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Abstract

Thermal reduction of graphene oxide (GO) is an essential technique to produce low-cost and higher
quality graphene-based materials and composites used today in a plethora of applications. However,
despite a demonstrated efficiency of high-temperature annealing in reducing the oxygen content of
GO, the impact of the morphology of the initially oxidized samples on the restored sp” graphene plane
versus remaining sp” imperfections remains unclear and out-of-control. Here using classical
molecular dynamics, we simulate the process of thermal reduction on several GO samples for a variety
of initial conditions and elucidate how both the concentration of oxygen functional groups and their
spatial distribution jeopardize the reduction process efficiency. Our simulations suggest thermal
annealing strategies to further optimize the crystallinity of reduced GO, enhancing their transport
properties and hence making the resulting composites even more performant for electronic
applications.

Introduction

Because of its peculiar properties [ 1-7], the use of graphene in several functional applications has been
extensively discussed, including field effect transistors, photovoltaic cells, sensors, chemical energy storage
devices, and transparent electrodes [8—16].

Common fabrication methods of graphene include mechanical exfoliation [1], chemical vapour deposition
(CVD)[17, 18], epitaxial growth [19], electro-chemical and solution exfoliation [20, 21]. These methods, however,
are known to yield only small-scale production. Alternatively, large-scale production (at a comparatively lower
cost) can be obtained via the reduction of graphene oxide (GO) [22], which is the current form of graphene-based
materials used in today composites for industrial applications. Reduced GO-based composites are intensively used
as additives to plastics, incorporated in glass-reinforced polymers or in concrete to enhance strength and thermal
conductivity performances. Besides, such graphene-related materials are also suitable for coatings and printing
applications [23-25].

A GO sample typically results from the oxidation process of graphite (under strong acid/base treatments). It
is made by oxygen covalently-functionalized, atomically thin carbon sheets, showing O:C ratios between 0.3 and
0.5. The presence of oxidizing species is responsible for a dramatic degradation of the properties with respect to
pristine graphene. In particular, GO is electrically insulating (in opposition to graphene) since the presence of sp
carbon atoms disrupts the flow of charge carriers through sp” bond networks [26—28]. Similarly, a strong
reduction in the thermal conductivity (of 90%) is also observed in GO for degrees of oxygen functionalization as
small as 5% [29].

This poses the need for a reduction process transforming GO into the parent state of graphene, yielding the
so-called reduced graphene oxide (RGO). For reducing GO, mostly post-synthesis chemical and thermal
treatments are employed, favoring the loss of oxygen content, and thus the partial restoration of graphene-like
properties. In particular, within chemical treatments, reducing agents are often used such as hydrazine and
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hydroiodic acid. Their employment, however, generates products with low C:O ratio and a comparatively poor
quality with respect to graphene produced via mechanical /physical exfoliation or CVD. On the contrary,
thermal reduction is generally performed through high-temperature annealing (in vacuum, inert of reducing
atmosphere) which usually results in much more effective reduction, efficiently restoring sp” carbon domains
and improving the electrical and thermal properties of GO sheets [14, 30].

In this respect, theoretical computations based on the density functional theory and Monte Carlo techniques
have explored the basic reduction mechanisms and the thermodynamic stability of the reduced samples [31-36].
Today there is general consensus on the fact that: (i) GO samples contain oxygen mainly in the form of epoxy (i.e.
the bridge site oxygen) as well as hydroxyl (i.e. -OH) groups; however, the hydroxyl groups are less stable, and so,
after annealing, most of the hydroxyl groups are removed. (ii) The key factor underlying the GO stability is the
tendency of oxygen to diffuse, to agglomerate and to form highly oxidized domains surrounded by regions of
pristine graphene. (iii) Within these agglomerates, all the binary decomposition reactions producing O, or H,O
are hindered by both geometrical and energetic factors; moreover, the oxygen binding energy in an oxidized
island increases with the size of the functionalized region. (iv) The formation of lattice damage in GO is related to
the surface density of epoxy species: at low coverage, these undergo reversible desorption, while they create the
precursors for the release of CO/CO, mixtures upon increasing coverage.

An overall picture has emerged where RGO derives from the interplay among several chemical reaction
processes whose effect is to alter the sample morphology by removing functionalizing species (and carbon
atoms) from the basal plane. In this respect, the morphology of the GO configuration and the initial density of
oxidizing species represent pivotal factors that dictate the predominant chemical mechanisms at play and hence
the final recovery of the hexagonal lattice cristallinity. The occurrence of the mentioned reactions is triggered by
thermal energy, which represents the ultimate force driving the reduction process. Such a factor, however, is
unavoidably responsible also for structural modifications of the basal plane and for its deviations from the planar
configuration. Thermal energy relaxation processes, indeed, are expected to determine rearrangements of the
atomic positions on large spatial scales possibly leading to strong in- and out-of-plane displacements in RGO. As
an extreme case, strong thermal stresses could produce extended disruptions in the original plane, jeopardizing
the overall reduction process. The impact of these rearranging mechanisms on the overall cristallinity of RGO is
still unclear. In particular, while the nature of the basic chemical reduction mechanisms has been largely
investigated, a systematic analysis of the interplay between such chemical reactions and the thermal relaxation
processes (as a function of the annealing temperature) still needs to be addressed. A major factor hindering such
an achievement is represented by the multi-scale nature of the problem in both the spatial and time domain.
Thermal reduction is, indeed, a dynamical process taking place in systems with macroscopic dimensions: on the
one side, it involves chemical reactions occurring within a reduced number of atoms; on the other side, the
equilibration of thermal energy causes rearrangements of the atoms on a much larger scale. Also the time scales
involved are different, with chemical reactions occurring in few femtoseconds while purely diffusive phenomena
could take from seconds to hours. A fully quantum-mechanical description of the dynamical evolution of large
atomistic systems would clearly satisfy the previous requirements but it is practically unfeasible. In this respect,
classical molecular dynamics with reactive force fields represents a valid computational tool to investigate such a
problem [37, 38]. Here we systematically analyze the thermally reduced GO on both the chemical and structural
level. In particular, by simulating the thermal reduction of several GO samples, we investigate the impact of the
annealing temperature on the chemical content and structural properties of RGO. By monitoring the number of
sp” carbon atoms and the oxygen-to-carbon ratio as a function of the annealing temperature, we study the effect
of the density of oxidizing agents adsorbed and of the spatial distribution of the functionalized areas onto the
efficacy of the thermal treatment. Moreover, in order to estimate the mechanical integrity of the systems, we
calculate the strain-field and the atomistic out-of-plane displacements. The knowledge of these indicators
represents a fundamental step towards a correct interpretation of the experimental results, which generally relate
such parameters to transport coefficients (e.g. electron and thermal conductivities). We show how large initial
concentrations of oxygen-based functionalizing groups and large oxidized areas do not lead to a sizeable
recovery of the plane crystallinity. At the same time, strong local rearrangements of the atomic configuration are
obtained with noticeable deformations of the basal plane whose regularity is consequently lost.

Methods

Molecular simulations performed in this work were carried out within the LAMMPS package [39] to study the
formation of RGO materials and investigating the effect of the thermal reduction process.

To properly describe the bond association/dissociation events during the reduction process, the reactive
force-field ReaxFF [40] was adopted. ReaxFF is a general bond-order dependent potential providing energies,
transition states, reaction pathways, and reactivity trends in a number of hydrocarbon-oxygen systems in good
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agreement with quantum mechanical calculations and experiments [41, 42]. Furthermore, it has been previously
fruitfully employed to study the structural evolution of RGO /GO materials in several experimental conditions
[37,38,43].

In our simulations we useda 160 A x 160 A graphene sheet with epoxy and hydroxyl functional groups
attached to both sides of the sheet. The total number of Carbon atoms in the systems is as large as 10488, with
periodic boundary conditions applied along the graphene basal plane. The initial concentrations of epoxy and
hydroxyl groups adsorbed are in a ratio of 1:1; different values of such a parameter have proved not to modify the
main conclusions of our simulations to a significant extent.

In order to disentangle the effects of the spatial aggregation of the functionalizing groups and their spatial
density, two different sets of initial GO configurations have been built: (a) for a fixed C:O concentration, four
systems have been generated with epoxy and hydroxyl groups agglomerated to form oxidized areas with
increasing average size; (b) for a given morphological distribution of oxidized regions (and total defected area),
we considered four configurations with an increasing density of epoxy and hydroxyl groups filling the defected
areas. In all the samples the actual position of the oxidizing groups within the defected clusters is chosenin a
random fashion.

Once the initial groups were distributed on the plane, the GO sheet was subjected to a thermal annealing
process consisting of a multi-step procedure. After a relaxation at 5 K for 12.5 ps, the system temperature was
gradually varied by iteratively repeating the following steps: (1) the temperature is linearly increased of
AT = 150 Kin 25 ps; (2) the temperature is kept fixed in the following 200 ps. The above iterative scheme is
repeated until a maximum temperature larger than 2000 K has been reached. The length of the different time
intervals is chosen to be sufficiently long to host the reduction process: indeed, after 200 ps no significant
changes in the morphology of the sheet have been observed in most of the simulations. To perform the structural
analysis on the systems, the structures obtained at the end of each iterative step have been further relaxed at
300 K for 1.25 ps. The simulations were performed in a constant-temperature (NVT) ensemble with a
Berendsen thermostat for temperature control and a time step of 0.25 fs.

While the present simulation setup and protocol are likely limited in their quantitative accuracy, all previous
successful applications of the same force field here adopted make us confident that our results are reliable
enough to identify a fundamental trend of the most relevant quantities of interest as a function of the input
parameters. In particular, we believe that the conclusions of this work still hold when the applied heating rate is
much larger than the one considered here, like in real annealing situations. In such cases the diffusive
mechanisms are indeed expected to have a stronger impact on the evolution of the systems. In order to consider
this aspect, the effect of impurity diffusion (previous and ongoing) is encoded in the initially different spatial
distributions of oxidized areas.

Results

In this section we present the results of our simulations of the thermal reduction on some significant samples of
GO. We discuss the morphological properties of the resulting RGO structures as a function of the temperature
and analyze the relevance of the involved parameters. For the sake of clarity, we consider separately the effects of
the different density of defects in the functionalized areas and of the initial GO morphology. This structure
represents a convenient scheme to provide some meaningful physical insight.

Density of functionalizing groups

We begin investigating the impact of the density of oxygen groups in GO on the morphological features of RGO
obtained via thermal annealing. The presence of functionalized areas with different concentrations of oxidizing
groups has emerged as a characteristic feature of GO systems. More specifically, they can result from local
aggressive chemical oxidation steps or from the post-oxidation diffusive motion of oxygens on the graphene
surface [33]. Itis clear that the number of possible configurations of defected areas and functionalizing groups
experimentally obtainable is remarkably large: they can differ in shape, dimensions and the way oxygen groups
spatially distribute on their surface. Performing simulations of thermal annealing on all of them is impossible and
we need an alternative strategy which could be nevertheless result of some help at a reasonable computational cost.
Therefore, we focus on an individual GO system characterized by a unique spatial distribution of functionalized
areas covering 50% of the total area. We take it as a representative of a general GO sample undergoing thermal
annealing. For the given spatial distribution of defected areas, we considered four samples of GO differing for the
density of the distributed oxidizing agents. In detail: by keeping fixed the total area of defected regions in the sample
and their spatial distribution, we oxidized them with a different amount of epoxy and hydroxyl groups. The
configurations of GO sheets that we analized are shown in figure 1: their O:Cratiois 0.15,0.25,0.35,0.45
respectively, values consistent with those reported in the literature.
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0:C=0.45

Figure 1. GO samples with different oxidizing concentrations distributed on the basal plane. (Top panels) Side view. (Bottom panels)
Front view: only oxygen atoms are shown for the sake of clarity.
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Figure 2. Final value of O:C ratio as a function of the annealing temperature in the systems of figure 1 after thermal reduction.

We, at first, monitored the amount of oxygen adsorbed onto the surface at different annealing temperatures.
The corresponding evolution is presented in figure 2. A meaningful variation of the oxygen content is observed
in all the cases for temperatures larger than 400 K. Below this value, thermal energy, which can be considered the
ultimate cause triggering all the possible basic mechanisms in the reduction process (e.g. desorption of oxygen
compounds from the surface, complex chemical reactions among different oxidizing agents forming other
products, release of CO, molecules in the environment and surface diffusion of impurities) is not sufficient to
determine the desorption of oxygens from the graphene plane. On the contrary, at higher temperatures a
monotone decrease of oxygen is found. Importantly, we note a stronger reduction of the oxygen content for
higher functionalizing densities: for a given annealing temperature, the higher the initial density of oxygen-
containing species, the higher the amount of desorbed oxygen. In this respect, the evolution of the quantity of
sp>-hybridized carbon atoms offers a different perspective on the mechanisms taking place during the reduction
process. Such a quantity is usually taken as representative parameter of the purity of the RGO sample: it is
reported in figure 3 as a function of temperature normalized to its initial value. For all the systems, a similar trend
of sp” carbons can be observed. After an initial transient over which reduction is not at work (in agreement with
the same range behaviour of figure 2), sp* carbons generally increase for any T > 800 K. Such an increase is more
evident in low-density functionalized samples, where up to 10% of the original amount of carbons is regained
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Figure 3. Final value of sp” carbons as a function of the annealing temperature in the systems of figure 1 after thermal reduction.

for sufficiently high temperatures. Systems with a higher concentration of oxygen groups undergo a weaker
reduction process and only a small percentage of carbons goes back to the unoxidized state.

These results suggest a twofold conclusion. First of all, we remark that for sufficiently high annealing
temperatures, no improvement in the cristallinity of the basal plane is obtained. Although a decrease of the
oxygen content is simultaneously gained, the amount of sp” atoms remains almost unchanged. Since it has been
pointed out elsewhere that a strong connection between some RGO properties (e.g. electrical conductivity) and
the sp” carbon atom can be observed [27], our analysis suggests the existence of saturating trend of such
observables for increasing annealing temperatures. Next, we observe that for a given annealing temperature, the
amount of sp>~hybridized carbons of the reduced system decreases for larger values of the initial concentration
of functionalizing groups. This fact is evident in the two low-density samples for T > 1500 K and can be better
explained by looking at the typology of chemical desorption processes occurring within the samples. Figure 4
shows the number of reactions involving a carbon atom removal in the four systems considered. At each
temperature, the number of occurrences of such processes increases with initial functionalization density.
Differently stated, the most probable reactions taking place in highly-oxidized samples involve the removal of a
carbon from the sheet, consequently damaging the plane crystallinity. It is convenient to visualize the atomic
sites of the underlying graphene plane from which carbon atoms have been removed through damaging
chemical processes. The inset of figure 4 shows a map for the four systems at temperature T = 1500 K where
lighter points correspond to the removed atoms. As expected, most of the vacancies are formed in the originally
oxidized areas, with more removals in the highly-oxidized samples. The original oxidized areas are strongly
subject to damaging processes, which in the high-density cases can be completely emptied of carbon atoms. In
those regions, the increasing number of vacancy formations could even give rise to the removal of the entire
oxidized area leaving a hole. Such situation corresponds to a limiting case in which all the originally oxidized
atoms are removed, i.e. with a minimum increase of sp°-hybridized carbons obtained through reduction. An
image of the samples after annealing at temperature 1500 K is given in figure 5.

We proceed with the structural analysis of the reduced samples. By exploiting the atomistic picture
developed in this work, we mapped the ‘strain field” after thermal treatment. Specifically, we calculated the
displacement of each carbon atom at the end of the reduction process with respect to its ideal position in an
unoxidized graphene plane. In detail, the positions used are those extracted from the low-temperature system
configurations obtained minimizing the total energy, after the process and in the pristine samples, respectively.
Figure 6 shows the map of the ‘strain field’ for the four systems after reduction at T = 1000 K: for each atom, a
circle is depicted with a radius proportional to the defined displacement. It is clear how the strain field varies with
the density of defects in the oxidized areas: the deviation from a pure graphene plane is indeed stronger in highly
functionalized areas (which are characterized by larger regions with a darker colour). The regions involved
correspond to the originally functionalized areas and the closer regions: they have lost oxygen groups as an effect
of the thermal process but, as a consequence of the occurred carbon removals, a corresponding deformation of
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Figure 4. Number of chemical reaction involving the removal of carbon atoms from the basal plane during the thermal annealing of
system of 1. (Inset) Map of the loci where the carbon removals took place during reduction (in yellow).

0:C=0.15

Figure 5. Atomistic view of the systems of figure 1 after thermal annealing at T = 1500 K: carbon atoms in blue, oxygen atoms in red.

T =1000K

0:C=0.15 0:C=0.25 0:C=0.35 0:C=0.45

Figure 6. Map of the strain field after thermal treatmentat T = 1000 K for the systems of figure 1. For each atom, a circle is depicted
with a radius proportional to its displacement with respect to its ideal position in an unoxidized graphene plane.

the system from the graphene plane is also gained. As expected, the chemical and structural modifications play a
pivotal role in the transport performance of the samples: non-sp* domains and local changes in the graphene
lattice constants represent detrimental scattering sources both for thermal and electronic transport.
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Figure 7. Mean value of the atomic displacements in the systems of figure 1 after the treatment at different temperatures.

AR

system 1 system 2 system 3 system 4

Figure 8. GO samples with different spatial distribution of the oxidized areas on the basal plane. (Top panels) Side view. (Bottom
panels) Front view: only oxygen atoms are shown for the sake of clarity.

We conclude now by discussing the dependence of such mechanical deformations as a function of the
annealing temperature. Figure 7 shows the mean value of the atomic displacements in all the systems after the
treatment at different temperatures. All the samples undergo a stronger mechanical deformation as the
annealing temperature is increased with generally stronger effects in strongly oxidized samples. The larger
energy which is transferred to the systems at high temperatures is then sufficient to desorb atoms from the plane
but at the same time is sufficient to modify the local atomic configuration.

Morphology of functionalizing areas

We now focus on the spatial distribution of oxidizing agents on the pristine graphene plane. This is critical to
understand the demonstrated action of the agglomerated and highly concentrated oxygen functionalities to
improve the overall stability of the material.

The possible spatial configurations of defected areas within a GO sample is extremely large: in particular, an
exceedingly large number of possibilities exist for the shape and dimension of the oxidized areas as well as for the
local configuration of epoxy and hydroxyl groups within the same areas. This makes also the treatment of this
problem unpractical via a systematic simulative approach. Hence, we adopt an alternative approach which
allows to extract information on the effect of annealing on the morphology of GO. We built a set of GO systems
which are characterized by different dimensions of the oxidized clusters and by different shapes of the
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Figure 9. Final value of O:Cratio as a function of the annealing temperature in the systems of figure 8 after thermal reduction.
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Figure 10. Final value of sp® carbons as a function of the annealing temperature in the systems of figure 8 after thermal reduction.

agglomerates. In order to focus on the effect of the spatial distribution of oxidizing impurities, they have been
endowed with the same total initial carbon-oxygen ratio (about 0.26 in our case). In particular, the similar
oxygen concentration will allow an almost fair comparison of the selected samples. The systems considered in
this section are shown in figure 8. This set of GO samples contemplates different possibilities of agglomerated
oxygen functionalizations: from a random distribution of oxygen groups in system 1 (with several and extremely
small oxidized areas) to system 4 which represents the most clusterized system whose oxidized areas have linear
dimensions of tenths of nanometers.

We begin calculating the amount of oxygen adsorbed onto the basal plane as a function of the annealing
temperature: results are given in figure 9. After a weak decrease in the oxygen content at low temperatures, all the
systems undergo a stronger reduction process for T > 500 K, resulting in an efficient decrease of functionalizing
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T =1500K

system 1 system 2 system 3 system 4

Figure 11. Atomistic view of the systems of figure 8 after thermal annealing at T = 1500 K: carbon atoms in blue, oxygen atoms in red.
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Figure 12. Number of chemical reaction involving the removal of carbon atoms from the basal plane during the thermal annealing of
system of 8. (Inset) Map of the loci where the carbon removals took place during reduction (in yellow).

groups. However, the values of O:C ratios found reveal only a weak dependence on the morphogical features of
the samples. Similar values of final O:C are indeed observed. A different perspective on the occurring reduction
is gained by considering the number the sp hybridized carbon atoms within the systems. Figure 10 shows the
evolution of this quantity normalized with respect to its initial value as a function of the temperature. A clear
trend is now observed: for sufficiently high temperatures, less clusterized samples show a larger increase of the
sp” carbons and hence a larger recovered cristallinity. These findings highlight the effect of GO morphology on
the annealing process, which is found almost twice more effective in samples with diluted impurities. The images
of the systems after annealing at temperature 1500 K offer an immediate picture of the different degree of purity
of the system in the different cases. Figure 11 provides strong evidence that the release of oxygen groups is
associated with two competing mechanisms: (i) the release of oxygen from the surface with a complete
restoration of the sp” character of the carbon atoms and (i) the release of oxygen from the surface with a
corresponding removal of carbon atoms from the plane. The latter irreversibly affects the plane cristallinity by
introducing topological defects like vacancies. These mechanisms generally occur in all the systems resulting in
the similar O:C ratios of figure 9; the corresponding occurrencies are, instead, strongly dependent on the spatial
distribution of the functionalized areas. Figure 12 clarifies this point by showing the occurrencies of carbon
removals from the plane (normalized to the total number of carbons) in the different cases considered. A
correspondigly larger number of carbon release is observed for more clusterized samples at any given
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Figure 13. Map of the strain field after thermal treatment at T = 1000 K for the systems of figure 8. For each atom, a circle is depicted
with a radius proportional to its displacement with respect to its ideal position in an unoxidized graphene plane.
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Figure 14. Mean value of the atomic displacements in the systems of figure 8 after the treatment at different temperatures.

temperature, revealing how the presence of close oxygens favours reactions involving the extraction of carbons
from the plane. In the inset of figure 12 the spatial distribution of the carbon removals is shown at T = 1500 K in
the four systems.

We conclude this section by analizing the structural features of the systems after thermal reduction.
Figure 13 shows the strain field of the samples after a thermal treatment at T = 1000 K. The deviation from the
planar character of pristine graphene plane is indeed more pronounced for higher impurity concentrations. The
regions involved correspond to the originally functionalized areas, which upon removal of oxygen groups are
then subjected to relaxation process leading to a local rearrangement of the atomic configuration. The
corresponding evolution of the average deviation as a function of the annealing temperature is shown in
figure 14. We note how more clusterized samples yield a less planar final configuration after the treatment, with a
deformation increasing as a function of the temperature. The trend observed is indeed common to all the
systems. After an initial transient over which the atomic displacements change to a reduced extent, a sudden
increase is found for a sufficiently high temperature. The threshold temperature depends on the initial
morphology of the oxidized areas and shows a clear correlation with the onset of removal of carbon atoms from
the basal plane (figure 12). This points to the vacancy formation mechanism as the responsible force leading to a
spatial rearrangement of the atoms in GO.
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Conclusions

In this work, we investigate, by means of classical molecular dynamics, the effect of thermal annealing on
reducing different samples of GO. By monitoring the number of sp” carbon atoms and the oxygen-to-carbon
ratio as a function of the annealing temperature, we study the effect of the density of oxidizing agents adsorbed
and of the spatial distribution of the functionalized areas onto the efficacy of the thermal treatment.

We show how the initial concentration of oxygen-based functionalizing groups impacts the efficacy of the
reduction process: for O:C densities larger than 35% the thermal reduction does not yield a sizeable recovery of
the plane crystallinity. In these cases, the main mechanisms activated by thermal energy are reactions involving
the removal of carbon atoms from the plane. As a result, vacancies are formed. A strong local rearrangement of
the atomic configuration is obtained with a sizeable deformation of the basal plane whose regularity is
consequently lost. Similarly, clusterization of the oxidized areas largely affects the quality of the reduced GO
upon application of a thermal process. The amount of carbons going back to the unoxidized state after the
treatment decreases for spatially concentrated functionalizations. At the same time, more vacancies are generally
generated in such systems. Moreover, the thermal energy within the systems engenders a stronger deformation
of the atomic configuration. In both cases, the spatial deformation of the basal plane following the thermal
annealing increases with the annealing temperature. These findings suggest the possibility to improve the
cristallinity of RGO through optimal choice of the parameters of the thermal reduction process, i.e. annealing
temperature and initial GO morphology. In particular, for a given spatial distribution of oxidizing agents on the
sample, an optimal value of the annealing temperature could be found, yielding a minimal distortion of the
plane and a sizeable recovery of the sp® carbon domains. Finally, we mention that our simulation data could
actually be further integrated into materials databases [44, 45], for further use of machine learning algorithms
[46—49] to extrapolate on morphologies and physical properties (electronic and thermal) of a large spectrum of
reduced GOs morphologies. This could enable faster access to important information for designing composites
with improved performances.
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