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Abstract

In this paper, we present a set of tools developed during the
creation of a platform that allows the automatic generation
of virtual views in a live soccer game production. Observing
the scene through a multi-camera system, a 3D approximation
of the players is computed and used for the synthesis of
virtual views. The system is suitable both for static scenes,
to create bullet time effects, and for video applications,
where the virtual camera moves as the game plays.

Keywords: Novel view synthesis, soccer game, depth
estimation, image inpainting.

1 Introduction

The creation of virtual viewpoint in soccer game scenario is
an interesting problem for two main reasons: first, for its large
viewer base and potential industrial impact and second, for the
many scientific challenges it presents. Hence, a collaboration
between industries and universities, through the Spanish
project CENIT-2007-1012 i3media, has lead us to investigate
such an application. This paper presents an overview of the
system that has been developed during this collaboration. The
system is able to automatically produce videos taken from a
virtual, moving camera given the video streams of multiple
real cameras.

Before going into the details of the system, let us first mention
the motivation for building such a system from an industrial
and from a technical point of view.

Industrial applications

Recent technological advances on multimedia content coding,
image processing and computer vision algorithms along
with the higher quality and lower cost of imaging hardware
are having a large impact on the multimedia and broadcast
industry. Nowadays, this environment is rapidly changing by
the introduction of sophisticated tools for media creation, and
the proliferation of new and more compelling forms of media
contents and platforms: high definition television (HDTV),
fully digital cinema pipeline, rich multimedia internet sites,
immersive online video games, spectacular visual effects
and more recently the explosion of 3D stereo content and
exhibition systems.

Nevertheless, even though the 3D stereo content brings more
realism to the spectator, there is still a large gap with respect
to the immersivity of the spectator within the scene. For the
future, industry aims at significantly reducing this gap by
introducing the concept of live free-viewpoint media content.
It relies on the development of the necessary technologies
for capturing, processing and delivering truly interactive
photorealistic content to a variety of professional and home
remote users.

Towards this end, virtual camera synthesis technologies would
allow to interact and freely explore a live-action 3D scene, thus
allowing the viewers to control the focus of attention rather
than being restricted to the views offered by a director, or
bringing the chance to directors to offer the action from novel
and impossible points of view where a physical camera can not
be placed. For instance, one could watch a soccer match from
the point of view of a particular player or even following the
ball. In addition, replays could benefit from these technologies
to highlight a particular aspect of the game by choosing the best
viewpoint for it. Summarizing, the scene could be observed
from novel, unique and compelling viewpoints, thus engaging
the spectator in a much richer and immersive experience.

The technical challenges

The creation of virtual view for soccer games relies on
numerous problems. Cameras are located in outdoor
environments, often in uncontrolled and changing lighting
conditions, they are located in a wide-baseline disposition,
and may be moving. Besides the calibration problems in such
environments, the relatively low resolution and the complexity
of the scene are considerable. Indeed, two teams of 11 players
dressed alike play in a very large arena outdoors plus several
referees running freely in the field, bumping into each other
and creating all kinds of occlusions are not a simple scenario.

The problem has been addressed using a variety of tools
of stereo reconstruction techniques like using billboards that
produce a flat 3D reconstruction of a scene [10, 11, 12,
21, 24], using visual hulls or photohulls [10, 11, 12], depth
computations using graph cuts [12] or joint segmentation
and depth estimation using graph cuts to optimize an energy
function combining multiple image cues with strong priors
[13]. The separation of the soccer field and the players has been
used as a fundamental tool in order to speed up or to facilitate
the computation of correspondences [10, 11, 12, 13, 17, 18].
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Still, there are several aspects of the problem that need to be
improved to generate quality videos for retransmission. To get
a correct parallax effect we need to compute the depth of the
players in the scene. The complexity of the scenes needs to
use depth computation or stereo reconstruction methods that
take into account the visibility constraints and the handling of
occlusions. On the other hand, to synthesize video sequences
one needs to compute time coherent depths or at least to
guarantee a time coherent synthesis. Finally, one needs to fill-
in the holes during the synthesis with inpainting methods and
to correct the eventual artifacts with a suitable video filtering.

Overview of the system

The system presented in this paper is composed of different
steps from image capture to post-processing. Figure 1
summarizes the complete pipeline.

• The first step is to capture the images. We present the
multicamera acquisition system used for the application
in section 2. It currently uses four static, synchronized
cameras.

• Next, as a pre-process, the color of the images between
the different cameras is equalized, and the cameras
geometrically calibrated.

• The core of the process, presented in section 3, consists in
computing the geometry of the players. The players are
first segmented via background substraction. Then, their
3D geometry is estimated by computing the depth of each
pixel in the images via a graph-cut technique.

• With the computed depth maps, a novel view synthesis
algorithm, presented in section 4, creates the image that
would have been seen from a virtual camera viewpoint.

• Finally, two post-processing algorithms are used to
improve the quality of the synthesis (section 5). First,
artifacts around depth discontinuities are removed via
an inpainting algorithm. Then, temporal coherence is
enforced by a temporal filter.

Details on the experimentations are given in section 6.

2 Data acquisition

A specific acquisition system has been built for this application.
The system is composed of 4 cameras and is capable of
recording synchronized multiple-views from the same scene in
FullHD resolution. In the following we will detail the hardware
and software composing the system, its features and give an
overview about its operation and output.

The multiview capture system is composed of 4 JAI/PULNIX
TMC 2030GE color cameras. These cameras have a 1” CCD
sensor which can produce 1920x1080 images at 32 fps. In

Figure 1: Description of the overall process.

addition, each pixel can be 8,10 or 12-bits valued. They can
be controlled via the GigE Vision Ethernet interface which
enables a cable length of 100m per camera. Finally, all cameras
can be synchronized at a shutter level via an external sync
cable.
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Each pair of cameras is connected to a PC with the following
specifications:

• Intel Core 2 Quad CPU Q6600@2.40 Ghz with 3.6 Gbytes
of DDR2 RAM memory.

• 2 x Giga Ethernet Intel Pro/1000 PT Dual card.

• 2 x SATA hard drive of 10000 rpm (WD1500ADFD).

• Windows XP Professional Service Pack 3 OS.

Regarding the acquisition procedure, first we aim at setting
the zoom level for each camera. Subsequently, camera’s
gain, shutter speed and aperture is configured on each camera
depending on the lighting conditions. The goal is to obtain
uniformly contrasted images, without motion blur artifacts at
the possible lowest noise level. Finally, the focus on each
camera is adjusted to obtain sharp images.

Each camera is produces a raw 8-bit 1920x1080 video stream
at 25 fps, which is stored in a fast hard drive unprocessed.
This results in a data bandwidth of 50 Mbytes/sec. Then,
the Adaptive homogeneity-directed (AHD) Bayer demosaicing
algorithm [16] is used to compute high quality color images
from the raw data. Then, output images are color corrected
so color constancy is kept among different views of the same
object. Finally, each camera is calibrated optically by detecting
the soccer field lines and matching them against a known
3D model. In the following, we describe further the color
correction and calibration methods.

2.1 Color correction

A color correction step is performed over the final acquired
images in order to make uniform the color between views.
Its ultimate goal is that an object which is seen from several
views has similar color values among all its images. Hence,
color coherence constraints can be exploited by the subsequent
computing stages, and the final synthesized images look
realistic and free of color artifacts when combining multiple
image sources.

Towards this end, 2 complementary approaches are considered.
The first approach (A1) is preferred if we have physical
access to the field before a match. It consists of inserting a
pattern of known color into the scene and recording a color
calibration sequence. Then, we use correspondences between
images to estimate the parameters of the color correction
algorithm. Alternatively, the second approach (A2) extracts
SIFT correspondences automatically between views to obtain
these pairs of color matches. In Figure 2 we show an example
of an input image pair.

In both approaches, we use the color correspondences to fit
a parametric model of the color transformation between the
images. We assume a simple, per channel affine transformation

Figure 2: Pair of input images without color correction.

of the form

R2 = aRR1 + bR,

G2 = aGG1 + bG,

B2 = aBB1 + bB,

where R2, G2, B2 correspond to the red, green and blue
component of the color-corrected images. The fitting is done
using least squares method. Then the color transformation is
applied to all the input images. A result obtained using (A1)
is displayed in Figure 3. For a result obtained using (A2) we
refer to the top images in Figure 7.

The use of this simple model is justified since; a) it does
not require a color calibration pattern, e.g. Macbeth (this is
important if we need to do the color correction in the middle
of a match), and b) its computational simplicity and easy
interpretation make it easily adjustable by an external operator.
Hence it can be integrated in a production system.

More sophisticated linear models can be found in [9, 22, 27].
One could also use histogram matching techniques as in [28,
27].

Figure 3: First image (left) corrected to match the colors of
the second image, and second image (right) used as reference

2.2 Camera calibration

Camera calibration is a crucial problem for further metric
scene measurement. This section presents an overview of
the techniques used to calibrate the multicamera setup on a
soccer scene using a minimum number of visible field lines
or circle [1]. Strategies differ slightly depending on whether or
not the camera can be previously calibrated in the laboratory.
The camera model we use throughout this work is called the
projective model simple ”pinhole model” including a model of
radial lens distortion.

In case the camera can be precalibrated beforehand in the
laboratory, the calibration procedure is as follows:
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1. Use a calibration pattern to compute the lens distortion
and all the camera intrinsic parameters, including the focal
length.

2. Bring the camera to the stadium and take pictures of the
pitch (without changing the zoom level).

3. Automatically estimate the position and rotation of the
camera in space by detecting white lines and the central
circle.

4. If the zoom of the camera is varying, it can be recomputed
leaving the other intrinsic parameters constant.

Alternatively, if the camera can not be accessed beforehand in
the laboratory the calibration steps are:

1. Take an image of the soccer field using any kind of
camera.

2. Default values for the intrinsic camera parameters are
assumed, i.e. square pixels and optical center at the
center of the image, and calculate the distortion model
parameters.

3. Automatically estimate the position, rotation and focal
length of the camera in space by detecting white lines and
the central circle.

In addition, in case we know that the camera set shares some
parameters in common, we run an extra global optimization
step to improve the calibration accuracy. The parameters
considered are: a common focal length, the height of all
cameras, the lens distortion model, the pixel aspect ratio and
the optical center.

The accuracy of a camera calibration using the lines and
circles present in a soccer field can be affected by various
circumstances. We have observed that inaccurate results can be
obtained when the number of primitives visible in the images
is low, or when the lines are not well drawn in the field, or
even because they do not have the proportions and measures
they should have officially. Also, the curvature of the field
is a source of errors. These failures are particularly relevant
in applications such as 3D reconstruction of the scene that
require a high precision calibration. Thus we introduced a final
calibration enhancement step that uses point matches between
different images to improve calibration. The procedure is as
follows:

1. An initial calibration of the group of cameras is computed
as described above by detecting lines and circles on the
soccer field.

2. Points of interest in the scene are automatically detected
in each image of the scene using the Harris algorithm [14].

3. Right matchings between the detected 2D points are
selected and their 3D point coordinates are reconstructed.
The points should be visible in at least two of the cameras
and they usually correspond to typically visible points in
the scene such as the head of a player or points in the goal.

4. The information from these 3D points is incorporated
in the calibration of the cameras minimizing their
reprojection error in the different camera views via
bundle adjustment [3].

3 3D representation of the players

From the multi-camera system, we get a set of 4 synchronized
video sequences observing the scene from different point of
views. We now describe how these data are used to compute
a 3D reconstruction of the players. Such an estimation is
obtained in two steps. First, we automatically segment the
players from the field in each camera. Then, we use a multi-
view stereo algorithm to estimate the depth of the pixels inside
the segmentation masks.

3.1 Background learning and segmentation

In order to estimate the segmentation mask of the players, we
rely on background substraction methods. Since we consider
fixed cameras, the background, composed of the field and the
stadium, can be modeled independently for each camera. We
estimate a background image for each camera. To learn this
background image, even when the players are on the field,
techniques such as running average, Gaussian mixtures [30] or
Kernel density estimations [8] are used. Such approaches aim
at modeling each pixel of the background using the redundant
temporal information of the sequence at its location, while
discarding the outliers (i.e. the players). In Figure 4 we show
an example of background modeling obtained using the Kernel
density estimation method in [8].

Frame 0 Frame 50

Frame 100 Estimated background

Figure 4: Background estimation. The background model is
estimated from the different images available for a single camera.
We here show such images at frames 0, 50 and 100 of a real
sequence.

From the estimated background, a first estimate of the
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segmentation mask of the players is obtained by thresholding
the difference between the current image and the reference
background one. Then, in order to compute the final mask
of the players, this estimate is combined with a spatial
regularization term using a Graph-cut approach [4]. Some
examples of the obtained segmentation masks are given in
Figure 5.

Frame 0 Frame 50 Frame100

Figure 5: Segmentation. Illustration of the mask of players
obtained at frames 0, 50 and 100.

3.2 Depth estimation

Given the foreground segmentation masks of all cameras, the
goal is now to compute the depth of each pixel in the masks for
each frame in the sequence. We describe here the procedure we
use to compute depths that are coherent between the different
cameras and between the different frames of the sequence.

We define the depth estimation problem as a multi-label
problem. We consider a set of candidate depth planes,
and associate one of these planes to each pixel inside the
segmentation masks. The pixel-to-plane association is realized
by minimizing via graph-cuts a suitable energy function.

For reasons of space, we briefly describe the energy, for more
details we refer to [26]. To fix our notation, we assume that
we have N ≥ 2 cameras and we consider N color images Ii :
Ωi → R

3, where Ωi ⊆ R
2 denotes the domain of Ii, i =

1, · · · , N . We identify Ωi as the foreground mask of image i.
We denote by I = {(i, j) ∈ {1, · · · , N}2, i �= j} the set of
pairs of images.

Recall that a plane of the 3D scene induces an homography
between each pair of images, and the projections of image
points which lie on the plane are matched by this homography.
Thus, we may sweep the scene with a family of parallel ordered
planes Πλ, each one labeled by its depth λ > 0, and only the
points of the scene lying on Πλ will be matched in two images
Ii and Ij , i �= j, by the corresponding induced homography
Hij

λ (see [15]). The homography Hij
λ can be written as Hij

λ =

(Hj
λ)−1Hi

λ where Hk
λ is the homography between the k image

plane and Πλ, k = 1, · · · , N . Obviously, the matching can
only be done if the point is visible in both cameras. We assume
here that the family of sweeping planes is given.

We want to find the depth, denoted by λ(p), associated to each
p ∈ Ωi, i = 1, · · · , N , and the sets of occluded pixels in
each image. We note that these sets of occluded pixels can
be estimated from the knowledge of the depth. As the problem
will be solved in a discrete framework via a graph cut approach,
we assume that λ(p) takes its values in a predefined discrete set
of possible depths contained in the range [λmin, λmax].

The pixel-to-plane association is realized by considering an
energy function containing five terms:

• a photoconsistency matching cost for couples of
corresponding pixels in pairs of images:

Eph(λ) :=
∑

(i,j)∈I

∑

p∈Ωi

D(p,Hij

λ(p)p)T [λ(p) = λ(Hij

λ(p)p)],

where T [·] is 1 if its argument is true and 0 otherwise. This
energy considers the scene points Hi

λ(p)p, with p ∈ Ωi , that
are visible in both images Ii and Ij . The matching cost D(p, q)
measures the difference between the colors Ii(p) and Ij(q) of
the pixels p ∈ Ωi and q ∈ Ωj (see [26]).

• a penalty on the occluded pixels that prevents all pixels to
become occluded:

Eocc(λ) := γ
∑

(i,j)∈I

∑

p∈Ωi

T [λ(p) > λ(Hij

λ(p)p)],

where γ > 0 is the occlusion parameter.

If p ∈ Ωi and q = Hij

λ(p)p, j �= i, the visibility constraint is
given by λ(q) ≤ λ(p). This constraint means that a pixel p of
an image i can be occluded by a pixel q in image j if and only
if the depth of q is smaller than the depth of p. If λ(q) < λ(p),
then the scene point q = Hi

λ(p)p is occluded by the scene

point Hj

λ(q)q in the image Ij . The cost γ penalizes these

occlusions. If λ(q) = λ(p), then the 3D point Hi
λ(p)p is visible

in both images. In that case we compute the photoconsistency
matching cost.

• a term that enforces the visibility constraint to ensure the
coherence between the depth maps of the different cameras:

Evis(λ) := U
∑

(i,j)∈I

∑

p∈Ωi

T [λ(p) < λ(Hij

λ(p)p)],

where U → ∞ is a large scalar that prevents the solution to
violate the visibility constraint.

• a visual hull constraint that forces the reprojection of the
reconstructed points to lie inside the foreground masks of the
other images:

Evh(λ) := β
∑

(i,j)∈I

∑

pi∈Ωi

T [Hij

λ(p)p ∈ Ωj ],

where β > 0.

• a regularization term that forces the neighboring pixels with
similar intensity level or color to have similar depth labels:

Ereg(λ) := α

N∑

i=1

∑

pi∈Ωi

∑

qi∈Npi

F (Ii, pi, qi)|λ(pi) − λ(qi)|,

where α > 0 is the regularization parameter, and Npi
is

8-neighborhood of pi. The function F (Ii, pi, qi) has the form
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F̃ (|Ii(pi) − Ii(qi)|, |pi − qi|) and weights the discontinuities
of the labeling taking into account the image gradient,
encouraging depth discontinuities to coincide with edges. The
function F̃ is big when its first argument |Ii(pi) − Ii(qi)| is
small. The second argument |pi − qi| enables weighting the
influence of pixel qi, the neighbor of pixel pi, with respect to
their Euclidean distance. The larger |pi − qi|, the smaller F̃ .

The term |λ(pi) − λ(qi)| can be replaced by the Potts model
min(|λ(pi) − λ(qi)|, 1) = T (λ(pi) �= λ(qi)), which does
not weight the amplitude of the depth discontinuities. In any
of these cases the regularization term (and the whole energy)
in an α-expansion move is regular and it can be efficiently
minimized using graph-cuts [20].

For reasons of space we have briefly described the energy
terms, for more details we refer to [26].

The total energy E is defined as:

E(λ) := Eph(λ) + Eocc(λ) + Evis(λ) + Evh(λ) + Ereg(λ).

The energy is minimized for all the cameras simultaneously
using graph cuts with α-expansion [19, 26].

For dynamic scenes, in order to enforce the temporal
consistency of the depth estimation between successive
frames, we add an additional constraint. The idea is to force
the estimation at frame t + 1 to be similar to the estimation
at frame t. We use the optical flow [25] between the captured
images, to transfer the depth estimation computed at t to
the location of the players at frame t + 1. Then, we add a
constraint that forces the depth estimation at t+1 to be close to
this prediction. This constraint could be enhanced through the
scene flow computation [31]. Indeed, the scene flow permits
considering the variations of the depth of a player between
successive frame instants which yields to a more exact the
temporal constraint.

Figures 6 and 7 show examples of the depth maps estimated by
this procedure in a laboratory and a real scene.

Since the computational cost of the graph-cut labeling method
increases with the number of candidate depth planes, it is
important to properly choose these candidates to be close to
where the players are, in order not to waste candidates where
there are no players. In the toy example of Figure 6, the 3
players are spatially close, and it is and we can use a dense
depth discretization. Unfortunately, for real examples as the
one presented in Figure 7, the players are sparsely distributed
around the field. In this case, we consider the visual hull of
all the players together in order to define a bounding box that
includes all the players. The candidate depth planes are then
chosen to be distributed inside this bounding box.

This is clearly not optimal, since it would be better to create
a bounding box for each player. Nevertheless, it is good
enough, and yield results where each player is represented by
more than a single depth plane. This can be seen from the
depth discontinuities observable in column (c) of Figure 12.
Compared to simpler approaches that represent each player via

Camera 1 Camera 2 Camera 3

Figure 6: Depth estimation for a toy example. The original
images are presented in the first line for the three cameras. The
corresponding segmentations and the depth estimations are then
shown in the second and third lines. The depth colors correspond to
the depth planes: the darker color, the closer to the cameras. These
images are courtesy of Luis Álvarez (AMI group, University of Las
Palmas of Gran Canaria) and MEDIAPRO.

Camera 2 Camera 3

Figure 7: Depth estimation at frame 50. The original images are
presented in the first line for the central real cameras 2 and 3. The
corresponding segmentations and the depth estimations are then
shown in the second and third lines. The depth colors correspond
to the depth planes: the darker color, the closer to the cameras.

a single depth plane, our method is able to produce the parallax
between different parts of the player, and not only between
different players.

To speed things up, during the development of the method
proposed above, we also considered computing the depth of
each image independently (i.e, without including visibility
constraints between the different estimations) through a plane-
sweep approach [6]. This leads to faster algorithms that can
be parallelized efficiently on GPU [2]. However, with such
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approaches, the consistency between the different estimations
is lost and a volumetric approximation of the different depth
estimations must be done [32] to prevent from decreasing the
accuracy of the results.

4 Virtual view synthesis

Given the depth estimation of the real cameras, we now
want to generate a virtual camera observing the scene from a
novel point of view. In this section, we describe the process
allowing to create such virtual views. First of all, the user
define the wanted trajectory of the virtual camera. Then, the
corresponding virtual view is synthesized.

4.1 Virtual calibrations

To synthesize a virtual camera, it is necessary to define its
calibration: its position and orientation with respect to the 3D
world coordinates. These informations thus need to be given by
a user. In practice, we have proposed to automatically generate
virtual mappings between real cameras. More precisely, we
have addressed two applications. The first one consists in
creating a virtual camera that warps the real cameras at a fix
frame. This leads to a time freezed sequence equivalent to
the matrix effect. The second application considers a virtual
camera moving along frames, observing the dynamic scene
from different point of views.

4.2 Image synthesis

Once the calibration of the virtual camera has been defined,
we use this information and the computed depth maps to
synthesize the corresponding virtual image. To this end, we
use a two step method related to the one presented in [29]. It is
based on the estimation of the depth map of the virtual camera
and a further estimation of the colors of the virtual image.

In the first step, the virtual camera depth map is obtained by
forward mapping the depth estimated for each real camera to
the virtual camera. An example of such transfer is presented in
Figure 8.

(a) Real Camera 2 (b) Real Camera 3

(c) Virtual Camera 1 (d) Virtual Camera 2

Figure 8: Creation of the virtual depth at frame 50. The depth
estimated on the real cameras (a-b) are transferred into two virtual
cameras (c-d).

In the second step, the colors of the virtual image are computed

using by backward mapping the pixels from the virtual camera
to the real ones with respect to their depth. A mean of the
colors obtained from the different real cameras is used in order
to smooth the virtual image and avoid artefacts coming from
potential depth estimation errors.

Finally, the pixels outside the virtual players are processed
using three particular depth planes, as illustrated in Figure 9.

Figure 9: Background model. Three specific planes are considered
for background synthesis: the groundfield, the goal and the stands.

More precisely, we use a first plane to model the ground. We
assume the groundfield to be flat, which is not true in reality
and does yield some blurring effects in the non flat parts of
the groundfield. We use two more planes to model the goal
and the stands. These form a very rough approximation of the
real geometry. The real images backprojected into this planes
clearly do not match. To palliate the visual artifacts of this
approximation we use view dependent texture mapping [7] so
that only the camera that is closer to the virtual camera is used
to produce the texture of these planes. When moving from one
real camera to another, a short transition zone is used, and the
images produced by both cameras are bended to avoid a sudden
change in the texture. An example of synthesis including the
goal and the stands is shown in Figure 10.

Figure 10: Virtual views from a moving camera observing the
dynamic scene. The goal and the stands have been synthetized using
the specific planes illustrated by the Figure 9.

We present in Figure 11 some synthesized virtual images.
Note that we do not directly transfer the colors from the real
cameras to the virtual one. Indeed, such a direct approach
would generate non integer coordinates and require heavy
interpolations to provide a good synthesis. In general, the
synthesis gives better results when dealing with back-transfer
of colors (see for instance the inverse trifocal tensor of [23]).
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(a) Real Camera 2 (b) Real Camera 3

(c) Virtual Camera 1 (d) Virtual Camera 2

Figure 11: Synthesis of the virtual images at frame 50. The color
information of the real cameras (a-b) is transferred into two virtual
cameras (c-d).

5 Post-processing

The synthesized virtual images can contain some visual
artifacts due to depth estimation errors, occluded parts of the
field or temporal inconsistency. In order to correct them, we
propose to use two post-processing tools: a spatial correction
of the image artifacts through image inpainting and a temporal
filtering of the inpainted images along the trajectories of
the points of the scene, using the optical flow of the virtual
inpainted sequence.

5.1 Image inpainting

Image inpainting methods aim at repairing the missing or
erroneous areas of an image. Such processes are thus suitable
to correct eventual visual artifacts in the virtual synthetic
images generated by the procedure described in the previous
section. Indeed, we observed some visual artifacts on the
boundaries of depth discontinuities, where the errors of depth
estimation are more frequent. Moreover, the areas of the field
that are occluded by the players lead to missing parts on the
synthetic images. Fortunately, from the estimated synthetic
depth maps, we are able to define with enough accuracy the
areas of the synthetic images we want to correct (i.e. areas
around the depth discontinuities). Examples of such areas are
shown in Figure 12.

(a) (b) (c)

Figure 12: Creation of the inpainting masks. (a) Synthetic images.
(b) Virtual depth maps. (c) Areas to inpaint.

The correction is then performed with an image inpainting
algorithm [5] based on image color patches comparison and

copy. The method also relies on search trees (kd-trees), in order
to speed up the search of similar patches. In Figure 13, we
present examples of inpainting correction.

(a) (b) (c)

Figure 13: Image inpainting. (a) The synthetic images. (b) The
corresponding areas to inpaint composed by the union of the missing
part of the field (in gray) and the virtual depth discontinuities areas
(in white). (c) Final inpainted images.

5.2 Temporal filtering

The inpainted images are finally filtered temporally. To
this end, we realize a weighted mean of the colors along
pixel trajectories. Trajectories are first obtained through
the computation of the optical flow [25] on the inpainted
sequence. Hence, the value of the color of a pixel is filtered by
considering a temporal window along its trajectory. The values
are in practice weighted with respect to the inverse of the
norm of the optical flow. Indeed, when a pixel is moving fast,
there is no need to filter its color value since it will not imply
temporal artifacts. On the contrary, when a pixel corresponds
to a nearly static 3D point of the scene, the color value must
be filtered in order to smooth the synthesis and obtain some
temporal consistency. As illustrated by Figure 14, this process
allows to smooth the inpainted images in order to attenuate the
potential temporal artefacts.

6 Experimentation details

In this section, we give some details on the experimentations
we realized. We provide two videos1 corresponding to two
different sequences. The first one presents a time freezed
virtual cameras warping two real cameras. The second video
shows a dynamic virtual camera observing the moving game.

1available on http://sites.google.com/site/
nicolaspapadakis/videos_cvmp
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(a) Virtual frame t (b) Virtual frame t + 1

Figure 14: Temporal filtering. A crop of the result is shown for
two consecutive virtual frame time t (column a) and t + 1 (column
b). The original synthesized images are presented in the first line.
The inpainting results are shown in the second line. The third line
illustrates the final filtered images.

The videos have been obtained automatically without user
interaction or parameter tuning.

These results have been obtained using a standard desktop
computer, running linux, with an Intel Core2 Quad CPU,
and a NVIDIA GTX280 graphics card. The process required
between 5 and 10 minutes of a single core per frame depending
on the size of the players. Most of this time was spend
computing the depth maps.

Indeed, half of the intern processes are real time: segmentation,
synthesis and filtering. In our current implementation, these
programs spend more time for input reading and output writing
than the processes themselves. However, the depth estimation,
optical flow and inpainting steps have a huge computational
cost, especially considering the size of the processed data that
are FullHD images with a size of 1920x1080 pixels.

Let us discuss these three algorithms more precisely.
Concerning the depth estimation, as we impose visibility

constraints between the different cameras in a graph
representation, the graph include some complex connexions.
Moreover, as mentioned in subsection 3.2, the definition of the
set of possible depth planes is not optimized. Considering a
reduced and accurate set of depth planes would improve the
estimation and reduce the computational time of the process.
When estimating the depth independently for each camera, the
process is real time, but the results presents a poor quality. A
merging of the different depths is then necessary to filter these
noisy estimations.

Even if nearly-real time optical flow estimators exist in
the literature, we investigated a different approach. The
optical flow computation is done through a parallelized
implementation of a convexified energy [25]. Such a process
is potentially real time, but our current implementation takes
up to 30 seconds our NVIDIA graphic card.

Finally, the last time consuming process is the inpainting step.
Originally, we used a simple patch-based approach, looking
for similar patches in the original images. This first method
presented a very high computational cost due to the size of
the images (a huge number of patches have to be tested for
each pixel to inpaint). Hence, the use of kd-trees allowed us to
speed-up the search process and reduce the inpainting running
time. The consuming part now comes from the construction
of the tree of possible candidate patches, which is done on
each frame instant independently. Defining a common global
tree from a database of possible patches would allow to reduce
drastically the computational cost of the inpainting step. We
are also currently investigating the implementation of search
trees in GPU in order to speed-up even more the search part of
the process.

7 Conclusion

In this paper, we have presented a framework for the automatic
synthesis of virtual views in the case of soccer games observed
by a system of 4 cameras. For the future, the different
steps of the process will be optimized, mainly in terms of
computational cost. One other important point concerns the
field, which is assumed to be flat. Better approximations
including the field curvature should be taken into account to
enhance the calibration and the synthesis steps. Note also
that the present work only uses the information contained in
the acquired images. To improve the visual quality of the
synthesized results, we plan to couple the synthesis of players
with a predefined virtual model of the stadium and the goal.
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