
Analyzing the Instability of the Core Components
of Software Projects

Lerina Aversano, Daniela Guardabascio, Maria Tortorella

Department of Engineering, University of Sannio, p.zza Roma 21, 82100 Benevento, Italy.
{aversano, guardabascio, tortorella}@unisannio.it

Abstract

Open source software projects represent a significant
source of existing pieces of software to be identified and
used to implement new or emerging requirements.
However, the high complexity of the existing software
systems makes difficult the identification of software
components to be reused in other systems and the
evaluation of their quality. This paper proposes an
approach aiming at identifying the core components of a
software system and proposing and evaluating some
metrics for measuring the evolution of their architecture
instability across multiple releases. Then, the paper
analyses how the architecture of core components of a
software system evolves respect to the whole system. It also
investigates the different factors influencing the instability
of the core components and it verifies if it decreases across
multiple releases assumed that this is a good indication
that they can constitute a good candidate to be reused.

1. Introduction

The availability of large repositories of open source
software projects makes concrete the possibility of
exploiting existing pieces of software to face new or
emerging requirements. However, software systems are
becoming more and more complex, making very difficult
the hard task of identifying existing software components
to be reused in other systems. Offering an effective support
to software engineers in this complex task requires the
definition of advanced methods and tools helping to
achieve a view of a software architecture, identifying
software components to be candidate for being reused and
obtaining quantitative information regarding the quality of
such software components.

This paper presents a study on the identification of the
architectural core of a software system and on the analysis
of its stability with reference to the software system itself
and across multiple releases. The architectural core of the
software system is composed of software components on
which the large part of activities and functionality of the
software system are concentrated. It is desirable that the
architectural core of a software system should be more
stable than the system itself [3] for being a good candidate
for reuse. This aspect can be analyzed by evaluating the

architectural stability of a considered software system [4]
and related core. It represents the extent at which the
software systems can endure changes in requirements,
while leaving its architecture intact [11]. Stability
information refers to a non-functional attribute that is
significant for a software engineer for considering a
component to reuse in a different project. Actually, higher
the stability of a software component is, more easily it can
be reused in a new software system.

The analysis performed in this paper is based on the
historical data regarding the evolution of a set of software
systems, with the aim of identifying their architecture
cores, highlighting how their instability evolves across
multiple releases. With this in mind, the paper proposes
some metrics for measuring the architecture instability, and
evaluates the instability trends of the cores across multiple
releases of a set of software systems; then, the paper
compares the core instability trends to the ones of their
software systems.

The performed analysis considers software systems
developed with different evolution trends and concerning
different application domains. Due to the large availability
of open source software projects and related releases, the
study analyzes a set of such a kind of projects.

The remainder of this paper is organized as follows:
Section 2 reports the main related works; Section 3
describes scope and definition of the analysis; Section 4
analyses the data source analysis and selection; the
successive section presents the instability metrics adopted
for the analysis of the software architectures. Section 6
discusses the obtained results. Finally, the last section
presents concluding remarks and outlines future work.

2. Related Work

In the literature, there are several research works
addressing the analysis of the architecture of an existing
software system [14, 17, 18]. Initial architecture analysis
methods, such as SAAM [11], SAAMER [13], APLSM
[5], focused on various aspects of architectures, like
modifiability, maintainability, or reusability.

Architectural stability is an important factor for
software reuse, during either the reusable asset selection or
library upgrades. In [6], two sets of metrics that measure
the architectural stability and the evolution of software

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50596
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 5645

projects in the context of software reuse are introduced.
The first set of architectural stability metrics measures the
degree of consistency between consecutive versions of the
same system and considers the common architectural
elements. The second set of architectural evolution metrics
quantifies the architectural evolution between consecutive
versions of the same system and considers the newly
introduced architectural elements, as well as their
interaction with the remaining elements of the system.

In [7], the authors highlight that the available
architectural stability measures lack some other important
structural aspects of the architecture, such as inter-package
connections (IPCs), and propose a new metric to measure
the architectural stability of object-oriented (OO) system in
terms of IPC. The contribution provides information
regarding the package and its evolution, enabling the
monitoring of trends in software evolution. In order to
evaluate the stability of an OO software system developed
using an agile design similar to Extreme Programming, the
authors in [15] validated the metrics SDI - System Design
Instability. In [8], the authors emphasize the diffusion of
open source projects, asserting that their success is due to
several factors, such as the fact that the developer is also
the current user, the sound and the modularity of the
architecture. The modularity is the most important factor
and the authors apply a quantitative analysis of open
source Java-based projects for measuring the level of
modularity in open source projects.

In [10], the authors carried out an analysis to evaluate
the stability of a software system. They analyzed the entire
history of a system going to consider the changes
implemented in the next release of the software product.
This analysis has been combined with predictive analysis,
in order to validate the forecasts of the project under
consideration.

In [1] the authors proposed an empirical study of the
class growth and the SDI metric in two OO systems,
developed using an agile process similar to Extreme
Programming (XP), concluding that the growth of the
systems class follows observable trends. Moreover, the
authors observed that the SDI metric can indicate project
progress with certain trends, and the SDI metric is
correlated with XP activities.

In [2], it has been analyzed the impact of refactoring on
class and architecture stability. Actually, when applying
refactoring it is necessary to assess how the changes to be
performed could impact the entire system.

The study of the instability is not limited to software-
only product, but also to libraries developed by third
parties and integrated into real software products. In order
to analyze the stability of a software system, in [16], the
authors, focused on the use of such libraries.

The stability of a software product is important in order
to facilitate maintainability and its evolution. In [19] the
authors present a set of metrics designed to measure the
stability of an open source software product such as:

version Stability, branch stability, structure stability and
aggregate stability.

In [9], the authors demonstrated the effectiveness of
techniques based on the concepts that using software
stability model (SSM) and Knowledge Maps (KMs), it is
possible to realize software solutions that do not need
excessive alterations, changes or additions.

In [12], a taxonomy of architectural smells, metrics,
and their impacted quality properties is provided relating
these smells to maintenance and evolution areas.

In [3], an initial definition of instability metrics was
proposed and used for measuring the instability of the
subset of software components responsible for the large
part of interactions within the software system. That subset
of components represented the core of a software system
and could indicate software assets to be candidate for
reuse. The metrics proposed in [3] have been considered in
this paper for defining new metrics for evaluating a
software system instability. Specifically, the contribution
of this paper to the literature can be sensitized as follows:
• the instability of a software projects is not evaluated

with reference to a single release but, instead, to the
moving from a release to another;

• a set of metrics is defined to assess the instability
splitting the design from the interaction point of view;

• the proposed metrics are validated with a detailed
analysis that involved the assessment of 6 software
projects over numerous releases.

3. Scope Definition of the Analysis

This section provides an overview of the objective of
the performed study for analyzing the architecture stability
of software systems, and describes the steps performed. In
particular, the study involved different releases of 6 open
source software projects and focuses on the instability of
the software architecture and evolution of the main
architectural components.

The main considered characteristic is the instability of
software projects and related architecture components,
analyzed with reference to a set of different releases of the
software projects. Thus, the objectives definition
specifically requires the understanding of how to measure
the instability of the architecture of a software system. In
particular, the study aims at identifying the architecture
core of a software system, that is those components on
which the large part of the interactions, about 80%, are
concentrated. Once the architecture core is identified, the
analysis explores if architectural variations can be
observed across multiple releases of the software system,
and if a relation with the instability metrics of the whole
software system exists. Then, the study aims to establish in
a preliminary way at what extent the software architecture
of a set of software projects is instable, with reference to

Page 5646

its core components, and by considering its evolution
history.

For performing the analysis above, the paper objectives
can be expressed by the following three research questions.

RQ1. To what extent the core is more stable than the
full system? This research question aims to understand
whether the instability of the full system evaluated at the
package level through Project Design Instability and
Project Call Instability is different respect to the instability
of the core assessed at the package level, Core Design
Instability and Core Call Instability.

RQ2. Is the project instability mainly due to the adding
of new packages, removal of old packages or change of
existing packages? This research questions aims to analyze
the different contribution coming from the added, removed
and changed packages in the evaluation of the instability of
the full project. The aim is to understand if the full system
instability is mainly due to the changes of the software
system design or to the one of its packages, when the
software system evolves.

RQ3. Is the core instability mainly due to the adding of
new core packages, removal of old core packages or
change of existing core packages? The question analyses
the same aspect investigated in the previous research
question with reference to the software system core.
Therefore, the aim is to understand if the main contribution
to the core instability comes from the added, removed or
changed packages to the core during the evolution of the
considered software system.

4. Datasource Analysis and Data Extraction

The principal source of information for the study are
the source code repositories. In particular, SourceForge
and GitHub were the primary source of the data required
from the performed study. The projects hosted in
SourceForge can have different status, classified as:
Active, Inactive, Planning, Pre-Alpha, Alpha, Beta,
Production/Stable and Mature. Actually, only the Active
and Mature projects were considered, as the inclusion of

immature or incomplete projects could influence the
results. Some information regarding the project category
were directly extracted from the SourceForge Platform by
using a Python script. The output was an integrated
database where all the required information was cleaned
and reorganized. In order to conduct the analysis, an initial
sampling was performed to focus on few projects. For the
selection of the software projects to be considered the
attention was focused only on those projects written by
using Java programming language and classified as Mature
projects. Then, the obtained list of projects was filtered
again, by considering the project “popularity”. Finally, the
projects were manually validated, since it occurred that:
some projects were linked to an empty repository; some
projects had a fewer number of minor releases; and some
projects were erroneously classified as Java projects. After
the above filtering process, it was possible to identify the
projects on which the experimental analysis could be
concentrated. They were six projects, listed in Table 1.

A first evolution history was obtained for the 6 selected
projects. With this in mind, the commits on the
SourceForge and GitHub project repositories were
considered and the analysis of their log files permitted to
reconstruct the history of each project and choose the
releases to be considered. They have been selected in order
to obtain a reasonable distribution over the timeline of the
considered projects and mainly select major releases. The
last two column of Table 1 indicate the number of the
releases available when the project releases were
downloaded and the one of the actually considered
releases. It is possible to verify from the table that the
number of the available releases is much higher than that
one of the considered releases. This depends on the fact
that many available releases contained minor changes and
it was decided to analyze just the major releases, whose
comparison could more easily highlight a project
instability, if it existed. The number of the considered
releases of the projects are listed in Table 1. Therefore,
project architectures and related evolution were analyzed
by considering the packages of these releases and
reciprocal interactions.

Table 1. Overview of the analyzed projects

PROJECT NAME DESCRIPTION WEB SITE REPOSITORY
NUMBER OF
AVAILABLE
RELEASES

NUMBER OF
CONSIDERED

RELEASES

CloverETL A Java ETL framework which transforms
structured/unstructured data

http://sourceforge.net/projects/clov
eretl.berlios/?source=directory SourceForge 37 19

JPPF
A system making easy to parallelize
computationally intensive tasks and

execute them on a Grid.
http://www.jppf.org/ SourceForge

129 26

MessAdmin
A HttpSession administration and

notification system application plug-in
for J2EE Web Applications

http://messadmin.sourceforge.net/ SourceForge
25 16

OpenNMS A Java based fault and performance
management system http://www.opennms.org/ GIT 181 17

OpenSearchServer An open source search engine with
RESTful API and crawlers http://www.opensearchserver.com/ GIT 54 7

Sesame A de-facto standard framework for
processing RDF data http://rdf4j.org/ SourceForge -

GIT 108 14

Page 5647

(a) Release 1.8

(b) Release 1.9

Figure 1. Interaction graphs of project CloverETL

Besides the instability measures of the full projects, the
ones of the project architectural core components were
considered, it is opportune to anticipate that the
architectural cores were identified for each releases of the
six projects during the process of analysis. The
architectural core of a release of a software project
represents the set of main packages of that release.
Specifically, the study considers that the architectural core
is composed of those packages that produced at least 80%
of the total interactions among the packages.

The analyzed interactions among the packages were:
fan-in, the number of interactions from packages toward
one package; fan-out, the number of interactions of one
package to other packages; self-call, numbers of
interaction of one package to the package itself. The
identification of the architectural core considered only the
values of the fan-in, that is the most relevant information.
The fun-out was not considered for avoiding duplications
of the number of calls already considered in the fun-in
value; while the self-calls do not impact on the fun-in and
fun-out values of the involved packages.

The set of packages composing the core may change
from one release to the successive one. Figure 1 includes
the interaction graphs of project CloverETL with reference
to two successive releases. Figure1a concerns release 1.8
and the yellow colored nodes regards packages
belongingto the core. Figure 1b includes the evolution of

release 1.8 toward release 1.9, and indicates that, besides
the number of project packages, even the core packages,
highlighted with colored nodes, changed respect the
previous release. The green colored circles highlight the
packages of the core of release 1.8 that change in release
1.9; the blue circles indicate the packages added to the core
in release 1.9; and the red circle in release 1.8 is removed
form the core of the successive release.

5. Instability Metrics

To analyze the instability of a software system and
related core, two set of metrics were used. Their definition
evolves the metrics proposed in [3], by considering also
the modified software components, and specializing them
to packages and classes. Specifically, instability metrics
have been grouped in two sets: Design Instability and
Interaction Instability. Both metrics are evaluated with
reference to both all the project and the project core.

The first kind of metric, named Design Instability (DI),
is based on the evaluation of how the software system
packages evolve going from a release, N, to the next
considered one, N+1. The evolution actions regarding a
package concern its adding, removal and modification.
Prefix P or C to the DI metric indicate if it is concerns the
Project Design Instability (PDI) or the Core Design
Instability (CDI). The Interaction Instability metrics,

Page 5648

referred as Calls Instability (CI), regards the interactions,
in terms of fan-in and self-call values of each analyzed
software component. In this case, the evolution concerns
the modification of the number of interaction, which can
be due to the adding of new interactions and/or removal of
the existing ones. Even in this case, the prefix P or C to the
CI metric indicates if it is regards the Project Call
Instability (PCI) or the Core Call Instability (CCI).

The Design Instability (DI) aims to evaluate the
changes performed on the architecture/core of release N of
a considered software system when it evolves toward
release N+1. Then, DI can be defined as follows:

 = ℎ _ + _ + __ + ℎ _ + _ + _
where:
• changed_comp is the number of software components

of release N of the considered software project/core,
that have been changed for obtaining release N+1;

• added_comp is the number of new software components
added to release N of the considered software
project/core for evolving it toward release N+1;

• removed_comp is the number of software components
removed from release N of the considered software
project/core for evolving it toward release N+1;

• number_comp is the number of software components
composing release N of the considered software
project/core.
The Calls Instability (CI) is referred to the changes of

the interactions between the software components of
release N of a considered software system/core for
evolving it toward release N+1. It is computed as follows:

= _ + __ + _ + _

where:
• total_interactions is the total number of interactions

between the software components belonging to the
architecture of release N of the considered software
system/core. Calls starting from external software
components are excluded.

• added_interactions is the number of new software
components interactions added to release N of the
considered software system/core for evolving it toward
release N+1 after changes are executed.

• removed_interactions is the number of software
components interactions removed from release N of the
software system/core for evolving it toward release N+1
after changes are performed.

Metrics PDI/CDI and PCI/CCI measure how much the
packages of a software system/core change from release N
to the next considered one, release N+1. They can assume
a value in the range 0 to 1. Smaller their values are, less
the system changes, and consequently more stable it is.

For answering the research questions RQ2 and RQ3,
other metrics have been evaluated. They represent the
contribution coming from the added (DI_a and CI_a),
removed (DI_r and CI_r) and changed (DI_c) packages
and interactions for the evaluation of the Design and Call
Instability with reference to the project and core.

For the Design Instability, DI_a, DI_r and DI_c are
evaluated as it follows: _ = __ + _

_ = __ + _
_ = ℎ __ + ℎ _

For the Call Instability, CI_a, CI_r are the following: _ = __ + _

_ = __ + _

With reference to the project they are called PDI_a,
PDI_r, PDI_c, PCI_a and PCI_r. While they are CDI_a,
CDI_r, CDI_c, CCI_a and CCI_r for the core.

6. Achieved results

This section discusses the results achieved in our study
aimed at responding to our three research questions.

RQ1. To what extent the core is more stable than the
full system?

This question aimed at investigating how differently
the instability measures of the whole system are respect to
the instability measures of its core components. It is useful
to understand if the architectural core of a software system
are more stable than the software system they belong to.
For answering this question, a quantitative investigation,
supported by graphical representations showing the
instability trends of the analyzed software system, is
reported. Specifically, the trends of the Design Instability
measures, PDI and CDI, are depicted in Figure 2; while
Figure 3 shows the trends of the call instability, PCI and
CCI. Figure 2 points out that the Core Design Instability
assumes values close to the ones of the full project.
Specifically, the core instability assumes values higher
than the instability of the entire project in projects
CloverETL, JPPF, and OpenNMS. In OpenSearchServer,
MessAdmin and Sesame their trends are very close, even if
the core instability tends to be higher than the system one.
This is an unexpected result, as it is generally expected that
the core components have a greater responsibility; then
they should be more stable.

Figure 3 shows the Call Instability trend. It is possible
to note that even the trends of this metric analyzed for all
the considered projects and their cores are close, even if
they are very oscillating and the core instability is often
higher than the project instability. This again indicates the
contrary to what is desirable.

Page 5649

Design Instability trend
CloverETL

JPPF MessAdmin

OpenNMS

OpenSearchServer Sesame

Figure 2. Design Instability trend for the analyzed projects and their core
Call Instability trend

CloverETL

JPPF MessAdmin

OpenNMS

OpenSearchServer Sesame

Figure 3. Call Instability trend for the analyzed projects and their core

This results are even more unexpected if Figure 4 is
analyzed. It shows the number of packages of each
analyzed software system release and that one of the
packages of the related core. In particular, it emerges that
the core packages are relatively few respect to the
packages number of the project. Moreover, the number of
core packages changes much less than the total number of
the packages. This could probably justify the higher values
of the call instability for the core packages.

This analysis suggests that a deeper investigation
concerning the project and its core instability should be
performed for a complete understanding of their values and
related variations.

 RQ2. Is the project instability mainly due to the adding
of new packages, removal of old packages or change of
existing packages?

The aims is to understand which are the principal
causes of the project instability. Then, the instability
measure has been divided for highlighting the contribution
coming from the added and removed and changed
packages. Figure 5 shows the trend of the three different
instability components with reference to the Design
Instability. The blue line indicates the instability of the
added packages, PDI_a, the red line indicates the one due
to the removed packages, PDI_r; and the green line is the
instability due the changed packages, PDI_c.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
3

2.
3_

2.
4

2.
4_

2.
5

2.
5_

2.
6

2.
6_

2.
7

2.
7_

2.
8

2.
8_

2.
9

2.
9_

3.
0

3.
0_

3.
1

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
2_

1.
3

1.
4_

1.
5

1.
6_

1.
7

1.
8_

1.
9

2.
0_

2.
1

2.
2_

2.
3

2.
4_

2.
5

3.
0_

3.
1

3.
2_

3.
3

4.
0_

4.
1

4.
2_

5.
0

5.
1_

5.
1.
1 0

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

2.
0

2.
0_

2.
1

2.
1_

3.
0

3.
0_

4.
0

4.
0_

4.
1

4.
1_

4.
2

4.
2_

4.
3

4.
3_

5.
0

5.
0_

5.
1

5.
1_

5.
2

5.
2_

5.
3

5.
3_

5.
4

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
00

_1
.1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
5

1.
5_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

1.
10

1.
10

_1
.1
1

1.
11

_1
.1
2

1.
12

_1
.1
3

1.
13

_1
4.
0

14
.0
15

.0

15
.0
_1

6.
0

16
.0
_1

7.
0

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
4

1.
4_

1.
5

1.
5_

1.
5.
13

 0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
2.
5

2.
2.
5_

2.
3.
0

2.
3.
0_

2.
4.
0

2.
4.
0_

2.
5.
0

2.
5.
0_

2.
6.
0

2.
6.
0_

2.
7.
0

2.
7.
0_

2.
8.
0

2.
8.
0_

4.
0.
0

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
3

2.
3_

2.
4

2.
4_

2.
5

2.
5_

2.
6

2.
6_

2.
7

2.
7_

2.
8

2.
8_

2.
9

2.
9_

3.
0

3.
0_

3.
1

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
2_

1.
3

1.
4_

1.
5

1.
6_

1.
7

1.
8_

1.
9

2.
0_

2.
1

2.
2_

2.
3

2.
4_

2.
5

3.
0_

3.
1

3.
2_

3.
3

4.
0_

4.
1

4.
2_

5.
0

5.
1_

5.
1.
1 0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

2.
0

2.
0_

2.
1

2.
1_

3.
0

3.
0_

4.
0

4.
0_

4.
1

4.
1_

4.
2

4.
2_

4.
3

4.
3_

5.
0

5.
0_

5.
1

5.
1_

5.
2

5.
2_

5.
3

5.
3_

5.
4

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
00

_1
.1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
5

1.
5_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

1.
10

1.
10

_1
.1
1

1.
11

_1
.1
2

1.
12

_1
.1
3

1.
13

_1
4.
0

14
.0
15

.0

15
.0
_1

6.
0

16
.0
_1

7.
0

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
4

1.
4_

1.
5

1.
5_

1.
5.
13

 0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
2.
5

2.
2.
5_

2.
3.
0

2.
3.
0_

2.
4.
0

2.
4.
0_

2.
5.
0

2.
5.
0_

2.
6.
0

2.
6.
0_

2.
7.
0

2.
7.
0_

2.
8.
0

2.
8.
0_

4.
0.
0

Page 5650

Number of packages of the projects and of the core
CloverETL

JPPF MessAdmin

OpenNMS

OpenSearchServer Sesame

Figure 4. Number of packages of the projects and number of packages belonging to their core
Design Instability trends

CloverETL

JPPF MessAdmin

OpenNMS

OpenSearchServer Sesame

Figure 5. Design Instability trends divided for added, removed and changed packages of the entire system

It is possible to note that in all the analyzed systems the
different instability components assume values less than
0.5, even if the contribution of the changed packages is
much higher than the ones of the added and removed
packages. The trends of PDI_a and PDI_r are almost
similar and assume low values. This indicates that the large
part of changes performed on the packages are mainly due
to changes of the current system packages rather than the
system structure. Figure 6 also depicts the number of
added, removed and changed packages in all the analyzed
software systems. There are also packages that do not
change, but they are not traced in the graphics, as they do
not contribute to the instability measure. It emerges from
the figure that the number of changed packages grows

going from the first to the last considered release. On the
contrary, the numbers of added and removed packages
assume values that are lower and about constant going
from the first to the last release. Similarly, Figure 7 depicts
the trends for the Call Instability divided into instability
caused by the added interactions, PCI_a indicated with
blue lines, and the one due to the removed interactions,
PCI_r traced with the red lines.

It can be observed that in all the projects the instability
due to the adding of new interactions between packages is
generally higher than the one due to interaction removal.
This causes an increasing of the package coupling during
the evolution of the software systems, and this implies a
decreasing of the quality of the software systems.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
3

2.
3_

2.
4

2.
4_

2.
5

2.
5_

2.
6

2.
6_

2.
7

2.
7_

2.
8

2.
8_

2.
9

2.
9_

3.
0

3.
0_

3.
1

0
0,1
0,2

0,3
0,4

0,5
0,6
0,7

0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
4

1.
4_

1.
5

1.
5_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
3

2.
3_

2.
4

2.
4_

2.
5

2.
5_

2.
6

3.
0_

3.
1

3.
1_

3.
2

3.
2_

3.
3

3.
3_

4.
0

4.
0_

4.
1

4.
1_

4.
2

4.
2_

5.
0

5.
0_

5.
1

5.
1_

5.
1.
1 0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

2.
0

2.
0_

2.
1

2.
1_

3.
0

3.
0_

4.
0

4.
0_

4.
1

4.
1_

4.
2

4.
2_

4.
3

4.
3_

5.
0

5.
0_

5.
1

5.
1_

5.
2

5.
2_

5.
3

5.
3_

5.
4

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
5

1.
5_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

1.
10

1.
10

_1
.1
1

1.
11

_1
.1
2

1.
12

_1
.1
3

1.
13

_1
4.
0

14
.0
_1

5.
0

15
.0
_1

6.
0

16
.0
_1

7.
0

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
4

1.
4_

1.
5

1.
5_

1.
5.
13

 0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
2.
5

2.
2.
5_

2.
3.
0

2.
3.
0_

2.
4.
0

2.
4.
0_

2.
5.
0

2.
5.
0_

2.
6.
0

2.
6.
0_

2.
7.
0

2.
7.
0_

2.
8.
0

2.
8.
0_

4.
0.
0

Page 5651

CloverETL

JPPF MessAdmin

OpenNMS

OpenSearchServer Sesame

Figure 6. Trends of the number of added, removed and changed packages in the releases of the software systems

Project Call Instability trends
CloverETL

JPPF MessAdmin

OpenNMS

OpenSearchServer Sesame

Figure 7. Project Call Instability trends divided into instability due to the added and removed interactions

RQ3. Is the core instability mainly due to the adding of
new core packages, removal of old core packages or
change of existing core packages?

This research question analyzes the instability of the
core packages, paying attention to the three considered
instability sources regarding the adding, removal and
changing packages and reciprocal interactions. Figure 8
includes the graphics of the Core Design Instability, split
into the three cited components, highlighting that the core
instability in all the systems is mainly due to the change
performed in the packages belonging to the core, rather
than their addition and removal. Actually, this is
confirmed by the graphics in Figure 9, containing the

absolute numbers of the added, removed and changed
packages during the core evolution. Just projects
MessAdmin and Sesame make few exceptions in some
releases, where the addition and removal instability is
higher than the change instability. Moreover, Figure 9
shows that the number of the removed packages from the
cores is generally higher than the number of the added
packages to the cores. Finally, Figure10 shows the
distinction of the Core Call Instability in Instability due to
the adding of new interactions and the one caused by the
removal of old interactions, within the system core and
going from one release to the successive one. The figure
indicates that the core instability due to the adding of new

0

10

20

30

40

50

60

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
3

2.
3_

2.
4

2.
4_

2.
5

2.
5_

2.
6

2.
6_

2.
7

2.
7_

2.
8

2.
8_

2.
9

2.
9_

3.
0

3.
0_

3.
1

0
20
40
60
80

100
120
140
160
180

1.
0_

1.
1

1.
2_

1.
3

1.
4_

1.
5

1.
6_

1.
7

1.
8_

1.
9

2.
0_

2.
1

2.
2_

2.
3

2.
4_

2.
5

3.
0_

3.
1

3.
2_

3.
3

4.
0_

4.
1

4.
2_

5.
0

5.
1_

5.
1.
1 0

5

10

15

20

25

30

35

40

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

2.
0

2.
0_

2.
1

2.
1_

3.
0

3.
0_

4.
0

4.
0_

4.
1

4.
1_

4.
2

4.
2_

4.
3

4.
3_

5.
0

5.
0_

5.
1

5.
1_

5.
2

5.
2_

5.
3

5.
3_

5.
4

0

100

200

300

400

500

600

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
5

1.
5_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

1.
10

1.
10

_1
.1
1

1.
11

_1
.1
2

1.
12

_1
.1
3

1.
13

_1
4.
0

14
.0
_1

5.
0

15
.0
_1

6.
0

16
.0
_1

7.
0

0

20

40

60

80

100

120
1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
4

1.
4_

1.
5

1.
5_

1.
5.
13

 0
20
40
60
80

100
120
140
160

1.
0_

1.
1

1.
1_

1.
2

1.
2_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
2.
5

2.
2.
5_

2.
3.
0

2.
3.
0_

2.
4.
0

2.
4.
0_

2.
5.
0

2.
5.
0_

2.
6.
0

2.
6.
0_

2.
7.
0

2.
7.
0_

2.
8.
0

2.
8.
0_

4.
0.
0

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
3

2.
3_

2.
4

2.
4_

2.
5

2.
5_

2.
6

2.
6_

2.
7

2.
7_

2.
8

2.
8_

2.
9

2.
9_

3.
0

3.
0_

3.
1

0
0,1
0,2

0,3
0,4

0,5
0,6
0,7

0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
4

1.
4_

1.
5

1.
5_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
3

2.
3_

2.
4

2.
4_

2.
5

2.
5_

2.
6

3.
0_

3.
1

3.
1_

3.
2

3.
2_

3.
3

3.
3_

4.
0

4.
0_

4.
1

4.
1_

4.
2

4.
2_

5.
0

5.
0_

5.
1

5.
1_

5.
1.
1 0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1.0
_1
.1

1.1
_1
.2

1.2
_1
.3

1.3
_2
.0

2.0
_2
.1

2.1
_3
.0

3.0
_4
.0

4.0
_4
.1

4.1
_4
.2

4.2
_4
.3

4.3
_5
.0

5.0
_5
.1

5.1
_5
.2

5.2
_5
.3

5.3
_5
.4

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
5

1.
5_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

1.
10

1.
10

_1
.1
1

1.
11

_1
.1
2

1.
12

_1
.1
3

1.
13

_1
4.
0

14
.0
_1

5.
0

15
.0
_1

6.
0

16
.0
_1

7.
0

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
4

1.
4_

1.
5

1.
5_

1.
5.
13

 0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
2.
5

2.
2.
5_

2.
3.
0

2.
3.
0_

2.
4.
0

2.
4.
0_

2.
5.
0

2.
5.
0_

2.
6.
0

2.
6.
0_

2.
7.
0

2.
7.
0_

2.
8.
0

2.
8.
0_

4.
0.
0

Page 5652

Design Instability trends
CloverETL

JPPF MessAdmin

OpenNMS

OpenSearchServer Sesame

Figure 8. Design Instability trends divided for added, removed and changed packages of the core system

CloverETL

JPPF MessAdmin

OpenNMS

OpenSearchServer Sesame

Figure 9. Trends of the added, removed and changed packages of the cores in the releases of the software systems

interactions is always higher than the one concerning the
removal of old interactions. Even in the case, the adding of
new interactions among packages implies an increasing of
the coupling within the cores of the systems. Then, this
causes a worsening of the quality of the system cores when
they evolve from a release to successive one.

7. Conclusion

This paper reported an empirical study for investigating
the evolution of architecture instability in 6 different open
source system. The study is based on an automatic process
for the assessment of metrics used for evaluating the

architecture instability. The availability of such an
automatic process allowed us to perform a deeper analysis
of a large number of releases for each software system.
The obtained results highlight the following aspects:
• the instability measure of the core is close to the one of

the full project. The analysis of the trend of instability
metrics PDI, CDI and PCI, CCI pointed out that it does
not exist a significant different behavior;

• the Design Instability of the considered systems is
mainly due to the changed packages instead of the added
and removed ones; while the Interaction Instability is
caused by the added interactions; that makes to increase
the packages coupling and, then, decreases the quality;

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
3

2.
3_

2.
4

2.
4_

2.
5

2.
5_

2.
6

2.
6_

2.
7

2.
7_

2.
8

2.
8_

2.
9

2.
9_

3.
0

3.
0_

3.
1

0
0,1

0,2
0,3

0,4
0,5

0,6

0,7

0,8
0,9

1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
4

1.
4_

1.
5

1.
5_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
3

2.
3_

2.
4

2.
4_

2.
5

2.
5_

2.
6

3.
0_

3.
1

3.
1_

3.
2

3.
2_

3.
3

3.
3_

4.
0

4.
0_

4.
1

4.
1_

4.
2

4.
2_

5.
0

5.
0_

5.
1

5.
1_

5.
1.
1 0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

2.
0

2.
0_

2.
1

2.
1_

3.
0

3.
0_

4.
0

4.
0_

4.
1

4.
1_

4.
2

4.
2_

4.
3

4.
3_

5.
0

5.
0_

5.
1

5.
1_

5.
2

5.
2_

5.
3

5.
3_

5.
4

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
5

1.
5_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

1.
10

1.
10

_1
.1
1

1.
11

_1
.1
2

1.
12

_1
.1
3

1.
13

_1
4.
0

14
.0
_1

5.
0

15
.0
_1

6.
0

16
.0
_1

7.
0

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
4

1.
4_

1.
5

1.
5_

1.
5.
13

 0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
2.
5

2.
2.
5_

2.
3.
0

2.
3.
0_

2.
4.
0

2.
4.
0_

2.
5.
0

2.
5.
0_

2.
6.
0

2.
6.
0_

2.
7.
0

2.
7.
0_

2.
8.
0

2.
8.
0_

4.
0.
0

0

2

4

6

8

10

12

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
3

2.
3_

2.
4

2.
4_

2.
5

2.
5_

2.
6

2.
6_

2.
7

2.
7_

2.
8

2.
8_

2.
9

2.
9_

3.
0

3.
0_

3.
1

0
2
4
6
8

10
12
14
16
18
20

1.
0_

1.
1

1.
2_

1.
3

1.
4_

1.
5

1.
6_

1.
7

1.
8_

1.
9

2.
0_

2.
1

2.
2_

2.
3

2.
4_

2.
5

3.
0_

3.
1

3.
2_

3.
3

4.
0_

4.
1

4.
2_

5.
0

5.
1_

5.
1.
1 0

1

2

3

4

5

6

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

2.
0

2.
0_

2.
1

2.
1_

3.
0

3.
0_

4.
0

4.
0_

4.
1

4.
1_

4.
2

4.
2_

4.
3

4.
3_

5.
0

5.
0_

5.
1

5.
1_

5.
2

5.
2_

5.
3

5.
3_

5.
4

0

5

10

15

20

25

30

35

40

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
5

1.
5_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

1.
10

1.
10

_1
.1
1

1.
11

_1
.1
2

1.
12

_1
.1
3

1.
13

_1
4.
0

14
.0
_1

5.
0

15
.0
_1

6.
0

16
.0
_1

7.
0

0
2
4
6
8

10
12
14
16
18
20

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
4

1.
4_

1.
5

1.
5_

1.
5.
13

 0
2
4
6
8

10
12
14
16
18

1.
0_

1.
1

1.
1_

1.
2

1.
2_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
2.
5

2.
2.
5_

2.
3.
0

2.
3.
0_

2.
4.
0

2.
4.
0_

2.
5.
0

2.
5.
0_

2.
6.
0

2.
6.
0_

2.
7.
0

2.
7.
0_

2.
8.
0

2.
8.
0_

4.
0.
0

Page 5653

Core Call Instability trends
CloverETL (a1)

JPPF (a2) MessAdmin (a3)

OpenNMS (a4)

OpenSearchServer (a5) Sesame (a6)

Figure 10. Core Call Instability trends divided into instability due to the added and removed interactions

• the core instability is mainly due to the changes of the
core packages; then, an equivalent behavior between the
software systems and their cores exists.

There are still a number of factors to be investigated.
Firstly, the study can be replicated on additional software
systems of different domains and developed using different
programming languages. Then, it can be useful to analyze
the differences between the proposed instability metrics
and other ones found in the literature. Moreover, the
presence of the subsets of software component mainly
affecting the instability could be further investigated.

8. References

[1] Alshayeb M. and Li W.,"An Empirical Study of System
Design Instability Metric and Design Evolution in an Agile
Software Process", Journal of Systems and Softwrae, 74 (3), ,
Elsevier Science Inc, 2005.
[2] Alshayeb M., “The Impact of Refactoring on Class and
Architecture Stability”, Journal of Research and Practice in
Information Technology, 43(4), November 2011.
[3] Aversano L., Molfetta M., Tortorella M., "Evaluating
architecture stability of software projects", Proc of 20th Working
Conference on Reverse Engineering, WCRE 2013, Koblenz,
Germany, October 14-17, IEEE Computer Society, 2013
[4] Bahsoon R. and Emmerich W., “Architectural Stability”.
Proc. of the Confederated International Workshops and Posters
on On the Move to Meaningful Internet Systems, 2009.
[5] Bengtsson, P.O. and Bosch, J., “Architecture level prediction
of software maintenance”. Proc. of Third European Conference
on Software Maintenance and Reengineering, 1999.
[6] Constantinou E. and Stamelos I., “Architectural stability and
Evolution Measurement for software reuse”. Proc. of the 30th
Annual Symposium on Applied Computing, ACM NY, 2015.
[7] Ebad S. A., Ahmed M. A., “Measuring stability of object-
oriented software architectures”, IET Software, 9(3), 2015.
[8] Emanuel A.W.R., Wardoyo R., Istiyanto J.E. ad Mustofa K.,
“Modularity Index Metrics for Java-Based Open Source Software

Projects”, Int. Journal of Advanced Computer Science and
Applications, 2(11), 2011.
[9] Fayad M. E. and Flood C. A., “Unified Software Engineering
Reuse (USER) using stable analysis, design and architectural
patterns”, Future Technologies Conference (FTC), CA, 2016
[10] Jazayeri M., “On Architectural Stability and Evolution”.
Proc. of the 7th Europe International Conference on Reliable
Software Technologies, Springer-Verlag, 2002
[11] Kazman R., Abowd G., Bass, L., and Webb M., “SAAM: A
method for analyzing the properties of software architectures”,
Proc. of 16th International Conference on Software Engineering.
Sorrento, Italy, Los Alamitos, CA: IEEE Comp. Society, 1994.
[12] Le D. M., Carrillo C., Capilla R. and Medvidovic N.,
“Relating Architectural Decay and Sustainability of Software
Systems”. Proc. of 13th Working IEEE/IFIP Conference on
Software Architecture (WICSA), 2016.
[13] Lung C.-H., Bot S., Kalaichelvan K., and Kazman, R., “An
approach to software architecture analysis for evolution and
reusability”, Proc. of CASCON ’97, 1997.
[14] Medvidovic N., Jakobac V., “Using software evolution to
focus architectural recovery”. Automated Software Engineering.
13(2), 2006.
[15] Olague H. M., Etzkorn L. H., Li W. and Cox G.,
“Assessing design instability in iterative (agile) object-oriented
projects”. Journal of Software Maintenance and Evolution., 18:
237–266. 2006.
[16] Raemaekers S., van Deursen A. and Visser J., "Measuring
Software Library Stability Through Historical Version Analysis".
Proc. of 28th IEEE International Conference on Software
Maintenance, 2012.
[17] Sartipi K. and Kontogiannis K., “Component Clustering
Based on Maximal Association”. Proc. of IEEE Working  
Conference on Reverse Engineering, Germany, 2001
[18] Sartipi K. and Kontogiannis K., “Pattern-based Software
Architecture Recovery”. Proc. of Second ASERC Workshop on
Software Architecture, Alberta, Canada. 2003.
[19] Threm D., Yu L., Ramaswamy S., Sudarsan S. D, “Using
Normalized Compression Distance to Measure the Evolutionary
Stability of Software Systems”. Proc. of 2015 IEEE 26th Int.
Symposium on Software Reliability Engineering, 2015.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
3

2.
3_

2.
4

2.
4_

2.
5

2.
5_

2.
6

2.
6_

2.
7

2.
7_

2.
8

2.
8_

2.
9

2.
9_

3.
0

3.
0_

3.
1

0

0,1
0,2
0,3

0,4
0,5
0,6

0,7
0,8

0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
4

1.
4_

1.
5

1.
5_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
3

2.
3_

2.
4

2.
4_

2.
5

2.
5_

2.
6

3.
0_

3.
1

3.
1_

3.
2

3.
2_

3.
3

3.
3_

4.
0

4.
0_

4.
1

4.
1_

4.
2

4.
2_

5.
0

5.
0_

5.
1

5.
1_

5.
1.
1 0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

2.
0

2.
0_

2.
1

2.
1_

3.
0

3.
0_

4.
0

4.
0_

4.
1

4.
1_

4.
2

4.
2_

4.
3

4.
3_

5.
0

5.
0_

5.
1

5.
1_

5.
2

5.
2_

5.
3

5.
3_

5.
4

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
5

1.
5_

1.
6

1.
6_

1.
7

1.
7_

1.
8

1.
8_

1.
9

1.
9_

1.
10

1.
10

_1
.1
1

1.
11

_1
.1
2

1.
12

_1
.1
3

1.
13

_1
4.
0

14
.0
_1

5.
0

15
.0
_1

6.
0

16
.0
_1

7.
0

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

1.
3

1.
3_

1.
4

1.
4_

1.
5

1.
5_

1.
5.
13

 0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1.
0_

1.
1

1.
1_

1.
2

1.
2_

2.
0

2.
0_

2.
1

2.
1_

2.
2

2.
2_

2.
2.
5

2.
2.
5_

2.
3.
0

2.
3.
0_

2.
4.
0

2.
4.
0_

2.
5.
0

2.
5.
0_

2.
6.
0

2.
6.
0_

2.
7.
0

2.
7.
0_

2.
8.
0

2.
8.
0_

4.
0.
0

Page 5654

