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Abstract
Thermal reduction of graphene oxide (GO) is an essential technique to produce low-cost and higher
quality graphene-basedmaterials and composites used today in a plethora of applications. However,
despite a demonstrated efficiency of high-temperature annealing in reducing the oxygen content of
GO, the impact of themorphology of the initially oxidized samples on the restored sp2 graphene plane
versus remaining sp3 imperfections remains unclear and out-of-control. Here using classical
molecular dynamics, we simulate the process of thermal reduction on several GO samples for a variety
of initial conditions and elucidate how both the concentration of oxygen functional groups and their
spatial distribution jeopardize the reduction process efficiency. Our simulations suggest thermal
annealing strategies to further optimize the crystallinity of reducedGO, enhancing their transport
properties and hencemaking the resulting composites evenmore performant for electronic
applications.

Introduction

Because of its peculiar properties [1–7], the use of graphene in several functional applications has been
extensively discussed, including field effect transistors, photovoltaic cells, sensors, chemical energy storage
devices, and transparent electrodes [8–16].

Common fabricationmethodsof graphene includemechanical exfoliation [1], chemical vapour deposition
(CVD) [17, 18], epitaxial growth [19], electro-chemical and solution exfoliation [20, 21]. Thesemethods, however,
are known to yield only small-scale production. Alternatively, large-scale production (at a comparatively lower
cost) canbeobtained via the reduction of grapheneoxide (GO) [22], which is the current formof graphene-based
materials used in today composites for industrial applications. ReducedGO-based composites are intensively used
as additives to plastics, incorporated in glass-reinforced polymers or in concrete to enhance strength and thermal
conductivity performances. Besides, such graphene-relatedmaterials are also suitable for coatings andprinting
applications [23–25].

AGO sample typically results from the oxidation process of graphite (under strong acid/base treatments). It
ismade by oxygen covalently-functionalized, atomically thin carbon sheets, showingO:C ratios between 0.3 and
0.5. The presence of oxidizing species is responsible for a dramatic degradation of the properties with respect to
pristine graphene. In particular, GO is electrically insulating (in opposition to graphene) since the presence of sp3

carbon atoms disrupts theflowof charge carriers through sp2 bond networks [26–28]. Similarly, a strong
reduction in the thermal conductivity (of 90%) is also observed inGO for degrees of oxygen functionalization as
small as 5% [29].

This poses the need for a reduction process transformingGO into the parent state of graphene, yielding the
so-called reduced graphene oxide (RGO). For reducingGO,mostly post-synthesis chemical and thermal
treatments are employed, favoring the loss of oxygen content, and thus the partial restoration of graphene-like
properties. In particular, within chemical treatments, reducing agents are often used such as hydrazine and
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hydroiodic acid. Their employment, however, generates products with lowC:O ratio and a comparatively poor
quality with respect to graphene produced viamechanical/physical exfoliation orCVD.On the contrary,
thermal reduction is generally performed through high-temperature annealing (in vacuum, inert of reducing
atmosphere)which usually results inmuchmore effective reduction, efficiently restoring sp2 carbon domains
and improving the electrical and thermal properties of GO sheets [14, 30].

In this respect, theoretical computations based on the density functional theory andMonte Carlo techniques
have explored the basic reductionmechanisms and the thermodynamic stability of the reduced samples [31–36].
Today there is general consensus on the fact that: (i)GO samples contain oxygenmainly in the formof epoxy (i.e.
the bridge site oxygen) aswell as hydroxyl (i.e. –OH) groups; however, the hydroxyl groups are less stable, and so,
after annealing,most of the hydroxyl groups are removed. (ii)The key factor underlying theGO stability is the
tendency of oxygen to diffuse, to agglomerate and to formhighly oxidized domains surrounded by regions of
pristine graphene. (iii)Within these agglomerates, all the binary decomposition reactions producingO2 orH2O
are hindered by both geometrical and energetic factors;moreover, the oxygen binding energy in an oxidized
island increases with the size of the functionalized region. (iv)The formation of lattice damage inGO is related to
the surface density of epoxy species: at low coverage, these undergo reversible desorption, while they create the
precursors for the release of CO/CO2mixtures upon increasing coverage.

An overall picture has emergedwhere RGOderives from the interplay among several chemical reaction
processes whose effect is to alter the samplemorphology by removing functionalizing species (and carbon
atoms) from the basal plane. In this respect, themorphology of theGO configuration and the initial density of
oxidizing species represent pivotal factors that dictate the predominant chemicalmechanisms at play and hence
thefinal recovery of the hexagonal lattice cristallinity. The occurrence of thementioned reactions is triggered by
thermal energy, which represents the ultimate force driving the reduction process. Such a factor, however, is
unavoidably responsible also for structuralmodifications of the basal plane and for its deviations from the planar
configuration. Thermal energy relaxation processes, indeed, are expected to determine rearrangements of the
atomic positions on large spatial scales possibly leading to strong in- and out-of-plane displacements in RGO.As
an extreme case, strong thermal stresses could produce extended disruptions in the original plane, jeopardizing
the overall reduction process. The impact of these rearrangingmechanisms on the overall cristallinity of RGO is
still unclear. In particular, while the nature of the basic chemical reductionmechanisms has been largely
investigated, a systematic analysis of the interplay between such chemical reactions and the thermal relaxation
processes (as a function of the annealing temperature) still needs to be addressed. Amajor factor hindering such
an achievement is represented by themulti-scale nature of the problem in both the spatial and time domain.
Thermal reduction is, indeed, a dynamical process taking place in systemswithmacroscopic dimensions: on the
one side, it involves chemical reactions occurringwithin a reduced number of atoms; on the other side, the
equilibration of thermal energy causes rearrangements of the atoms on amuch larger scale. Also the time scales
involved are different, with chemical reactions occurring in few femtoseconds while purely diffusive phenomena
could take from seconds to hours. A fully quantum-mechanical description of the dynamical evolution of large
atomistic systemswould clearly satisfy the previous requirements but it is practically unfeasible. In this respect,
classicalmolecular dynamics with reactive force fields represents a valid computational tool to investigate such a
problem [37, 38]. Here we systematically analyze the thermally reducedGOon both the chemical and structural
level. In particular, by simulating the thermal reduction of several GO samples, we investigate the impact of the
annealing temperature on the chemical content and structural properties of RGO. Bymonitoring the number of
sp2 carbon atoms and the oxygen-to-carbon ratio as a function of the annealing temperature, we study the effect
of the density of oxidizing agents adsorbed and of the spatial distribution of the functionalized areas onto the
efficacy of the thermal treatment.Moreover, in order to estimate themechanical integrity of the systems, we
calculate the strain-field and the atomistic out-of-plane displacements. The knowledge of these indicators
represents a fundamental step towards a correct interpretation of the experimental results, which generally relate
such parameters to transport coefficients (e.g. electron and thermal conductivities).We showhow large initial
concentrations of oxygen-based functionalizing groups and large oxidized areas do not lead to a sizeable
recovery of the plane crystallinity. At the same time, strong local rearrangements of the atomic configuration are
obtainedwith noticeable deformations of the basal planewhose regularity is consequently lost.

Methods

Molecular simulations performed in this workwere carried out within the LAMMPSpackage [39] to study the
formation of RGOmaterials and investigating the effect of the thermal reduction process.

To properly describe the bond association/dissociation events during the reduction process, the reactive
force-field ReaxFF [40]was adopted. ReaxFF is a general bond-order dependent potential providing energies,
transition states, reaction pathways, and reactivity trends in a number of hydrocarbon-oxygen systems in good
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agreementwith quantummechanical calculations and experiments [41, 42]. Furthermore, it has been previously
fruitfully employed to study the structural evolution of RGO/GOmaterials in several experimental conditions
[37, 38, 43].

In our simulationswe used a 160Å×160Å graphene sheet with epoxy and hydroxyl functional groups
attached to both sides of the sheet. The total number of Carbon atoms in the systems is as large as 10488, with
periodic boundary conditions applied along the graphene basal plane. The initial concentrations of epoxy and
hydroxyl groups adsorbed are in a ratio of 1:1; different values of such a parameter have proved not tomodify the
main conclusions of our simulations to a significant extent.

In order to disentangle the effects of the spatial aggregation of the functionalizing groups and their spatial
density, two different sets of initial GO configurations have been built: (a) for afixedC:O concentration, four
systems have been generatedwith epoxy and hydroxyl groups agglomerated to formoxidized areas with
increasing average size; (b) for a givenmorphological distribution of oxidized regions (and total defected area),
we considered four configurationswith an increasing density of epoxy and hydroxyl groupsfilling the defected
areas. In all the samples the actual position of the oxidizing groupswithin the defected clusters is chosen in a
random fashion.

Once the initial groupswere distributed on the plane, theGO sheet was subjected to a thermal annealing
process consisting of amulti-step procedure. After a relaxation at 5K for 12.5 ps, the system temperaturewas
gradually varied by iteratively repeating the following steps: (1) the temperature is linearly increased of
ΔT=150 K in 25 ps; (2) the temperature is kept fixed in the following 200 ps. The above iterative scheme is
repeated until amaximum temperature larger than 2000 Khas been reached. The length of the different time
intervals is chosen to be sufficiently long to host the reduction process: indeed, after 200 ps no significant
changes in themorphology of the sheet have been observed inmost of the simulations. To perform the structural
analysis on the systems, the structures obtained at the end of each iterative step have been further relaxed at
300 K for 1.25 ps. The simulationswere performed in a constant-temperature (NVT) ensemble with a
Berendsen thermostat for temperature control and a time step of 0.25 fs.

While the present simulation setup and protocol are likely limited in their quantitative accuracy, all previous
successful applications of the same force field here adoptedmake us confident that our results are reliable
enough to identify a fundamental trend of themost relevant quantities of interest as a function of the input
parameters. In particular, we believe that the conclusions of this work still holdwhen the applied heating rate is
much larger than the one considered here, like in real annealing situations. In such cases the diffusive
mechanisms are indeed expected to have a stronger impact on the evolution of the systems. In order to consider
this aspect, the effect of impurity diffusion (previous and ongoing) is encoded in the initially different spatial
distributions of oxidized areas.

Results

In this sectionwe present the results of our simulations of the thermal reduction on some significant samples of
GO.Wediscuss themorphological properties of the resulting RGO structures as a function of the temperature
and analyze the relevance of the involved parameters. For the sake of clarity, we consider separately the effects of
the different density of defects in the functionalized areas and of the initial GOmorphology. This structure
represents a convenient scheme to provide somemeaningful physical insight.

Density of functionalizing groups
Webegin investigating the impact of thedensity of oxygen groups inGOon themorphological features ofRGO
obtained via thermal annealing. Thepresence of functionalized areaswith different concentrations of oxidizing
groups has emerged as a characteristic feature ofGOsystems.More specifically, they can result from local
aggressive chemical oxidation steps or from thepost-oxidation diffusivemotion of oxygens on the graphene
surface [33]. It is clear that thenumber of possible configurations of defected areas and functionalizing groups
experimentally obtainable is remarkably large: they can differ in shape, dimensions and theway oxygen groups
spatially distribute on their surface. Performing simulations of thermal annealing onall of them is impossible and
weneed an alternative strategywhich couldbenevertheless result of somehelp at a reasonable computational cost.
Therefore, we focus onan individualGOsystemcharacterized by a unique spatial distributionof functionalized
areas covering 50%of the total area.We take it as a representative of a generalGOsample undergoing thermal
annealing. For the given spatial distributionof defected areas,we considered four samples ofGOdiffering for the
density of the distributedoxidizing agents. In detail: by keepingfixed the total area of defected regions in the sample
and their spatial distribution,weoxidized themwith a different amount of epoxy andhydroxyl groups. The
configurations ofGOsheets thatwe analized are shown infigure 1: theirO:C ratio is 0.15, 0.25, 0.35, 0.45
respectively, values consistentwith those reported in the literature.
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We, atfirst,monitored the amount of oxygen adsorbed onto the surface at different annealing temperatures.
The corresponding evolution is presented infigure 2. Ameaningful variation of the oxygen content is observed
in all the cases for temperatures larger than 400 K. Below this value, thermal energy, which can be considered the
ultimate cause triggering all the possible basicmechanisms in the reduction process (e.g. desorption of oxygen
compounds from the surface, complex chemical reactions among different oxidizing agents forming other
products, release of CO2molecules in the environment and surface diffusion of impurities) is not sufficient to
determine the desorption of oxygens from the graphene plane. On the contrary, at higher temperatures a
monotone decrease of oxygen is found. Importantly, we note a stronger reduction of the oxygen content for
higher functionalizing densities: for a given annealing temperature, the higher the initial density of oxygen-
containing species, the higher the amount of desorbed oxygen. In this respect, the evolution of the quantity of
sp2-hybridized carbon atoms offers a different perspective on themechanisms taking place during the reduction
process. Such a quantity is usually taken as representative parameter of the purity of the RGO sample: it is
reported infigure 3 as a function of temperature normalized to its initial value. For all the systems, a similar trend
of sp2 carbons can be observed. After an initial transient over which reduction is not at work (in agreement with
the same range behaviour offigure 2), sp2 carbons generally increase for anyT>800 K. Such an increase ismore
evident in low-density functionalized samples, where up to 10%of the original amount of carbons is regained

Figure 1.GO samples with different oxidizing concentrations distributed on the basal plane. (Top panels) Side view. (Bottompanels)
Front view: only oxygen atoms are shown for the sake of clarity.

Figure 2. Final value ofO:C ratio as a function of the annealing temperature in the systems offigure 1 after thermal reduction.
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for sufficiently high temperatures. Systemswith a higher concentration of oxygen groups undergo aweaker
reduction process and only a small percentage of carbons goes back to the unoxidized state.

These results suggest a twofold conclusion. First of all, we remark that for sufficiently high annealing
temperatures, no improvement in the cristallinity of the basal plane is obtained. Although a decrease of the
oxygen content is simultaneously gained, the amount of sp2 atoms remains almost unchanged. Since it has been
pointed out elsewhere that a strong connection between someRGOproperties (e.g. electrical conductivity) and
the sp2 carbon atom can be observed [27], our analysis suggests the existence of saturating trend of such
observables for increasing annealing temperatures. Next, we observe that for a given annealing temperature, the
amount of sp2-hybridized carbons of the reduced systemdecreases for larger values of the initial concentration
of functionalizing groups. This fact is evident in the two low-density samples forT>1500 K and can be better
explained by looking at the typology of chemical desorption processes occurring within the samples. Figure 4
shows the number of reactions involving a carbon atom removal in the four systems considered. At each
temperature, the number of occurrences of such processes increases with initial functionalization density.
Differently stated, themost probable reactions taking place in highly-oxidized samples involve the removal of a
carbon from the sheet, consequently damaging the plane crystallinity. It is convenient to visualize the atomic
sites of the underlying graphene plane fromwhich carbon atoms have been removed through damaging
chemical processes. The inset offigure 4 shows amap for the four systems at temperatureT=1500 Kwhere
lighter points correspond to the removed atoms. As expected,most of the vacancies are formed in the originally
oxidized areas, withmore removals in the highly-oxidized samples. The original oxidized areas are strongly
subject to damaging processes, which in the high-density cases can be completely emptied of carbon atoms. In
those regions, the increasing number of vacancy formations could even give rise to the removal of the entire
oxidized area leaving a hole. Such situation corresponds to a limiting case inwhich all the originally oxidized
atoms are removed, i.e. with aminimum increase of sp2-hybridized carbons obtained through reduction. An
image of the samples after annealing at temperature 1500 K is given infigure 5.

We proceedwith the structural analysis of the reduced samples. By exploiting the atomistic picture
developed in this work, wemapped the ‘strainfield’ after thermal treatment. Specifically, we calculated the
displacement of each carbon atom at the end of the reduction process with respect to its ideal position in an
unoxidized graphene plane. In detail, the positions used are those extracted from the low-temperature system
configurations obtainedminimizing the total energy, after the process and in the pristine samples, respectively.
Figure 6 shows themap of the ‘strainfield’ for the four systems after reduction atT=1000 K: for each atom, a
circle is depicted with a radius proportional to the defined displacement. It is clear how the strain field varies with
the density of defects in the oxidized areas: the deviation from a pure graphene plane is indeed stronger in highly
functionalized areas (which are characterized by larger regionswith a darker colour). The regions involved
correspond to the originally functionalized areas and the closer regions: they have lost oxygen groups as an effect
of the thermal process but, as a consequence of the occurred carbon removals, a corresponding deformation of

Figure 3. Final value of sp2 carbons as a function of the annealing temperature in the systems offigure 1 after thermal reduction.
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the system from the graphene plane is also gained. As expected, the chemical and structuralmodifications play a
pivotal role in the transport performance of the samples: non-sp2 domains and local changes in the graphene
lattice constants represent detrimental scattering sources both for thermal and electronic transport.

Figure 4.Number of chemical reaction involving the removal of carbon atoms from the basal plane during the thermal annealing of
system of 1. (Inset)Mapof the loci where the carbon removals took place during reduction (in yellow).

Figure 5.Atomistic view of the systems offigure 1 after thermal annealing atT=1500 K: carbon atoms in blue, oxygen atoms in red.

Figure 6.Map of the strain field after thermal treatment atT=1000 K for the systems offigure 1. For each atom, a circle is depicted
with a radius proportional to its displacementwith respect to its ideal position in an unoxidized graphene plane.
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Weconclude nowby discussing the dependence of suchmechanical deformations as a function of the
annealing temperature. Figure 7 shows themean value of the atomic displacements in all the systems after the
treatment at different temperatures. All the samples undergo a strongermechanical deformation as the
annealing temperature is increasedwith generally stronger effects in strongly oxidized samples. The larger
energywhich is transferred to the systems at high temperatures is then sufficient to desorb atoms from the plane
but at the same time is sufficient tomodify the local atomic configuration.

Morphology of functionalizing areas
Wenow focus on the spatial distribution of oxidizing agents on the pristine graphene plane. This is critical to
understand the demonstrated action of the agglomerated and highly concentrated oxygen functionalities to
improve the overall stability of thematerial.

The possible spatial configurations of defected areas within aGO sample is extremely large: in particular, an
exceedingly large number of possibilities exist for the shape and dimension of the oxidized areas aswell as for the
local configuration of epoxy and hydroxyl groupswithin the same areas. Thismakes also the treatment of this
problemunpractical via a systematic simulative approach.Hence, we adopt an alternative approachwhich
allows to extract information on the effect of annealing on themorphology ofGO.We built a set of GO systems
which are characterized by different dimensions of the oxidized clusters and by different shapes of the

Figure 7.Mean value of the atomic displacements in the systems offigure 1 after the treatment at different temperatures.

Figure 8.GO samples with different spatial distribution of the oxidized areas on the basal plane. (Toppanels) Side view. (Bottom
panels) Front view: only oxygen atoms are shown for the sake of clarity.

7

J. Phys.:Mater. 3 (2020) 015011 AAntidormi et al



agglomerates. In order to focus on the effect of the spatial distribution of oxidizing impurities, they have been
endowedwith the same total initial carbon-oxygen ratio (about 0.26 in our case). In particular, the similar
oxygen concentrationwill allow an almost fair comparison of the selected samples. The systems considered in
this section are shown infigure 8. This set of GO samples contemplates different possibilities of agglomerated
oxygen functionalizations: from a randomdistribution of oxygen groups in system1 (with several and extremely
small oxidized areas) to system 4which represents themost clusterized systemwhose oxidized areas have linear
dimensions of tenths of nanometers.

We begin calculating the amount of oxygen adsorbed onto the basal plane as a function of the annealing
temperature: results are given infigure 9. After a weak decrease in the oxygen content at low temperatures, all the
systems undergo a stronger reduction process forT>500 K, resulting in an efficient decrease of functionalizing

Figure 9. Final value ofO:C ratio as a function of the annealing temperature in the systems offigure 8 after thermal reduction.

Figure 10. Final value of sp2 carbons as a function of the annealing temperature in the systems offigure 8 after thermal reduction.
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groups. However, the values ofO:C ratios found reveal only aweak dependence on themorphogical features of
the samples. Similar values offinalO:C are indeed observed. A different perspective on the occurring reduction
is gained by considering the number the sp2 hybridized carbon atomswithin the systems. Figure 10 shows the
evolution of this quantity normalizedwith respect to its initial value as a function of the temperature. A clear
trend is nowobserved: for sufficiently high temperatures, less clusterized samples show a larger increase of the
sp2 carbons and hence a larger recovered cristallinity. Thesefindings highlight the effect of GOmorphology on
the annealing process, which is found almost twicemore effective in samples with diluted impurities. The images
of the systems after annealing at temperature 1500 K offer an immediate picture of the different degree of purity
of the system in the different cases. Figure 11 provides strong evidence that the release of oxygen groups is
associatedwith two competingmechanisms: (i) the release of oxygen from the surfacewith a complete
restoration of the sp2 character of the carbon atoms and (ii) the release of oxygen from the surfacewith a
corresponding removal of carbon atoms from the plane. The latter irreversibly affects the plane cristallinity by
introducing topological defects like vacancies. Thesemechanisms generally occur in all the systems resulting in
the similarO:C ratios offigure 9; the corresponding occurrencies are, instead, strongly dependent on the spatial
distribution of the functionalized areas. Figure 12 clarifies this point by showing the occurrencies of carbon
removals from the plane (normalized to the total number of carbons) in the different cases considered. A
correspondigly larger number of carbon release is observed formore clusterized samples at any given

Figure 11.Atomistic view of the systems of figure 8 after thermal annealing atT=1500 K: carbon atoms in blue, oxygen atoms in red.

Figure 12.Number of chemical reaction involving the removal of carbon atoms from the basal plane during the thermal annealing of
system of 8. (Inset)Mapof the loci where the carbon removals took place during reduction (in yellow).
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temperature, revealing how the presence of close oxygens favours reactions involving the extraction of carbons
from the plane. In the inset offigure 12 the spatial distribution of the carbon removals is shown atT=1500 K in
the four systems.

We conclude this section by analizing the structural features of the systems after thermal reduction.
Figure 13 shows the strainfield of the samples after a thermal treatment atT=1000 K. The deviation from the
planar character of pristine graphene plane is indeedmore pronounced for higher impurity concentrations. The
regions involved correspond to the originally functionalized areas, which upon removal of oxygen groups are
then subjected to relaxation process leading to a local rearrangement of the atomic configuration. The
corresponding evolution of the average deviation as a function of the annealing temperature is shown in
figure 14.We note howmore clusterized samples yield a less planar final configuration after the treatment, with a
deformation increasing as a function of the temperature. The trend observed is indeed common to all the
systems. After an initial transient over which the atomic displacements change to a reduced extent, a sudden
increase is found for a sufficiently high temperature. The threshold temperature depends on the initial
morphology of the oxidized areas and shows a clear correlationwith the onset of removal of carbon atoms from
the basal plane (figure 12). This points to the vacancy formationmechanism as the responsible force leading to a
spatial rearrangement of the atoms inGO.

Figure 13.Mapof the strain field after thermal treatment atT=1000 K for the systems of figure 8. For each atom, a circle is depicted
with a radius proportional to its displacementwith respect to its ideal position in an unoxidized graphene plane.

Figure 14.Mean value of the atomic displacements in the systems offigure 8 after the treatment at different temperatures.
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Conclusions

In this work, we investigate, bymeans of classicalmolecular dynamics, the effect of thermal annealing on
reducing different samples of GO. Bymonitoring the number of sp2 carbon atoms and the oxygen-to-carbon
ratio as a function of the annealing temperature, we study the effect of the density of oxidizing agents adsorbed
and of the spatial distribution of the functionalized areas onto the efficacy of the thermal treatment.

We showhow the initial concentration of oxygen-based functionalizing groups impacts the efficacy of the
reduction process: forO:C densities larger than 35% the thermal reduction does not yield a sizeable recovery of
the plane crystallinity. In these cases, themainmechanisms activated by thermal energy are reactions involving
the removal of carbon atoms from the plane. As a result, vacancies are formed. A strong local rearrangement of
the atomic configuration is obtainedwith a sizeable deformation of the basal planewhose regularity is
consequently lost. Similarly, clusterization of the oxidized areas largely affects the quality of the reducedGO
upon application of a thermal process. The amount of carbons going back to the unoxidized state after the
treatment decreases for spatially concentrated functionalizations. At the same time,more vacancies are generally
generated in such systems.Moreover, the thermal energywithin the systems engenders a stronger deformation
of the atomic configuration. In both cases, the spatial deformation of the basal plane following the thermal
annealing increases with the annealing temperature. Thesefindings suggest the possibility to improve the
cristallinity of RGO through optimal choice of the parameters of the thermal reduction process, i.e. annealing
temperature and initial GOmorphology. In particular, for a given spatial distribution of oxidizing agents on the
sample, an optimal value of the annealing temperature could be found, yielding aminimal distortion of the
plane and a sizeable recovery of the sp2 carbon domains. Finally, wemention that our simulation data could
actually be further integrated intomaterials databases [44, 45], for further use ofmachine learning algorithms
[46–49] to extrapolate onmorphologies and physical properties (electronic and thermal) of a large spectrumof
reducedGOsmorphologies. This could enable faster access to important information for designing composites
with improved performances.
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