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Abstract. We investigate the bulk properties of protoneutron stars in the framework of a
relativistic mean field theory based on nonextensive statistical mechanics, originally proposed
by C. Tsallis and characterized by power-law quantum distributions. We study the relevance
of nonextensive statistical effects on the β-stable equation of state at fixed entropy per baryon,
for nucleonic and hyperonic matter. We concentrate our analysis in the maximum heating
and entropy per baryon s = 2 stage and T ≈ 40 ÷ 80 MeV. This is the phase, at high
temperature and high baryon density, in which the presence of nonextensive effects may alter
more sensibly the thermodynamical and mechanical properties of the protoneutron star. We
show that nonextensive power-law effects could play a crucial role in the structure and in the
evolution of the protoneutron stars also for small deviations from the standard Boltzmann-Gibbs
statistics.

1. Introduction
A protoneutron star (PNS) is born immediately after the gravitational collapse of a massive
star (M ≈ 10÷ 20 M⊙) and in the first seconds of its evolution it is a very hot, lepton rich and
β-stable object, with a temperature of a few tens of MeV and a lepton concentration typical of
the pre-supernova matter [1].

It is well known that the knowledge of the nuclear equation of state (EOS) plays a crucial role
in the determination of the structure and in the evolution of the PNS [2]. The processes related
to strong interaction should in principle be described by quantum chromodynamics. However, in
the energy density range reached in the compact stars, strongly non-perturbative effects in the
complex theory of QCD are not negligible. In the absence of a converging method to approach
QCD at finite density one often turns to effective and phenomenological model investigations.

In the last years there is an increasing evidence that the nonextensive statistical mechanics,
originally proposed by C. Tsallis and characterized by power-law quantum equilibrium
distributions, can be considered as an appropriate physical and mathematical basis to deal with
physical phenomena where strong dynamical correlations, long-range interactions, anomalous
diffusion and microscopic memory effects take place [3, 4, 5, 6, 7].

In this framework, several authors have outlined the relevance of nonextensive statistical
mechanics effects in high energy physics and astrophysical problems [8, 10, 9, 11, 12, 13, 14, 15,
16, 17]. This feature results to be particular valid in the central core of such compact object,
where hadrons may be strongly correlated and long range interaction may take place.
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The existence of nonextensive statistical effects, should sensibly affect the finite temperature
and density nuclear EOS [18, 19, 20, 21]. In fact, by varying temperature and density, the EOS
reflects in terms of the macroscopic thermodynamical variables the microscopic interactions in
different nuclear matter regimes.

In this work we limit ourselves to consider only small variation from the standard Boltzmann-
Gibbs (BG) statistics (from q = 0.97 to q = 1.03). In particular, we concentrate our study in
the stage immediately after the supernova explosion (called deleptonizazion era), when the PSN
assumes the maximum heating and entropy per baryon (s = 2) and the presence of nonextensive
effects may alter more sensibly the thermodynamical and mechanical proprieties of the PNS.

2. Nonextensive hadronic equation of state
The hadronic EOS is calculated in the framework of the nonextensive statistical mechanics
introduced by Tsallis [3, 4, 5]. The nonextensive statistics represents a physical mathematical
tool in several physical fields and it is based on the following definition of q-deformed entropy
functional

Sq[f ] =
1

q − 1

(
1−

∫
[f(x)]q dΩ

)
,

(∫
f(x) dΩ = 1

)
, (1)

where f(x) stands for a normalized probability distribution, x and dΩ denoting, respectively,
a generic point and the volume element in the corresponding phase space. The nonextensive
statistics is, therefore, a generalization of the common BG statistical mechanics and for q → 1
it reduces to the standard BG entropy. Furthermore, nonextensive statistical effects vanishes
approaching to zero temperature.

In this context, the nonextensive statistics entails a sensible difference on the power-law
particle distribution shape in the high energy region with respect to the standard statistic. In
particular, for a dilute gas of particles and for small deviations from the standard statistical
mechanics (q ≈ 1), it can be written as [22]

ni =
1

ẽq(β(Ei − µi))± 1
, (2)

where β = 1/T and the sign (±1) is for fermions and bosons respectively. Following Ref. [22],
in Eq.(2), for q > 1, we have

ẽq(x) =

{
[1 + (q − 1)x]1/(q−1) if x > 0 ;

[1 + (1− q)x]1/(1−q) if x ≤ 0 ,
(3)

whereas, for q < 1,

ẽq(x) =

{
[1 + (q − 1)x]1/(q−1) if x ≤ 0 ;

[1 + (1− q)x]1/(1−q) if x > 0 .
(4)

In this work, we study the proprieties of hot and dense nuclear medium, using the nonlinear
Walecka model (GM3 parameter set), based on a relativistic mean-field model (RMF) approach,
where the nuclear force is mediated by the exchange of virtual isoscalar-scalar (σ), isoscalar-
vector (ω) and isovector-vector (ρ) mesons fields [23, 24, 25, 26, 27].

The vector (ρB) and scalar (ρS) baryon density are given respectively by [28]

ρB = 2
∑
i=B

∫
d3k

(2π)3
[ni(k)− ni(k)] , (5)

ρS = 2
∑
i=B

∫
d3k

(2π)3
M∗

i

E∗
i

[nq
i (k) + n q

i (k)] , (6)
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where ni(k) and ni(k) are the q-deformed fermion particle and antiparticle distributions function
given in Eq.(2); For q > 1 and β(E∗

i − |µ∗
i |) > 0, we have, for example,

ni(k) =
1

[1 + (q − 1)β(E∗
i (k)− µ∗

i )]
1/(q−1) + 1

. (7)

The nucleon effective energy is defined, as usual, by Ei
∗(k) =

√
k2 +Mi

∗2, where Mi
∗ =

Mi − gσBσ and the effective chemical potentials is: µ∗
i = µi − gωBω − τ3iBgρBρ.

The β-stability condition and the charge neutrality are given by

µΛ = µΣ0 = µΞ0 = µn , (8)

µΣ− = µΞ− = µn + µe , (9)

µp = µΣ+ = µn − µe , (10)

ρp + ρΣ+ − ρΣ− − ρΞ− − ρe = 0 . (11)

The total entropy per baryon is calculated as

s =
1

TρB
(SB + Sl) , (12)

with

SB = PB + ϵB −
∑
i=B

µiρi , (13)

Sl = Pl + ϵl −
∑
i=l

µiρi , (14)

where the sums runs over all the baryons and leptons species. In the considered stage
(s = 2, Yν = 0), neutrinos have already escaped from the PNS and the lepton fraction
(YL = Ye + Yνe = (ρe + ρνe)/ρB) reduces to YL = Ye, where ρe, ρνe and ρB are the electron,
neutrino and baryon number densities, respectively.

Finally, the thermodynamical quantities can be obtained from the thermodynamic potential
in the standard way. More explicitly, the baryon pressure PB and the energy density ϵB can be
written as

PB =
2

3

∑
i

∫
d3k

(2π)3
k2

E∗
i (k)

[nq
i (k) + nq

i (k)]−
1

2
m2

σσ
2 − U(σ) +

1

2
m2

ωω
2 +

1

2
m2

ρρ
2 , (15)

ϵB = 2
∑
i

∫
d3k

(2π)3
E∗

i (k)[n
q
i (k) + nq

i (k)] +
1

2
m2

σσ
2 + U(σ) +

1

2
m2

ωω
2 +

1

2
m2

ρρ
2 . (16)

The implementation of the hyperon degrees of freedom comes from determination of
the corresponding meson-hyperon coupling constants that have been fitted to hypernuclear
properties and their specific values are taken from Ref. [26].

In Fig. 1 and in Fig. 2, we report some of the most important effects in the structure
and in the thermodynamical properties of the PNS in the framework of nonextensive statistical
mechanics, during the maximum heating phase (s = 2 and Yν = 0). In the left panel of Fig.
1, we show the variation of the maximum baryonic mass as a function of the central baryon
density ρc, for different values of q, both for nucleonic (np) and hyperonic (npH) stars. We
observe a remarkable increase (reduction) of the maximum baryonic mass when q > 1 (q < 1).
The corresponding mass-radius relation (right panel) is also sensibly modified in presence of a
nonextensive statistics.
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Figure 1. Maximum baryonic mass MB in units of solar mass M⊙ (left panel) and the
corresponding stellar radius profile (right panel), as a function of the central baryon density
ρc (in units of the nuclear saturation density ρ0) for different values of q and for nucleons and
hyperons stars.

The above behaviors are substantially due to the softening of the EOS in presence sub-
extensive statistics (q < 1), together with a remarkable reduction of the maximum temperature
both for nucleonic and hyperonic PNS, as reported in Fig. 2. Contrariwise, when q > 1, we
observe an increase of the maximum temperature. These remarkable differences in the stellar
temperature have important consequences in the PNS evolution and, consequently, in the cooling
of the PNS, making it longer when q > 1, and shorter when q < 1, with important astrophysical
implications. All of these effects are also present when neutrinos are trapped in the PNS (s = 1
and YL = 0.4), however, due to the lower temperature achieved in this phase, they are less
pronounced.

q=1.00
q=1.03
q=0.97

np

npH
np

npH

np

npH

s=2, YΝ=0

1 2 3 4 5 6
ΡB�Ρ0

20

40

60

80
T@MeVD

Figure 2. Temperature as a function of
the baryon density (in units of the nu-
clear saturation density ρ0) for nucleonic
and hyperonic PNS, for different values
of q.

In conclusion, we have shown that the nonextensive statistical mechanics, characterized by
power-law quantum distributions, can play a crucial role on the physical properties of the PNS
and can be considered as an effective mathematical basis to investigate the complex structure
and evolution of the PNS. From a phenomenological point of view, we have considered the
nonextensive index q as a free parameter, even if, in principle, it should depend on the physical
conditions inside the PNS, on the fluctuation of the temperature and be related to microscopic
quantities (such as, for example, the mean interparticle interaction length). The variation of the
maximum temperature, together with a significant variation of the maximum mass and stellar
radius, could be considered as a relevant phenomenological behavior in order to observe some
astrophysical evidences of nonextensive statistical effects in PNS.
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