
Research Article
An Iterative Scheme to Compute Size Probabilities in
Random Graphs and Branching Processes

Paolo Serafini

Department of Mathematics, Computer Science, and Physics, University of Udine, Udine, Italy

Correspondence should be addressed to Paolo Serafini; paolo.serafini@uniud.it

Received 25 September 2017; Revised 29 January 2018; Accepted 11 February 2018; Published 1 April 2018

Academic Editor: Fabrizio Riguzzi

Copyright © 2018 Paolo Serafini.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We deal with a functional equation that plays an important role in random graphs and in branching processes. In branching
processes, the functional equation relates offspring probabilities to population size probabilities, while in random graph it
relates degree probabilities to small component size probabilities. We present an iterative scheme that allows computing the size
probabilities numerically. It is also theoretically possible to invert the iteration, although this inverse iteration is numerically
unstable.

1. Introduction

Let 𝐺(𝑥) and 𝐻(𝑥) be two probability generating functions
that are linked through the functional equation

𝐻(𝑥) = 𝑥𝐺 (𝐻 (𝑥)) . (1)

Functions of this type occur in branching processes
and in random graphs [1–6]. In branching processes, 𝐺(𝑥)
represents the probabilities of new offspring from a member
of the population and 𝐻(𝑥) represents the population size
probabilities. In the configuration model [4] of random
graphs, 𝐺(𝑥) represents the excess degree probabilities of a
vertex in small components and 𝐻(𝑥) represents the small
component size probabilities. Note that, in both cases, 𝐻(𝑥)
can be a defective generating function; that is,𝐻(1) < 1.

Usually𝐺(𝑥) is given and𝐻(𝑥) has to be computed. Only
in rare cases is it possible to find an explicit analytic expres-
sion of𝐻(𝑥). However, a numerical iteration to compute the
coefficients of𝐻(𝑥) is possible. To the best of our knowledge,
such a question has not been investigated and it seems that
the iteration we propose in this paper is new.

Interestingly enough, this iteration can be inverted; that
is, from the size distribution,we can infer the degree probabil-
ities. We present also this inverse iteration, although it has to
be remarked that the inverse iteration is numerically unstable.

Thepaper is organized as follows. In Section 2, we provide
the mathematical background by referring to the case of
random graphs. Then, in Section 3, we present the main
result, that is, the iteration to compute the size probabilities
of the small components of the graph. The possibility of
inverting this computation is presented in Section 4. Then,
in Section 5, we point out how the same iteration can be used
for a branching process. Some conclusions are presented in
Section 6.

2. Mathematical Background

We first present our result by explicitly referring to random
graphs in the configuration model for which the picture is
more complex. In a later section, we show how to relate the
iteration to branching processes. Hence, all definitions in this
section and in Sections 3 and 4 are related to random graphs.

A random graph has assigned degree probabilities 𝑝ℎ,ℎ = 0, 1, . . ., and 𝑝ℎ is the probability that a randomly selected
vertex has degree ℎ. We recall that the degree of a vertex is the
number of vertices adjacent to it.The study of random graphs
through generating functions is asymptotic; that is, it assumes
an infinite number of vertices. Let 𝐺0(𝑥) be the probability
generating function of the degree distribution; that is,

𝐺0 (𝑥) = ∑
ℎ≥0

𝑝ℎ𝑥ℎ. (2)
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Let 𝑑 = 𝐺󸀠0(1) be the average degree and
𝐺1 (𝑥) = 𝐺󸀠0 (𝑥)𝑑 = ∑

ℎ≥0

𝑞ℎ𝑥ℎ, (3)

where clearly

𝑞ℎ = (ℎ + 1) 𝑝ℎ+1𝑑 . (4)

The 𝑞ℎ values are known as excess degree probabilities. Let𝐻0(𝑥) and 𝐻1(𝑥) be two generating functions that can be
expressed as power series as

𝐻0 (𝑥) = ∑
𝑘≥1

𝑠𝑘𝑥𝑘,
𝐻1 (𝑥) = ∑

𝑘≥1

𝑟𝑘𝑥𝑘, (5)

and they are defined by the equations

𝐻0 (𝑥) = 𝑥𝐺0 (𝐻1 (𝑥)) ,
𝐻1 (𝑥) = 𝑥𝐺1 (𝐻1 (𝑥)) . (6)

Our aim is to compute the coefficients 𝑠𝑘 and 𝑟𝑘.
The motivation for the generating functions 𝐻0(𝑥) and𝐻1(𝑥) derives from the analysis of the asymptotic properties

of the random graph in the configuration model. If the graph
is sufficiently dense, it exhibits the so-called giant component,
that is, a connected component whose size asymptotically
goes to infinity. The giant component, if present, is unique.
The rest of the graph consists of an infinite number of finite
trees, the so-called small components (see [3], among many
possible references).

It can be shown that if 𝑝ℎ is the probability that a
randomly chosen vertex (in the whole graph) has degreeℎ, then 𝑠𝑘 is the probability that a randomly chosen vertex
belongs to a small component of size 𝑘, and 𝑟𝑘 is the
probability that, after choosing a random vertex 𝑖 of degree at
least one and then a random vertex 𝑗 adjacent to 𝑖, the vertex𝑗 belongs to a small component of size 𝑘 after removing the
edge {𝑖, 𝑗}.

If the giant component is present, the conditional prob-
ability 𝑝ℎ of choosing in the small components a vertex of
degree ℎ is different from 𝑝ℎ and similarly for the excess
degree probability 𝑞ℎ. It can be shown that

𝑝ℎ = 𝑢ℎV 𝑝ℎ,
𝑞ℎ = 𝑢ℎ−1𝑞ℎ,

(7)

where 𝑢 is the solution of 𝑢 = 𝐺1(𝑢) and V = 𝐺0(𝑢) is the
fraction of vertices in the small components. We can briefly
justify (7) by using Bayes’ formula:

𝑝ℎ = Pr {𝑆 | 𝐷ℎ} 𝑝ℎ
Pr {𝑆} , (8)

with 𝑆 being the random event of choosing a vertex in a small
component and 𝐷ℎ being the random event of choosing a
vertex of degree ℎ. Clearly Pr{𝑆 | 𝐷0} = 1 and consequently𝑝0 = 𝑝0/V. If ℎ > 0, Pr{𝑆 | 𝐷ℎ} is the probability that
all adjacent ℎ vertices belong to a small component once we
have removed the corresponding edges, and so its value is 𝑢ℎ.
This explains the left expression in (7). To justify the right
expression, we need to compute the average degree in the
small components by taking the derivative of 𝐺0(𝑢𝑥)/V (by
using (7)) and computing it for 𝑥 = 1; that is, 𝑢𝐺󸀠0(𝑢)/V =𝑢𝑑𝐺1(𝑢)/V = 𝑢2𝑑/V. From this, we immediately get the
expression at the right.

It turns out that using 𝑝ℎ instead of 𝑝ℎ in the definition of𝐺0 and 𝐺1 has the only effect of scaling the 𝑠𝑘 values by the
constant factor V and the 𝑟𝑘 values by the constant factor 𝑢,
which correspond to the conditional probability of choosing
within the small components. In particular, we have𝐻0(1) =
V and𝐻1(1) = 𝑢 if we use𝑝ℎ and 𝑞ℎ in the definition of𝐺0 and𝐺1, respectively, whereas we have𝐻0(1) = 1 and𝐻1(1) = 1 if
we use 𝑝ℎ and 𝑞ℎ.

We also define the probability 𝑡𝑘 that a randomly selected
small component has size 𝑘. Of course

𝑠𝑘
V
= 𝑘𝑡𝑘𝑡 , (9)

with 𝑡 being the average size of a small component. Here we
have to discount 𝑠𝑘 because the choice of small components
necessarily conditions the choice within the small compo-
nents.

3. Computing the Coefficients of𝐻0(𝑥) and𝐻1(𝑥)
From the recursive equation,

𝐻1 (𝑥) = 𝑥𝐺1 (𝐻1 (𝑥)) = 𝑥∑
ℎ≥0

𝑞ℎ𝐻1 (𝑥)ℎ , (10)

and from

𝐻1 (𝑥) = ∑
𝑘≥1

𝑟𝑘𝑥𝑘 (11)

(necessarily 𝑟0 = 0), we derive
∑
𝑘≥1

𝑟𝑘𝑥𝑘 = 𝑥𝑞0 + 𝑥∑
ℎ≥1

𝑞ℎ(∑
𝑗≥1

𝑟𝑗𝑥𝑗)
ℎ

= 𝑥𝑞0 + ∑
ℎ≥1

𝑞ℎ𝑥ℎ+1(∑
𝑗≥0

𝑟𝑗+1𝑥𝑗)
ℎ

,
(12)

so that

∑
𝑘≥1

𝑟𝑘𝑥𝑘 = 𝑥𝑞0 + ∑
ℎ≥2

𝑞ℎ−1𝑥ℎ(∑
𝑗≥0

𝑟𝑗+1𝑥𝑗)
ℎ−1

. (13)
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Let 𝑎ℎ𝑘 be the coefficient of 𝑥𝑘 in (∑𝑗≥0 𝑟𝑗+1𝑥𝑗)ℎ. Note that 𝑎1𝑘 =𝑟𝑘+1 and in particular 𝑎10 = 𝑟1. From (13),

𝑟1 = 𝑞0,
𝑟𝑘 = 𝑘∑
ℎ=2

𝑞ℎ−1𝑎ℎ−1𝑘−ℎ , 𝑘 ≥ 2. (14)

Hence, the computation of 𝑟𝑘 requires the coefficients𝑎1𝑘−2, 𝑎2𝑘−3, . . . , 𝑎𝑘−10 . In turn, the computation of 𝑎ℎ𝑘 requires
the terms 𝑟1, . . . , 𝑟𝑘+1 and so to compute 𝑟𝑘 we only need
knowledge of 𝑟1, . . . , 𝑟𝑘−1.

The recursionworks as follows: initially 𝑟1 = 𝑞0, and then,
for 𝑘 = 2, 3, . . ., the following block is computed:

𝑟𝑘 = 𝑘∑
ℎ=2

𝑞ℎ−1𝑎ℎ−1𝑘−ℎ ,
𝑎1𝑘−1 = 𝑟𝑘,
𝑎ℎ𝑘−1 = 𝑘−1∑

𝑗=0

𝑎ℎ−1𝑗 𝑎1𝑘−1−𝑗 = 𝑘−1∑
𝑗=0

𝑎ℎ−1𝑗 𝑟𝑘−𝑗, ℎ = 2, . . . , 𝑘 − 1,

𝑎𝑘ℎ = ℎ∑
𝑗=0

𝑎𝑘−1𝑗 𝑟ℎ+1−𝑗 ℎ = 0, . . . , 𝑘,

(15)

Note that 𝑎𝑘0 = 𝑎𝑘−10 𝑟1 = 𝑎𝑘−10 𝑞0 and therefore 𝑎𝑘0 = 𝑞𝑘0 , where𝑘 is an upper index for 𝑎 and a power exponent for 𝑞.
We also derive from

𝐻0 (𝑥) = 𝑥𝐺0 (𝐻1 (𝑥)) ,
𝐻0 (𝑥) = ∑

𝑘≥1

𝑠𝑘𝑥𝑘 (16)

the expression

∑
𝑘≥1

𝑠𝑘𝑥𝑘 = 𝑥𝑝0 + 𝑛∑
ℎ=2

𝑝ℎ−1𝑥ℎ(∑
𝑗≥0

𝑟𝑗+1𝑥𝑗)
ℎ−1

, (17)

so that

𝑠1 = 𝑝0,
𝑠𝑘 = 𝑘∑
ℎ=2

𝑝ℎ−1𝑎ℎ−1𝑘−ℎ , 𝑘 ≥ 2. (18)

In this case, the computation is straightforward, since it
involves all previously computed quantities.

Theoretically, the generating functions 𝐻0(𝑥) and 𝐻1(𝑥)
involve an infinite series, but obviously only a finite number
of coefficients can be computed. Hence, the computation has
to be stopped after having computed the desired number of
terms 𝑟𝑘 and 𝑠𝑘. Since each term is computed only once and it
is not the result of subsequent smaller and smaller additions,
truncating the computation up to a certain index has no effect
on the accuracy of the values we compute. In other words, if

we compute just a few terms, they are computedwith the same
accuracy as we had computed all coefficients.

It is clear from the definitions and the previous iteration
that𝐻1(𝑥) implies𝐻0(𝑥); that is, once we know the 𝑟𝑘 values,
the 𝑠𝑘 values are also known and implied by the 𝑟𝑘 values.
It is not difficult to see that the converse is also true. By
differentiating (6) and using (3), we get

𝐻󸀠0 (𝑥) = 𝐻0 (𝑥)𝑥 + 𝑥𝑑𝐺1 (𝐻1 (𝑥))𝐻󸀠1 (𝑥)
= 𝐻0 (𝑥)𝑥 + 𝑑𝐻1 (𝑥)𝐻󸀠1 (𝑥) ,

(19)

and by integrating (19), we get

𝑑2𝐻21 (𝑥) = 𝐻0 (𝑥) − ∫
𝑥

0

𝐻0 (𝜉)𝜉 𝑑𝜉; (20)

that is,

𝑑2 (∑
𝑘≥1

𝑟𝑘𝑥𝑘)
2 = ∑
𝑘≥1

𝑠𝑘𝑥𝑘 − ∫𝑥
0
∑
𝑘≥1

𝑠𝑘𝜉𝑘−1𝑑𝜉, (21)

which leads to the following identities term by term:

𝑑2
𝑘−1∑
ℎ=1

𝑟ℎ𝑟𝑘−ℎ = 𝑠𝑘 (1 − 1𝑘) , 𝑘 ≥ 2. (22)

For 𝑘 = 2, we get in particular

𝑟1 = √𝑠2𝑑 , (23)

and, for 𝑘 > 2, we have
𝑑2 (2𝑟1𝑟𝑘−1 +

𝑘−2∑
ℎ=2

𝑟ℎ𝑟𝑘−ℎ) = 𝑠𝑘 (1 − 1𝑘) , (24)

which allows writing

𝑟𝑘−1 = 2 (𝑠𝑘/𝑑) (1 − 1/𝑘) − ∑𝑘−2ℎ=2 𝑟ℎ𝑟𝑘−ℎ2𝑟1 , (25)

so that all 𝑟𝑘 values can be recursively computed once we
know 𝑑. We note that 𝑝1 > 0 implies that 𝑞0 = 𝑟1 > 0.
Hence, the recursion is well defined if 𝑝1 > 0, which is an
almost necessary assumption if we investigate the presence of
small components. Hence, knowledge of the 𝑠𝑘 values implies
knowledge of the 𝑟𝑘 values.

If we do not know 𝑑, we may still compute 𝑑 from the
recursion. We first note that all 𝑟𝑘 depend on 𝑑 through the
factor 1/√𝑑. Therefore, we initially guess the value 𝑑 = 1
and compute tentative values 𝑟𝑘. Since ∑𝑘 𝑟𝑘 = 𝑢, we find
the correct value for 𝑑 as 𝑑 = (∑𝑘 𝑟𝑘/𝑢)2 and so we have the
correct values:

𝑟𝑘 = 𝑟𝑘∑𝑘 𝑟𝑘 𝑢. (26)
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4. Inferring the Degree Probabilities from the
Component Size Probabilities

We may also consider the inverse problem of finding 𝐺0(𝑥)
and 𝐺1(𝑥) from 𝐻0(𝑥) and 𝐻1(𝑥), that is, computing the
degree distributionwhich gives rise to a particular small com-
ponent size distribution. This problem presents interesting
features. Arbitrary degree distributions of 𝑟𝑘 and 𝑠𝑘 may not
be feasible; that is, there may be no degree distribution that
can lead to those values.

Formally, the recursion can be easily inverted; that is,
knowing the 𝑟𝑘 values, we can compute the 𝑝𝑘 values and 𝑞𝑘
values. Indeed, from (14), we have

𝑟𝑘 = 𝑞𝑘−1𝑎𝑘−10 + 𝑘−1∑
ℎ=2

𝑞ℎ−1𝑎ℎ−1𝑘−ℎ ; (27)

that is,

𝑞𝑘−1 = 𝑟𝑘 − ∑𝑘−1ℎ=2 𝑞ℎ−1𝑎ℎ−1𝑘−ℎ𝑎𝑘−10 . (28)

Computing the 𝑎𝑘ℎ values is straightforward oncewe know the𝑟𝑘 values. From the 𝑞𝑘 values, we easily deduce the 𝑝𝑘 values,
apart from the fact that 𝑝0 cannot be derived from the 𝑞𝑘
values. However, 𝑝0 = 𝑠1, and so it is known a priori. Note
also that 𝑟1 > 0 implies that 𝑎𝑘−10 > 0.

There is, however, a subtle point to be settled. Let us
assume that a giant component may be present but we do
not know the 𝑢 and V values. Then, it is simpler to work with
the conditional probabilities within the small components.
Starting from the (conditional) 𝑠𝑘 probabilities, we compute
the 𝑟𝑘 values as explained in the previous section but by using
the normalization ∑𝑘 𝑟𝑘 = 1. This way, we actually compute𝑞ℎ and 𝑝ℎ. Then, from (7), we get 𝑝ℎ and 𝑞ℎ. The unknowns𝑢 and V are computed by imposing ∑ℎ 𝑝ℎ = 1 and ∑ℎ 𝑞ℎ = 1,
which is equivalent to solving 𝐺1(𝑢−1) = 𝑢−1 and 𝐺0(𝑢−1) =
V−1 with 𝐺0 and 𝐺1 defined on 𝑝ℎ and 𝑞ℎ.

However, the inverse recursion is numerically unstable,
and, unless we use exact data, it can produce absurd out-
comes, like probabilities outside the range [0, 1]. The reason
of the instability is clear from (28), where we have a difference
in the numerator and the denominator is getting smaller and
smaller with 𝑞𝑘0 . As a simple exercise, suppose that we wonder
which degree distribution gives rise to a size distribution of
the small components of exponential type; that is,

𝑡𝑘 = (1 − 𝛽) 𝛽𝑘−1, 𝑘 ≥ 1, (29)

with 0 < 𝛽 < 1. Hence, we have 𝑡 = 1/(1 − 𝛽) and
𝑠𝑘 = 𝑘𝑡𝑘𝑡 = 𝑘 (1 − 𝛽)2 𝛽𝑘−1. (30)

We remark that these 𝑠𝑘 are conditional probabilities. Nowwe
have to compute the 𝑟𝑘 values from the 𝑠𝑘 values. As explained
in the previous section, we initially fix 𝑑 = 1 and compute
from (25) the tentative values:

𝑟𝑘 = √ 2𝛽 (1 − 𝛽) 𝛽𝑘, (31)

for which ∑𝑘 𝑟𝑘 = √2𝛽. Hence, 𝑑 = 2𝛽, implying the correct
values:

𝑟𝑘 = (1 − 𝛽) 𝛽𝑘−1. (32)

If we carry out the computation in (28) symbolically, we get

𝑞0 = 1 − 𝛽,
𝑞1 = 𝛽,
𝑞𝑘 = 0, 𝑘 > 1,

(33)

from which

𝑝0 = (1 − 𝛽)2 ,
𝑝1 = 2 (1 − 𝛽) 𝛽,
𝑝2 = 𝛽2,
𝑝𝑘 = 0, 𝑘 > 2.

(34)

From (7), we have

𝑝ℎ = V𝑢ℎ𝑝ℎ,
𝑞ℎ = 1𝑢ℎ−1 𝑞ℎ.

(35)

By imposing∑ℎ 𝑞ℎ = 1, we get
𝑢 (1 − 𝛽) + 𝛽 = 1 󳨐⇒

𝑢 = 1, (36)

and also V = 1. Hence, there is no giant component in this
case.

Now assume that we have experimental data from which
we infer the values:

𝑡1 = 0.667499,
𝑡2 = 0.221782,
𝑡3 = 0.0739131,
𝑡4 = 0.024639,
𝑡5 = 0.00821253,
𝑡6 = 0.00273827,
𝑡7 = 0.000912502,
𝑡8 = 0.000304167.

(37)
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(these data have been generated by slightly perturbing the
previous theoretical values with 𝛽 = 1/3). The previous
computation leads to

𝑞0 = 0.667002,
𝑞1 = 0.333269,
𝑞2 = 0.0000610268,
𝑞3 = −0.0000590538,
𝑞4 = 0.0000833483,
𝑞5 = −0.000133577,
𝑞6 = 0.00018942,
𝑞7 = −0.00542309.

(38)

Not only are there negative values but also the absolute value
of 𝑞𝑘 is increasing with 𝑘 showing an amplifying effect of
error propagation. Therefore, a lot of care should be exerted
in order to carry out computations on experimental data.This
can bematter of further investigation and is beyond the scope
of this paper.

We show a second example for the inverse computation.
Assume that

𝑟2𝑘+1 = 3𝑘+124𝑘+2𝐶𝑘,
𝑟2𝑘+2 = 0,

𝑘 = 0, 1, . . . ,
(39)

where 𝐶𝑘 are the Catalan numbers. If we carry out the
computation in (28) symbolically, we get

𝑞0 = 34 ,
𝑞1 = 0,
𝑞2 = 14 ,
𝑞𝑘 = 0, 𝑘 > 2,

(40)

from which

𝑝1 = 910 ,
𝑝2 = 0,
𝑝3 = 110 ,
𝑝𝑘 = 0, 𝑘 > 3,

(41)

so that

𝑞0 = 34𝑢,
𝑞1 = 0,

𝑞2 = 14𝑢 ,
𝑞𝑘 = 0, 𝑘 > 2,

(42)

and

𝑝1 = 9V10𝑢 ,
𝑝2 = 0,
𝑝3 = V10𝑢3 ,
𝑝𝑘 = 0, 𝑘 > 3.

(43)

The normalization yields 𝑢 = 1/3 and V = 5/27, so that 𝑝1 =𝑝3 = 1/2. Again, we show how perturbed data can lead to
strange outcomes. If we perturb the data as

𝑟1 = 0.746705,
𝑟3 = 0.141068,
𝑟5 = 0.0529938,
𝑟7 = 0.02473,
𝑟9 = 0.0130018,
𝑟11 = 0.00728396,
𝑟13 = 0.00430417,
𝑟15 = 0.00261343,
𝑟17 = 0.00163685,
𝑟19 = 0.00104289,

(44)

with 𝑟𝑘 = 0 for the other indices, we get
𝑞0 = 0.746705,
𝑞2 = 0.253005,
𝑞4 = −0.000988595,
𝑞6 = −0.000552489,
𝑞8 = 0.00141413,
𝑞10 = −0.00223664,
𝑞12 = 0.00360276,
𝑞14 = −0.00597299,
𝑞16 = 0.0098459,
𝑞18 = −0.0155087.

(45)

We see again the same inconsistencies and the amplifying
effect. In any case, wemay note that the values with odd index
are correctly computed as null values.
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5. Branching Processes

Now we define 𝑞ℎ, ℎ = 0, 1, . . ., as the probability that
a member of the population generates ℎ offspring. We are
interested in computing the probability 𝑟𝑘 that the population
will eventually have 𝑘 members, starting from a population
consisting of one member. If 𝐺(𝑥) and 𝐻(𝑥) are the proba-
bility generating functions of 𝑞ℎ and 𝑟𝑘, respectively, then the
following functional equation holds:

𝐻(𝑥) = 𝑥𝐺 (𝐻 (𝑥)) . (46)

Hence, the same relations (13) and (14) hold as well as
the recursion (15). This time there are no 𝑠𝑘 coefficients
to be computed and the picture is simplified. We may still
view a branching process like a random graph. However,
while in random graphs we pick up randomly any vertex
within the small components, in branching processes, the
small components are rooted trees and we pick up the roots
randomly. Hence, the 𝑟𝑘 values we state here for a branching
process can be related to the 𝑡𝑘 values of random graphs.

Iteration (15) can also be carried out in exact arithmetic,
thus producing results from which closed formulas can be
inferred. As a simple example, suppose that 𝑞0 = 𝑞1 = 𝑞2 =1/3 (𝑞𝑖 = 0 for 𝑖 > 2). Then, by applying (15), we obtain a
sequence whose first terms are

{13 , 19 , 227 , 481 , 127 , 7243 , 17729 , 1276561 , 32319683 , 83559049 ,
2188177147 , . . .} .

(47)

We may guess that the denominator grows as the powers of
3, and so if we multiply the 𝑛th term of (47) by 3𝑛, we obtain
the new sequence

{1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, . . .} . (48)

By looking at [7], we discover that these are the Motzkin
numbers whose 𝑛th term is in closed form:

𝑀𝑛 = ⌊𝑛/2⌋∑
𝑘≥0

𝐶𝑘 ( 𝑛2𝑘) , (49)

with 𝐶𝑘 being the 𝑘th Catalan number. Hence,

𝑟𝑛 = 3−𝑛𝑀𝑛−1, (50)

and we have found another combinatorial interpretation of
the Motzkin numbers besides the many listed in [7]. The
reason for 𝑛 − 1 as subscript is due to the fact that the first
index of the sequence 𝑟𝑛 is 𝑛 = 1, whereas Motzkin numbers
in (48) as defined above start from 𝑛 = 0.

The same considerations about inferring the probabilities𝑞𝑘 from the probabilities 𝑡𝑘 (= 𝑟𝑘) can be applied also to
branching processes. The example with 𝑡𝑘 = (1 − 𝛽)𝛽𝑘−1 is
almost trivial if we have in mind a branching process.

6. Conclusions

In this paper, we have presented an iterative scheme to
compute the coefficients of a generating function that plays an
important role in random graphs and in branching processes.
The generating function is related to the population size prob-
abilities for a branching process and to the small component
size probabilities for random graphs. We also show that the
iteration can be inverted; that is, for a branching process, from
the population size probabilities, one can infer the offspring
probabilities, but the inverse iteration is numerically unstable.
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