables the possibility to change the application knowl-
edge at runtime. Therefore, it is possible to learn the application knowledge directly
at runtime, during the production phase. Although this approach is platform inde-
pendent, it focuses on the High-Performance Computing Scenario. The idea is to
perform a distributed Design Space Exploration, leveraging the parallelism level of
the platform to lower the exploration time. In particular, when we spawn an appli-
cation, it notifies its existence to a central coordinator, along with information about
the exploration, such as the software-knobs domains, and the list of EFPs. Accord-
ing to a Design of Experiments, the central coordinator dispatches software-knobs
configuration to evaluate at each application instance, which provides as feed-back
telemetry information. Once the central coordinator collects the required observa-
tions, it uses learning techniques to derive the application-knowledge to broadcast
to the application instances.

Figure 7.2 shows an overview of the central coordinator. In particular, it uses a
thread pool of application remote-handlers to interact with application local-handler
of the application instances. The communication uses the lightweight MQTT or

7 Dynamic Application Autotuning for Self-aware ... 97

Fig. 7.2 The proposed

approach to perform a s

distributed on-line Design g

Space Exploration, using a Ay

dedicated server outside of P .

the computation node Application By lLearning
¢ comp Remote-handler Model

—
—

v v
|App.X| |App.X| |App.Y

o o o

<)

MQTTs protocols, while we use the Cassandra database to store the required infor-
mation. The learning module leverages a well-known approach [27] to interpolate
application performance, implemented by the state-of-the-art R package [28].

7.4 Experimental Results

This section assesses the benefits of the proposed adaptation layer, by deploying the
mARGOt framework in three different case studies. Each case study highlights a
different characteristic of mARGOx.

7.4.1 Evaluation of the Reactive Adaptation

This experiment aims at assessing the benefits of the reactive adaptation mechanisms.
We focus on a Stereo-matching application deployed in a quad-core architecture
[29]. The application takes as input a pair of stereo images of the same scene and
it computes the disparity map as output. The algorithm exposes application-specific
software-knobs that define an accuracy-throughput trade-off. Moreover, it is possible
to change the number of software threads that the application can use to carry out
the computation.

We create the application-knowledge at design-time, evaluating each configura-
tion in isolation. In this experiment, we execute four instances of stereo-matching,
overlapping their execution: each application has an execution time of 200s, and we
spawn them with a delay of 50s between each other. The application designer would
like to maximize the accuracy of the elaboration, provided that the application must
sustain a throughput of 2 fps.

In this experimental setup, we compare two adaptation strategies. On one hand,
we consider as baseline the reaction policy that monitors the throughput of the

98 D. Gadioli

App O mmmmm App 2

App 1 App 3 SNINY
U9 = </
& N7 =6
2 v P
2 5 v 2 5
S 4 N S 4
o3l g e 3
2 52
© N% ©
- * 8 L

0 LA NN O S
10 20 30 40 50 10 20 30 40 50
Goal Distance [%)] Goal Distance [%)]
(a) Baseline approach (b) mARGOt approach

Fig. 7.3 Distribution of deadline misses with respect to the constraint on the throughput, according
to the distance from the target value (2 fps)

application and that reacts accordingly, since it is commonly used in literature. In
particular, if the monitors observe that the actual throughput of the application is
lower than the expected one, mARGOt will choose a configuration with an higher
expected throughput to compensate. On the other hand, we exploit the mARGO¢
flexibility to consider also the CPU usage in the requirements. In particular, we define
a constraint on the available resource usage on top of the one on the throughput, to
limit the number of software threads according to the available resources. The value
of the constraint is continuously updated at runtime as follows:

CPUguvitapie =T — Y + Tmeasured

where I' is the maximum CPU quota available in the platform, y is the monitored
CPU quota used by the system, and 77,4504 1S the monitored CPU quota assigned
to the application by the Operating System. The mARGOt capability to consider an
arbitrary number of EFPs enables this adaptation strategy.

From the experimental results, we can observe how the two strategies are capa-
ble to satisfy the application requirements on average. However, Fig.7.3 shows the
distribution of the deadline misses for the two strategies. The baseline strategy relies
on the scheduler for a fair assignment of the CPU quota, therefore the contention on
the resources reduces the predictability of the throughput. Conversely, the mARGO¢
approach avoids this contention by observing the CPU usage. However, we are not
able to guarantee a fair allocation of the CPU quota by using this approach.

7.4.2 Evaluation of the Proactive Adaptation

This experiment aims at assessing the benefits of the proactive adaptation mech-
anisms. We focus on a phase of a car navigation system: the probabilistic time-
dependent routing (PTDR) application [10]. It takes as input the starting time of the
travel and the speed profiles of all the segments that compose the target path. The

7 Dynamic Application Autotuning for Self-aware ... 99

Table 7.1 Number of independent route traversal simulations by varying the requested maximum
error and the statistical properties of interest

Approach Error (%) Simulations 50th | Simulations 75th | Simulations 95th
percentile percentile percentile
Baseline 3 1000 3000 3000
6 300 1000 1000
Adaptive 3 632 754 1131
6 153 186 283

speed profiles of a segment vary during the week, with a fifteen minutes granularity.
To estimate the arrival time distribution, the PTDR application uses a Monte Carlo
approach that simulates multiple times an independent route traversal. The output of
the application is a statistical property of the arrival time distribution such as the 50th
or 75th percentile. This application has been already optimized to leverage the target
HPC node [30], therefore it exposes as software-knob the number of route traversal
simulations.

The application designer would like to minimize the number of route traversal
simulations, given that the difference between the value computed with the selected
configuration and with 1 M samples are below a given threshold. The threshold value
might vary according to the type of user that generates the request. In this experiment,
we consider 3% for premium users and 6% for free users.

To evaluate the benefits of the proactive adaptation, we compare two adaptation
strategies. On one hand, we fix the number of samples according to the worst path in
a representative input set [30]. We use this strategy as a baseline. On the other hand,
we use an adaptive strategy that extracts a feature from the actual input to select the
number of simulations according to the target path [10].

Table 7.1 shows the experimental results of a large experimental campaign with
randomly selected pairs of Czech Republic routes and starting times. The adaptive
approach can significantly reduce the number of required simulations according to
the target statistical property and the maximum error level. Moreover, we modelled
the car navigation system with the simulation environment Java Modeling Tools to
measure the benefits of the adaptive strategy at the system level. With a load of 100k
requests every 2min, an error threshold of 6%, and assuming that we are interested
in the 95th percentile, the adaptive strategy can reduce the number of nodes by 26%.
These parameters estimate the requested generated by a Smart City with the size of
the Milan urban area.

7.4.3 Evaluation of the Runtime Learner

This experiment aims at evaluating the benefits of learning the application knowledge
at runtime. In the context of the early stages of the drug discovery process, we focus

100 D. Gadioli

Fig. 7.4 Distribution of the _ 12 -
prediction error on the X 10 -
time-to-solution, by varying 5
the target pocket E 8
c 6r
]
S 4r
3 o2f
o
0

1b9v 1clb 1lcvu 1lcx2 1d3h 1fm9 Global
Pocket codenames

on a molecular docking application for virtual screening [31]. It takes as input two
information. On one hand, the docking site of the target molecule, named pocket. On
the other hand, a huge library of possible solutions, named ligands. The output of
the application is a small set of ligands which may have a strong interaction with the
target pocket, to forward to the later stages of the process. The application exposes
application-specific software-knobs that expose an accuracy-throughput trade-off.

Due to the complexity of estimating a ligand-pocket interaction, and due to the
embarrassingly parallel nature of the problem, this application is a perfect match for
HPC computation. In this scenario, the application designer would like to maximize
the quality of the elaboration, given an upper bound on the time-to-solution. The
relationship between the throughput and the software-knobs configuration depends
on the characteristic of the actual input, especially of the pocket. Therefore, in this
experiment we use mARGO! to learn at runtime such relationship, to be exploited in
the remainder of the production run.

Figure 7.4 shows the distributions of the prediction error on the time-to-solution
with six pocket from the RCSB Protein Databank (PDB) [32]. We use a chemical
library with heterogeneous ligands [9]. For example, the number of their atoms range
from 28 to 153. Since the prediction error is limited (<10%), mARGO¢ is able to
improve the computation efficiency.

7.5 Conclusion

This chapter focuses on a methodology to enhance the target application with an
adaptation layer, based on the application-knowledge, that provides the most suitable
software-knobs configuration according to the application requirements.

We assessed the benefits of mARGO}t in three case studies that belong to differ-
ent application domains. Experimental results show how it is possible to improve
drastically the computation efficiency by adapting reactively and proactively. More-
over, it is possible to learn the relationship between EFPs, software-knobs, and input
features using the input of the production run, identifying and seizing optimization
opportunities.

7 Dynamic Application Autotuning for Self-aware ... 101

References

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

. Duranton M, De Bosschere K, Coppens B, Gamrat C, Gray M, Munk H, Ozer E, Varganega T,

Zendra O (2019) Hipeac vision 2018

Sasa M, Stelios S, Henry H, Martin R (2010) Quality of service profiling. In: Proceedings of
the 32nd ACM/IEEE international conference on software engineering, vol 1. ACM, pp 25-34
Hadi E, Adrian S, Luis C, Doug B (2012) Neural acceleration for general-purpose approximate
programs. In: Proceedings of the 2012 45th annual IEEE/ACM international symposium on
microarchitecture. IEEE Computer Society, pp 449—460

Henry H, Sasa M, Stelios S, Anant A, Martin R (2009) Using code perforation to improve
performance, reduce energy consumption, and respond to failures

Edoardo P, Davide G, Gianluca P, Vittorio Z, Cristina S (2014) Evaluating orthogonality
between application auto-tuning and run-time resource management for adaptive openCL
applications. In: Application-specific Systems, architectures and processors (ASAP). IEEE,
pp 161-168

Henry H, Stelios S, Michael C, Sasa M, Anant A, Martin R (2011) Dynamic knobs for respon-
sive power-aware computing. In: ACM SIGPLAN notices, vol 46. ACM, pp 199-212

Jeffrey O Kephart and David M Chess (2003) The vision of autonomic computing. Computer
36(1):41-50

Bergstra J, Pinto N, Cox D (2012) Machine learning for predictive auto-tuning with boosted
regression trees. In: 2012 innovative parallel computing (InPar), pp 1-9, May 2012

Gadioli D, Vitali E, Palermo G, Silvano C (2018) Margot: a dynamic autotuning framework
for self-aware approximate computing. IEEE transactions on computers

Emanuele V, Davide G, Gianluca P, Martin G, Jodo B, Pedro P, Jan M, Katefina S, Jodo
MPC, Cristina S (2019) An efficient monte carlo-based probabilistic time-dependent routing
calculation targeting a server-side car navigation system. IEEE transactions on emerging topics
in computing

Markus CH, Julie AMcC (2008) A survey of autonomic computing—degrees, models, and
applications. ACM Comput Surv (CSUR) 40(3):7

Sara M-H, Vinicius HSD, Danny W, Paris A (2017) A systematic literature review on methods
that handle multiple quality attributes in architecture-based self-adaptive systems. Inf Softw
Technol 90:1-26

. Renato M, Gilles C, Anna S, Eduardo C, Michael G, Houssam H, Carmen N, Siegfried B,

Martin S, Laurent M et al (2012) Autotune: a plugin-driven approach to the automatic tuning
of parallel applications. In: International workshop on applied parallel computing. Springer,
pp 328-342

Shajulin B, Ventsislav P, Michael G (2010) Periscope: an online-based distributed performance
analysis tool. In: Tools for high performance computing 2009. Springer, pp 1-16

Misailovic S, Kim D, Rinard M (2013) Parallelizing sequential programs with statistical accu-
racy tests. ACM Trans Embed Comput Syst (TECS) 12(25):88

Mehrzad S, Davoud AJ, Janghaeng L, Scott M (2014) Paraprox: pattern-based approximation
for data parallel applications. ACM SIGPLAN Not 49(4):35-50

Jason A, Shoaib K, Kalyan V, Jonathan R-K, Jeffrey B, Una-May O, Saman A (2014) Open-
tuner: an extensible framework for program autotuning. In: 2014 23rd international conference
on parallel architecture and compilation techniques (PACT). IEEE, pp 303-315

Ari R, Michael H, Sergei G. Atf: a generic auto-tuning framework. In IEEE 19th international
conference on high performance computing and communications; IEEE 15th international
conference on smart city; IEEE 3rd international conference on data science and systems
(HPCC/SmartCity/DSS). IEEE, pp 64-71

Woongki B, Trishul MC (2010) Green: a framework for supporting energy-conscious program-
ming using controlled approximation. In: ACM Sigplan Notices, vol 45. ACM, pp 198-209
Michael AL, Parker H, Mehrzad S, Scott M, Jason M, Lingjia T (2016) Input responsiveness:
using canary inputs to dynamically steer approximation. ACM SIGPLAN Not 51(6):161-176

102 D. Gadioli

21. Xin S, Andrew L, Donald SF, Keshav P (2016) Proactive control of approximate programs.
ACM SIGOPS Oper Syst Rev 50(2):607-621

22. Yufei D, Jason A, Kalyan V, Xipeng S, Una-May O, Saman A (2015) Autotuning algorithmic
choice for input sensitivity. In: ACM SIGPLAN notices, vol 50. ACM, pp 379-390

23. Joshua SM, Natalie EJ (2016) The anytime automaton. In: ACM SIGARCH computer archi-
tecture news, vol 44. IEEE Press, pp 545-557

24. mARGOt framework git repository (2018). https://gitlab.com/margot_project/core

25. Vittorio Z, Gianluca P, Fabrizio C, Cristina S, Giovanni M (2010) Multicube explorer: an open
source framework for design space exploration of chip multi-processors. In: 23th international
conference on architecture of computing systems 2010. VDE, pp 1-7

26. DanT, Heike J, Haihang Y, Jack D (2010) Collecting performance data with papi-c. In: Matthias
SM, Michael MR, Alexander S, Wolfgang EN (eds) Tools for high performance computing
2009, Berlin, Heidelberg, 2010. Springer, Berlin, Heidelberg, pp 157-173

27. Benjamin CL, David MB (2006) Accurate and efficient regression modeling for microarchi-
tectural performance and power prediction. In: ACM SIGOPS operating systems review, vol
40. ACM, pp 185-194

28. Zhenghua N, Jeftrey SR (2012) The crs package: nonparametric regression splines for contin-
uous and categorical predictors. R J 4(2)

29. Davide G, Gianluca P, Cristina S (2015) Application autotuning to support runtime adaptivity
in multicore architectures. In: 2015 international conference on embedded computer systems:
architectures, modeling, and simulation (SAMOS). IEEE, pp 173-180

30. Radek T, Lukas R, Jan M, Katefina S, Ivo V (2015) Probabilistic time-dependent travel time
computation using monte carlo simulation. In: International conference on high performance
computing in science and engineering. Springer, pp 161-170

31. Claudia B, Andrea RB, Carlo C, Simone L, Gabriele C (2013) Use of experimental design to
optimize docking performance: the case of ligendock, the docking module of ligen, a new de
novo design program

32. Helen MB, John W, Zukang F, Gary G, Bhat TN, Helge W, Ilya NS, Philip EB (2000) The
protein data bank. Nucleic Acids Res 28:235-242

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://gitlab.com/margot_project/core
http://creativecommons.org/licenses/by/4.0/

	7 Dynamic Application Autotuning for Self-aware Approximate Computing
	7.1 Introduction
	7.2 Autonomic Computing and Application Autotuning
	7.3 The mARGOt Autotuning Framework
	7.3.1 Problem Definition
	7.3.2 Application-Knowledge
	7.3.3 Interaction with the Application
	7.3.4 Runtime Application-Knowledge Learner

	7.4 Experimental Results
	7.4.1 Evaluation of the Reactive Adaptation
	7.4.2 Evaluation of the Proactive Adaptation
	7.4.3 Evaluation of the Runtime Learner

	7.5 Conclusion
	References

