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Spatio-temporal resolution enhancement for cloudy thermal sequences
Paolo Addesso , Maurizio Longo, Rocco Restaino and Gemine Vivone

Department of Information Engineering, Electrical Engineering and Applied Mathematics, University of Salerno, Fisciano, Italy

ABSTRACT
Many applications require remotely sensed brightness temperature (BT) data acquired with
high temporal and spatial resolutions. In this regard, a viable strategy to overtake the physical
limitations of space-borne sensors to achieve these data relies on fusing low temporal but
high spatial resolution (HSR) data with high temporal but low spatial resolution data. The
most promising methods rely on the fusion of spatially interpolated high temporal resolution
data with temporally interpolated HSR data. However, the unavoidable presence of cloud
masses in the acquired image sequences is often neglected, compromising the functionality
and/or the effectiveness of the most of these fusion algorithms. To overcome this problem, a
framework combining techniques of temporal smoothing and spatial enhancement is pro-
posed to estimate surface BTs with high spatial and high temporal resolutions even when
cloud masses corrupt the scene. Numerical results using real thermal data acquired by the
SEVIRI sensor show the ability of the proposed approach to reach better performance than
techniques based on either only interpolation or only spatial sharpening, even dealing with
missing data due to the presence of cloud masses.
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Introduction

Sensors on-board satellite platforms acquire everyday
thousands of images in order to continuously moni-
tor huge geographical areas. This amount of data is
usually processed to achieve synthetic information
(features) related to geophysical quantities. A product
of broad interest, provided by the processing of
brightness temperature (BT) data, is the land surface
temperature (LST). This is indeed used as input in
several applications (Running et al., 1994), such as
forest fires (Eckmann, Roberts, & Still, 2008), urban,
regional and global climate models (Meehl, 1994;
Weng, 2009), crop growth modeling (de Wit & Van
Diepen, 2008) and water resource management
(Allen, Tasumi, & Trezza, 2007; IRRISAT Project).

In many monitoring applications, strict require-
ments about spatial, spectral and temporal resolu-
tions of data are imposed. Very high resolutions in
different domains are often required. Unfortunately,
due to physical constraints of modern sensors, these
requirements cannot be achieved by acquiring data
from a unique source of information. Instead, the
acquisition of data from multiple sensors, frequently
mounted on-board multiple satellite platforms, repre-
sents the sole viable solution to fulfill these strict
requirements. Thus, data fusion is increasing atten-
tion into the scientific community.

A successful instance of data fusion is the spatial
enhancement (sharpening) of low spatial resolution

(LSR) multispectral (MS) optical data using a high
spatial resolution (HSR) single band optical (pan-
chromatic) image. This data fusion approach is
often called pansharpening, which stands for pan-
chromatic sharpening.

Another interesting example is related to the shar-
pening of LSR thermal images exploiting HSR infor-
mation. This data fusion approach, often named
thermal sharpening (TSP), has already demonstrated
appreciable outcomes in many scientific fields, such
as forest changes (Hilker et al., 2009), urban heat
island analysis (Zakšek & Oštir, 2012), water resource
management (Anderson, Allen, Morse, & Kusta,
2012) and soil moisture estimation (Merlin et al.,
2010). TSP techniques can be classified into two
main categories (Ha, Gowda, & Howell, 2013a,
2013b):

● Disaggregation of LST (Zhan, Chen, Zhou, Li, &
Liu, 2011). These methods are based on resam-
pling the available LST estimate to a regular
grid, finer than the pixel size, by finding the
relationship with a companion high resolution
information. Powerful examples are the TSP
techniques, see e.g. TsHARP (Agam, Kustas,
Anderson, Li, & Neale, 2007) (originally denoted
as DisTrad (Kustas, Norman, Anderson, &
French, 2003)) and the segmentation-based
approach in Zhan et al. (2011).
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● Multi-sensor image fusion. The methods
belonging to this category combine data pro-
vided by multiple sensors. Several approaches
in this category are borrowed from pansharpen-
ing, such as the application of deterministic
(Aiazzi, Alparone, Baronti, Santurri, & Selva,
2005) or statistical (Fasbender, Tuia, Bogaert,
& Kanevski, 2008) pansharpening methods.

TSP is applied to the issue of fusing data acquired by
sensors: i) on-board the same satellite platform, thus
avoiding several problems like image co-registration, or
ii) on-board different satellite platforms (Zakšek & Oštir,
2012). A classical example of this second case is repre-
sented by the sharpening of high temporal resolution
(htr) but LSR thermal image sequences (or, vice versa,
the temporal enhancement of HSR but low temporal
resolution (ltr) thermal image sequences). This usually
leverages on geostationary data acquired with a htr but
LSR (because of the distance from theEarth) andonnear-
polar orbiting satellite data with complementary spatio-
temporal features. Considering the temporal dimension
of the acquired data, i.e. sequences instead of single
images, the quality of the synthetic fused sequences can
be improved. In this case, for some applications a real
time requirement could be imposed, i.e. only past obser-
vations canbe considered into the data fusion framework,
see e.g. the related authors’ works in Addesso, Conte,
Longo, Restaino and Vivone (2012), Addesso, Longo,
Restaino and Vivone (2015). and Addesso, Longo,
Restaino, and Vivone (2013).Whereas, for those applica-
tions where this requirement is not necessary (non-real
time case or batch case), all the collected data in a given
time interval can be considered by the data fusion
approach (Addesso, Capodici, et al., 2013, 2015;
Addesso, Longo, Maltese, Restaino, & Vivone, 2015).

In this work, the authors focus attention on the
possibility of using smoothing techniques for enhan-
cing the resolution of BT image series in non-real
time (batch) scenarios. The most promising methods
rely on the fusion of spatially interpolated htr/LSR
data with temporally interpolated ltr/HSR data. These
techniques proved capable of catching the temporal
and spatial correlation exhibited by real data while
not incurring in heavy computational burden. Hence,
a framework combining spatio-temporal interpolated
data with techniques of temporal smoothing and
spatial enhancement is proposed, thus leveraging on
the temporal correlation inside image sequences. In
particular, a Bayesian smoother based on the Rauch–
Tung–Striebel (RTS) algorithm and a pansharpening
method belonging to the multi-resolution analysis
family (an undecimated wavelet decomposition with
multiplicative injection scheme) are exploited for
temporal smoothing and spatial sharpening, respec-
tively. The former represents the most straightfor-
ward implementation within the class of equivalent

optimal Bayesian smoothers (Brown & Hwang, 1992),
while the latter has been selected since it does not
require specific information regarding the acquisition
sensors. Multi-resolution analysis approaches have
also the capability of accurately preserving the spec-
tral content of the LSR data (Vivone et al., 2015), thus
being suitable for future multichannel implementa-
tion of the proposed thermal image sharpening
method.

When dealing with the fusion of real data
sequences, the unavoidable presence of cloud masses
in the acquired images has to be also taken into
account. This represents a serious issue for multi-
temporal techniques, as the one proposed in this
paper. Indeed, the incompleteness of image sequences
compromises the functionality and/or the effective-
ness of the most fusion algorithms. To overcome this
problem, the following steps are integrated in the
proposed data fusion framework: i) a cloud detection
approach to detect cloud masses in image sequences;
ii) a module relying upon temporal interpolation
(TI), whose aim is to fill the gaps in the image
sequences due to cloud masses by estimating a value
for the BT congruent with the available data.

The experimental results are conducted on data
observed by the SEVIRI sensor mounted on-board
the Meteosat second generation geostationary plat-
form, over the Iberian peninsula. More specifically,
the IR 10.8 channel, characterized by the [9.80–
11.80] μm spectral acquisition range, was used in
the tests. A reduced resolution assessment protocol
is employed in this work. The purpose is to obtain a
perfectly controlled scenario, suited for testing algo-
rithms with any desired relationship among the
characteristics of the fusing data. To this aim, a
single series of real SEVIRI images, acting as the
sequence to estimate, or ground-truth (GT), is
employed. On the contrary, the fusing sequences
are simulated by processing the GT according to
Wald’s protocol (Wald, Ranchin, & Mangolini,
1997). The experimental results show: i) the ability
of the proposed approach to reach better perfor-
mance than techniques based on either TI or spatial
sharpening, and ii) the ability of the proposed tech-
nique to deal with missing (cloudy) data, even ana-
lyzing the robustness of the exploited TI strategies to
cloud detection errors.

The work is organized as follows. Section 2 pre-
sents the formalization of the thermal image
sequence enhancement problem and the proposed
solution. Section 3 is devoted to the description of
the cloud detection algorithm employed to assess
the performance of the data fusion approach by
varying cloud detection errors. Section 4 instead
shows the assessment of the proposed approach.
Finally, conclusions and future developments are
drawn in Section 5.
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A framework for performing spatio-temporal
fusion in the presence of clouds

This section is devoted to the issue of fusing a / htr/
LSR thermal image sequence with a ltr/HSR thermal
image sequence producing a synthetic sequence with
high resolution in both the domains. The presence of
cloud masses in the acquisition of these sequences
can further complicate this multi-sensor data fusion
problem and the estimation of the BT is surely a
further challenging task to be addressed. In order to
gain more insights, a specific setup is arranged.
Nonetheless, the developed solution can be easily
applied to many real-world problems.

In particular, the htr/LSR sequence is denoted as
L ¼ Lk : k 2 TLf g and the ltr/HSR sequence as
H ¼ Hk : k 2 THf g. The goal is to get an estimation
of the ideal htr/HSR sequence E ¼ Ek : k 2 TEf g,
denoted as Ê ¼ Êk : k 2 TE

� �
, characterized by the

same temporal resolution of L and the same spatial
resolution of H. For the sake of simplicity, the sup-
port TE of E is suppose to be the same as the one of L,
i.e. TL.

This estimation problem is addressed by exploiting
the Bayesian framework, whose suitability for infer-
ring the physical characteristics of the ground surface
from SEVIRI acquisition has been recently demon-
strated even in the presence of missing data
(Masiello, Serio, et al., 2013, 2015). The sequence to
be estimated E is modeled as a Markov process with
states xk, where k is in TE ¼ 1; . . . ;Nf g, with N
representing the maximum number of acquisitions
from the htr/LSR sensor. xk is the vectorial form of
the acquired image Ek at time k, i.e. xk ¼ col Ekð Þ,
where col �ð Þ arranges a matrix in vector in a col-
umn-wise way. The observation vector, denoted as
yk, contains the acquired data organized in the same
way. The time evolution of xk and yk is supposed to
follow the linear dynamic models

xk ¼ Akxk�1 þ wk; (1)

yk ¼ Ckxk þ nk; (2)

in which wk,N 0;Qkð Þ is the process noise assumed
zero-mean Gaussian with covariance Qk and
nk,N 0;Rkð Þ is the observation noise assumed zero-
mean Gaussian with covariance Rk.

The maximum a posteriori (MAP) solution of this
problem, which is a key instance of the Bayesian esti-
mation (Van Trees, 2001), is searched. In particular, the
fixed interval smoothing problem (Simon, 2006) is
addressed; it consists in estimating the state at time k 2
TE by exploiting the whole observation sequence
y1:N ¼ yk : k ¼ 1; . . . ;N

� �
. The MAP optimal esti-

mate is given by

x̂kjN ¼ arg max
xk

p xkjy1:N
� �

; (3)

where p xkjy1:N
� �

is the so-called smoothing distribu-
tion and x̂kjN indicates the estimate at time k given
the observations in the interval 1; . . . ;N. The corre-
sponding covariance matrix is denoted by PkjN .

Unfortunately, in a real-world scenario, the
ground surface can be masked by cloud masses. In
the above-mentioned formalization, this issue is not
taken into account. Indeed, the estimation problem
considers that all the observations are acquired in a
clear-sky condition. All the pixels contaminated by
clouds constitute missing information about the
brightness and, thus, they cannot be considered as
observations into the Bayesian framework. In order
to deal with this further issue, a strategy is proposed
and consists in i) detecting the corrupted pixels with
a cloud detection algorithm and ii) roughly estimat-
ing the missing information by means of TI.

Hence, the general framework that allows to get a
consistent estimate of the complete htr/HSR sequence
of BTs when cloud masses are present is depicted in
Figure 1 and briefly outlined, below:

(1) Temporal inte rpolation. This step is applied
to both the htr/LSR sequence L and the ltr/
HSR sequence H.
● H ¼ Hk : k 2 THf g is upsampled to the

same time resolution of L ¼ Lk : k 2 TLf g
and the cloudy pixels are estimated via a
TI algorithm to obtain a sequence
Ĥ ¼ Ĥk : k 2 TL

� �
, see e.g. H4 and Ĥ4 in

Figure 1;
● missing information represented by cloudy

pixels in L ¼ Lk : k 2 TLf g is approximated
via TI to get a sequence ~L ¼ ~Lk : k 2 TL

� �
,

see Lk and ~Lk for k ¼ 2; 3; 4f g in Figure 1.
(2) Spatial interpolation (SI). The images in ~L ¼

f~Lk : k 2 TLg are upsampled to the same scale
as the images in H via SI to get the
sequence L̂k : k 2 TL

� �
.

(3) Data fusion. The two pre-processed sequences L̂
and Ĥ are combined to get an estimation of the
sequence E ¼ Ek : k 2 TEf g, where, for the sake
of simplicity, TE ¼ TL. In particular, L̂ and Ĥ are
combined through a sharpening algorithm pro-
ducing a first rough estimate of an htr/HSR
sequence, denoted as S ¼ Sk : k 2 TLf g.
Afterwards, this sequence is used as input for a
Bayesian smoother in order to get a refinement of
the estimation for the sequence of the BT series E.

In the next sections, more details about these three
steps will be provided to the readers.

Temporal interpolation

The TI of the ltr/HSR sequences can be addressed
in several ways. Sophisticated approaches are based

EUROPEAN JOURNAL OF REMOTE SENSING 3



on the spatial correlation among neighboring pixels
(Garcia, 2012). However, for computational rea-
sons, a simple approach is considered in this
work; it consists in independently managing each
pixel, thus applying deterministic one-dimensional
interpolation algorithms. Superior performance
could be achieved by taking into account a priori
information such as the temporal evolution of the
temperatures during the day (Schädlich, Göttsche,
& Olesen, 2012), described by diurnal temperature
cycle (DTC) models (Duan, Li, Wang, Wua, &
Tang, 2012). However, in real scenarios DTC mod-
els are not enough accurate due to the presence of
clouds.

Hence, in view of applying this framework in non-
ideal conditions, TI without any a priori information
given by DTC models is exploited. The interpolation
procedure is applied to:

(1) The ltr/HSR BTs H ¼ Hk : k 2 THf g in order
to obtain a full sequence of interpolated tem-
peratures Ĥ ¼ Ĥk : k 2 TL

� �
.

(2) The L sequence, only for pixels affected by
clouds (detected, for instance, by the cloud
detection algorithm in Section 2.1.1), in
order to get an estimate of these missing
data (indeed, BTs are unavailable for cloudy
pixels). This leads to a new ~Lk sequence.

The key issue characterizing the TI of real sequences
is represented by the large non-uniform intervals
among available samples. Thus, in practice, an opti-
mal interpolation scheme is hardly defined and the
interpolation is commonly performed through heur-
istic block-wise procedures. In the numerical results
of this work, two possible TI strategies are consid-
ered, pointing out the pros and cons in real-world
scenarios. In particular, these strategies are: iÞ a
block-wise cubic interpolation (CI), and iiÞ a poly-
nomial fitting obtained via a minimum mean square
error (MMSE).

The cloud detection algorithm
Cloud detection algorithms for remote sensing
images are frequently performed by using MS infor-
mation, as e.g. in De Ruyter de Wildt, Seiz, and
Gruen (2007), in order to fully exploit the differences
between clouds and other kinds of surface (e.g. snow
cover). Moreover, it is possible to include a priori
information of different nature, such as spatial and
temporal information (see e.g. (Li, 2009; Vivone,
Addesso, Conte, Longo, & Restaino, 2014)), within a
Bayesian formalization. In the proposed framework,
the choice of the proper cloud detection algorithm is
left to the user and to the related literature. In this
paper, a simple algorithm that allows to assess the

Figure 1. Pre-processing steps for BT enhancement. The image sequences are: Lkf g ¼ htr/LSR, TI of htr/LSR, Hkf g ¼ ltr/HSR,
Ĥk
� � ¼ TI of ltr/HSR, L̂k

� � ¼ spatial interpolation of htr/LSR, Ekf g ¼ target htr/HSR. Dark spots in images H4 and L2,L3,L4
are the cloudy pixels.
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performance of data fusion in the presence of cloud
detection errors, is exploited, see Section 3 for details.

Spatial interpolation

SI of images has been the subject of many papers in
the technical literature, see e.g. (Aiazzi, Baronti, Selva,
& Alparone, 2013; Keys, 1981; Meijering, Niessen, &
Viergever, 2001; Parker, Kenyon, & Troxel, 1983). A
computationally efficient way to implement two-
dimensional interpolation methods, without signifi-
cantly reducing the quality of the final product, con-
sists in handling independently the vertical and the
horizontal dimensions. Accordingly, in this paper the
analysis is restricted to one-dimensional approaches
and, in particular, a bi-CI is chosen. It is completed
by calculating the convolution of the image pixel
values with the one-dimensional kernel

hðxÞ ¼
ðaþ 2Þ xj j3 � ðaþ 3Þ xj j2 þ 1 if xj j � 1
a xj j3 � 5a xj j2 þ 8a xj j � 4a if 1< xj j<2

0 otherwise;

8<
:

(4)

in which a is a parameter and x is a generic variable
indexing the vertical or the horizontal dimension, being
the operator applied in sequence to the columns and to
the rows of the image. Note that hð0Þ ¼ 1 and hðnÞ ¼
0 for all n 2 Nþ. The parameter a is set it to � 0:5
(which corresponds to cubic Hermite spline), producing
a third-order convergence with respect to the sampling
interval of the original function (Keys, 1981).

Hence, starting from the temporal interpolated
sequence, ~L ¼ f~Lk : k 2 TLg, the upsampled (spatial
interpolated) sequence L̂ ¼ L̂k : k 2 TL

� �
is made

available to be used for data fusion, see Section 2.3.

Data fusion

In the linear Gaussian case the optimal solution of (3)
can be obtained through several methods (Bryson &
Frazier, 1962; Fraser & Potter, 1969; Mayne, 1966;
Rauch, Tung, & Striebel, 1965), which are character-
ized by different computational requirements and
robustness properties (Crassidis & Junkins, 2012).
Among these implementations, the RTS approach
(Rauch et al., 1965) has been selected.

The state space model described by (1) and (2) plays
a crucial role within the Bayesian smoothing problem
(Ghahramani, 2001), since closed form solutions are
founded on its correctness. In the following sections,
the linear dynamic model (1) adopted for describing
the time evolution of the brightness and the linear
observation model (2) for producing an observation
sequence from the available data are described.
Afterwards, some details will be also provided about
the adopted RTS Bayesian smoothing approach.

Linear dynamic model
Following the rationale explained in Addesso, Conte,
Longo, Restaino & Vivone (2015), the brightness
daily variation of each pixel is independently com-
puted, namely a diagonal state transition matrix

Ak ¼ diag col � L̂k

L̂k�1

�
 ! !

; (5)

is employed, where diag �ð Þ is the diagonal operator
and � � � is the component-wise division.

The covariance matrix of the noise Qk is defined as
Qk ¼ σ2mI for all k, where I is the identity matrix and
σm is the standard deviation of the process noise. In
particular, the information for modeling the time
evolution of the brightness related to the HSR pixels
is extracted from the available LSR images. Although
being carried out on a coarser resolution, the estima-
tion of the transition matrix Ak allows to roughly take
into consideration the physical phenomena that influ-
ence the brightness, e.g. the incoming solar radiation
effect.

Linear observation model
The observation model (2) is a key issue for this data
fusion approach. Since the goal is to get an estimate
of an ideal htr/HSR sequence that has the same spa-
tial characteristics of the ltr/HSR sequence, the esti-
mate sequence is the ltr/HSR image for k 2 TH , i.e.
where the latter information is available. This can be
easily formalized into the Bayesian framework by
using

yk ¼ colðHkÞ; (6)

and setting the observation noise covariance to zero,
i.e. Rk ¼ 0.

Instead, for k 2 TEnTH , i.e. when HSR images are
not available, the straightforward approach consists
in using the LSR image as observation. However, this
method requires an accurate model for the statistical
relationship between the high and LSR representa-
tions of the illuminated scene, which constitutes a
well-known weakness of the Bayesian approaches
(Fasbender, 2008). Accordingly, an approach for tak-
ing into account all the available information into a
single comprehensive observation is exploited. To
this aim, the proposed method employs a sharpening
procedure, which yields a first rough approximation
of the desired htr/HSR image. Thus, the two inter-
mediate sequences L̂ and Ĥ are combined through a
deterministic fusion rule Fð�; �Þ producing the rough
estimate of the htr/HSR sequence

S ¼ FðL̂; ĤÞ ¼ Sk : k 2 TEf g: (7)

The employed fusion rule Fð�; �Þ is based on the high
pass modulation (HPM) injection scheme
(Schowengerdt, 2007), which is very credited in the
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pansharpening literature (Aiazzi, Alparone, Baronti,
Pippi, & Selva, 2002; Vivone, Restaino, Dalla Mura,
Licciardi, & Chanussot, 2014). Thus, the sharpened
image is defined by the following fusion rule

Sk ¼ L̂k � Ĥk

Ĥ
LP
k

�; (8)

where Ĥ
LP
k is a low pass version of the HSR image Ĥk.

Ĥ
LP
k is achieved by a multi-resolution analysis imple-

mented through the undecimated “à trous” algorithm
(Starck, Fadili, & Murtagh, 2007) choosing a B3 cubic
spline as scaling function (Strang & Nguyen, 1996).
Thus, the use of an enhanced observation (via a
sharpening approach) allows to reduce the measure
uncertainty; in turn, this allows to reasonably model
the observation noise through a spatially uncorrelated
Gaussian process with standard deviation σo.

By summarizing, the proposed observation model
can be written as

yk ¼
col Hkð Þ; Ck ¼ I; Rk ¼ 0; k 2 TH

col Skð Þ; Ck ¼ I; Rk ¼ σoI; k 2 TLnTH:

�
(9)

The RTS smoothing
The RTS smoothing approach (Rauch et al., 1965) is
an efficient two-step algorithm for fixed interval
smoothing.

In the following, the two forward and backward
steps composing the smoother are briefly detailed.

(1) Forward filter. The forward filter is a classical
Kalman filter (KF) (Kalman, 1960). It repre-
sents the optimal solution for estimating the
state xk in the linear Gaussian case, when only
the observations acquired up to time k are
available. It consists in recursively calculating
the mean x̂kjk and the covariance Pkjk of the
state distribution p xkjy1:k

� �
, which is thus

completely specified thanks to the Gaussian
hypothesis.

The KF starts from the initial estimates of the state x̂
0j0

and of the error covariance P0j0 and proceeds
through the following recursion, for k ¼ 1; . . . ;N

● Propagation step. Computation of the a priori
estimate

x̂kjk�1 ¼ Akx̂k�1jk�1; (10)

Pkjk�1 ¼ AkPk�1jk�1A
T
k þQk: (11)

● Update step. Computation of the posterior
estimate

x̂kjk ¼ x̂kjk�1 þ Kk yk � Ckx̂kjk�1

� �
; (12)

Pkjk ¼ I� KkCkð ÞPkjk�1; (13)

where

Kk ¼ Pkjk�1C
T
k CkPkjk�1C

T
k þ Rk

� ��1
(14)

is the so-called Kalman gain.

(2) Backward Filter. In the backward step, the
smoothed state estimates x̂kjN and covariances
PkjN , are calculated. The computation starts
from (last) time N and proceeds backwards
in time using the following recursive equations

x̂kjN ¼ x̂kjk þ Fk x̂kþ1jN � x̂kþ1jk
� �

; (15)

PkjN ¼ Pkjk þ Fk Pkþ1jN � Pkþ1jk
� �

; (16)

where

Fk ¼ PkjkAT
kþ1P

�1
kþ1jk; (17)

x̂kjk and Pkjk are the posterior state estimate and
covariance at time k, respectively, obtained by the
update step of the forward KF, x̂kþ1jk and Pkþ1jk are
the a priori state estimate and covariance at time
kþ 1, respectively, obtained by the propagation step
of the forward KF, whereas x̂kjN and PkjN are the final
posterior state estimate and covariance at time k for
this fixed interval smoothing approach.

Cloud detection algorithm for data fusion
performance evaluation

Cloud detection algorithms for remotely sensed
images are devoted to discriminate pixel-by-pixel
the following two hypotheses:

H0: the pixel is non cloudy;

H1: the pixel is cloudy.

The output is an estimated cloud mask, which
allows to identify the cloudy pixels by using
("k 2 TE) a binary image M̂k with components in
the set C ¼ noncloudy; cloudyf g ¼ 0; 1f g. The esti-
mated cloud mask unavoidably differs from the actual
one (say it Mk). Thus, two different error probabil-
ities can be considered:

● the false cloud probability Pfc, also called Type I
error probability, i.e. the probability to decide
H1 (cloudy pixel) when H0 is true (noncloudy
pixel);

● the miss cloud probability Pmc, also called Type
II error probability, i.e. the probability to decide
H0 when H1 is true.

6 P. ADDESSO ET AL.



The goal of this work is to assess data fusion perfor-
mance when unavoidable misclassification errors arise
from the cloud detector. Therefore, the cloud detection
is carried out through a simple likelihood ratio test
(LRT), which allows to tune the error probabilities by
simply changing the threshold values. It is worth point-
ing out that any other state-of-the-art cloud detection
approach can be substituted to the LRT in real applica-
tions, where the goal is to get best performance from
the data fusion framework achieved also via refine-
ments on the cloud detection strategy.

The exploited LRT approach can be formalized as
follows:

● a MS image acquired at time k is denoted as Dk,
where Dk 2 RB�N has B bands and N pixels
(each row contains the lexicographically ordered
pixels of a given band);

● the value at pixel n, i.e. dkðnÞ ¼ Dkð�; nÞ, is
modeled by a multivariate normal for both the
hypotheses H0 and H1.

Therefore, "k, one can write

fk;iðdÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞB �k;i

�� ��q exp � 1
2
ðd� μk;iÞT��1

k;i ðd� μk;iÞ
	 


;

(18)

where d 2 RB is a generic pixel, μk;i 2 RB is the mean
vector at time k for the ith hypothesis (i 2 0; 1f g),
�k;i 2 RB�B is the covariance matrix at time k for the
ith hypothesis, and ð�ÞT and ð�Þ�1 are the transpose
and inverse operators, respectively. The detection
strategy, based on the log-likelihood ratio Λkð�Þ, is:

ΛkðdÞ ¼ ln
fk;1ðdÞ
fk;0ðdÞ
	 


H1 > γ; (19)

where γ is a threshold that generates, for each k, a
different couple ðPfcðγ; kÞ; Pmcðγ; kÞÞ of false cloud
and miss cloud probabilities. The receiver operating
characteristic (ROC) of the test can be defined in
terms of the average values of Pfcðγ; kÞ and Pmcðγ; kÞ
over the whole sequence, say PfcðγÞ and PfcðγÞ,
respectively. Finally, the estimated cloud mask, for
each k, is given by

M̂kðnÞ ¼ HðΛkðdkðnÞÞ � γÞ; (20)

where Hð�Þ is the Heaviside step function.

Numerical results

This section is devoted to the assessment of the pro-
posed smoothing Bayesian approach in real scenarios
acquired by the SEVIRI sensor. A further testbed is
related to the design of the TI operator under a criter-
ion of robustness with respect to cloud masking errors.

Dataset description

As above-mentioned, thermal image sequences
acquired by the SEVIRI sensor (band IR 10.8) are
employed. In particular, the obtained outcomes are
related to data collected on 16 August 2014 over the
Iberian peninsula (latitude between 35:7 and 41:4
degrees North, longitude between 4:1 and 9:8 degrees
West), hereafter Spain dataset, characterized by a
spatial resolution of about 6 km and a temporal rate
of four images per hour. The protocol for accurately
assessing the quality of the fused products is as fol-
lows. The original dataset plays the role of the esti-
mating htr/HSR sequence E. H is simulated by
selecting a subset of E with a temporal interval ΔH ¼
8 between each couple of ltr/HSR images. L is simu-
lated by generating a spatially degraded version of E
imposing a spatial resolution ratio R between E and L
equal to 6. The spatial degradation is obtained by
firstly applying a Gaussian filter matched to the sen-
sor’s modulation transfer function to the target image
and then downsampling the outcome by a factor
equal to R.

In order to assess the robustness of the framework
with respect to the cloudmask errors, real cloud patterns,
say it Sk, acquired on 17 June 2013 on the southern part
of Italy are superimposed on the clear-sky image
sequence described before. In order to merge these two
real sequences making available both the GT (original
clear-sky sequence) and the observed cloudy sequence
(clear-sky + real cloudy sequence), the following steps are
performed:

● Computation of the cloud mask sequence Mk on
the cloudy sequence Sk.

● Construction of a coefficient map sequence Wk

from the cloud mask via morphological operators
(Soille, 2003), namely:
○ a certain number NE of successive erosions are

performed "k in order to get NE eroded maps
εneB ½Mk�, where ne is an integer such that
ne 2 ½1;NE�, εB½�� is the erosion operator with
structuring element B (Soille, 2003), which is
defined as

B ¼
1 1 1
1 1 1
1 1 1

2
4

3
5; (21)

and εneB ½�� is obtained by performing ne erosion steps;
● the coefficient map is computed by the formula

Wk ¼ 1
NE

XNE

ne¼1

εneB ½Mk�: (22)

● Addition of the clouds to the clear-sky sequence.
For the sake of simplicity, only the sequence
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between two HSR images are changed according
to the following equation:

Lck ¼ Wk � Sk þ ð1�WkÞ � Lk; (23)

in which 1 denotes a matrix with all entries equal to
one, and the operator “ � ” indicates the element-wise
Hadamard product.

This procedure has been performed for the interval
between and 16:00 UTC, resulting in the synthetic data
sequence shown in Figure 2. The corresponding cloud
cover fraction, computed for each k, is shown in Figure 3.
The main advantage of this protocol is the accuracy due
to its ability to produce a GT for the assessment. Instead,
the main drawbacks are the following ones:

● the suitability of the employed assessment pro-
cedure strictly depends on the accuracy of the
scale invariance hypothesis;

● the reference (GT) temperature is supposed to
not be affected by the presence of the fictitious
clouds.

Actually, the last issue does not imply a significant
loss of generality, because no physical model of the
temperature is employed in this framework. In fact,
since the proposed approach exploits the sole infor-
mation contained in the available images, it is highly
reasonable to assume that the same behavior would
be shown with diverse trends of the surface
temperature.

8.30 UTC 9.00 UTC 9.30 UTC 10.00 UTC 10.30 UTC 

11.00 UTC 11.30 UTC 12.00 UTC 12.30 UTC 13.00 UTC 

13.30 UTC 14.00 UTC 14.30 UTC 15.00 UTC 15.30 UTC 

Figure 2. Spain dataset. Simulated cloud sequence sampled every 30 min.
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Figure 3. Spain dataset: cloud cover fraction.
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Cloud detection impact on data fusion

The datasets are simulated through the procedure
described in the previous section allow to assess the
performance of the data fusion framework in real
conditions (cloud mass presence); the effectiveness
of the approach is evaluated in the following two
cases:

● perfect cloud classification (PCC), in which per-
fect cloud/no cloud pixel classification is
assumed;

● non-perfect cloud classification (NPCC), where
the cloudy pixels are identified via the cloud
detection algorithm described in Secion 3 by
using two thermal bands (namely IR 10.8 and
IR 13.4, used in De Ruyter de Wildt et al., 2007))
for different values of Pfc and Pmc.

The data used to estimate the mean vectors μk;0 and
μk;1 and the related covariance matrices �k;0 and �k;1

exploited by the cloud detection algorithm, see (18),
have been acquired on the southern part of Italy on
12, 13, 18 and 19 June 2013 and on 3, 5 and 7 August
2013. The accuracy is measured in terms of root

mean square error (RMSE), defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðI� JÞ2�

q
,

where I is the ground-truth, J is the estimated image,
and E½�� indicates the sample average over the pixels.

The performance of the algorithm in terms of
RMSE is resumed in Table 1 as a function of the
cloud detection error probabilities Pfc and Pmc and
further illustrated by the plots in Figure 4. As
expected after the preliminary study performed in

Table 1. Mean RMSE values, expressed in Kelvin degrees, for
CI and MMSE strategies for PCC case (i.e. when Pmc and Pfc
are both equal to 0) and for different couples ðPfc; PmcÞ.
Pmc 0 0.010 0.020 0.050 0.100 0.150 0.200
Pfc 0 0.976 0.965 0.914 0.813 0.593 0.533
BT RMSE (CI) 0.884 1.661 1.653 2.024 2.835 5.828 7.978
BT RMSE (MMSE) 1.027 1.704 1.725 1.753 1.651 1.409 1.559

Figure 4. Spain dataset. Left panel (a): mean RMSE over time k vs. Pfc. Center panel (b): mean RMSE over time k vs. Pmc. Right
panel (c): ROC of the cloud detector.
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(Addesso, Longo, et al., 2015), the performance of the
CI-based scheme, which is the best one in a PCC
scenario (RMSECI ¼ 0:884 K), is strongly deterio-
rated when Pmc increases, whereas the MMSE-based
scheme, which is less effective in a PCC scenario
(RMSEMMSE ¼ 1:027 K), is more robust than CI to
cloud detection errors, as shown in Figure 4 panel
(b). Furthermore, note that the other error probabil-
ity, i.e. Pfc, has a minor impact on the data fusion
effectiveness, as shown in Figure 4 panel (a). These
outcomes are also corroborated by Figure 5 in which,
for both the PCC and the NPCC cases, the BT RMSEs
over time are reported.

Finally, in Figure 6, the data fusion outcomes for
different values of Pmc are depicted by focusing on time
9:30 UTC. This visual analysis points out that, even if
the global RMSE is low, there are evident artifacts in the
CI-based fused products even for low Pmc values. These
are mainly due to errors in the detection of clouds
(probably on cloud boundaries) that are reported at
the current time, because of the CI TI. On other
hand, the MMSE scheme is much more robust to

cloud errors and some artifacts emerge only for high
values of Pmc, as shown in Figure 6 panel (l).

Conclusions and future developments

High spatial and high temporal thermal sequences
are of great interest for monitoring wide rural and
urban areas. Unfortunately, because of physical
constraints, these sequences cannot be acquired
by a single sensor. Instead, data fusion techniques
are often required to fulfill this task. In this paper,
a framework for fusing htr but LSR with HSR but
ltr sequences is proposed. It works in non-real
time (batch mode) and is able to enhance thermal
sequences even when missing data (clouds) affect
the scene. The proposed framework consists of
temporal smoothing and spatial sharpening tech-
niques. In particular, a Bayesian smoother relying
upon the RTS algorithm and a pansharpening
method belonging to the multi-resolution analysis
family (undecimated wavelet decomposition with
HPM injection) are exploited together to get the

08.00 10.00 12.00 14.00 16.00
0.2

0.5

1

2

5

10

20

50

B
T

 R
M

S
E

UTC

PCC
NPCC ( P

mc
 = 0.01)

NPCC ( P
mc

 = 0.05)

NPCC ( P
mc

 = 0.15)

NPCC ( P
mc

 = 0.40)

08.00 10.00 12.00 14.00 16.00
0.2

0.5

1

2

5

10

20

50

B
T

 R
M

S
E

UTC

PCC
NPCC ( P

mc
 = 0.01)

NPCC ( P
mc

 = 0.05)

NPCC ( P
mc

 = 0.15)

NPCC ( P
mc

 = 0.40)

(a)

(b)

Figure 5. Spain dataset. (a) BT RMSE for CI TI. (b) BT RMSE for MMSE TI.
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synthetic high spatial and htr sequence. The issue
of missing data due to the presence of cloud
masses is addressed by a cloud detection algorithm
followed by a TI in order to estimate the land-
scape under the clouds, thus providing a complete
thermal map sequence even in a cloudy
environment.

The numerical results using real data acquired by the
SEVIRI sensor (band IR 10.8) demonstrate the capabil-
ity of the proposed framework to counteract to a cer-
tain extent the effects of cloud coverage and even of
cloud detection errors. In particular, the MMSE-based
scheme is much more robust to cloud detection errors
than the CI-based one, thus resulting more appropriate
for cloudy scenarios. Instead, CI-based approaches are

suggested for cases when Pmc is very low, often achiev-
able only in (almost) clear-sky conditions.

Future investigations could be devoted to the
improvements of the data fusion framework, such
as the introduction of a priori knowledge about
the surface (e.g. digital elevation model) and the
integration of physical models for the incoming
solar radiation, the surface energy balance and
the DTCs.

Disclosure statement

No potential conflict of interest was reported by the
authors.

(a) (b) (c)

(d) (e) (f) 

(g) (h) (i)

(j) (k) (l)

Figure 6. Spain dataset. (a) Missing image to be estimated (acquired at 9.30 UTC on 16 August 2014). (b) Simulated cloudy
image. (c) True cloud mask. Estimated cloud mask for (d) Pmc ¼ 0:01, (e) Pmc ¼ 0:05, (f) Pmc ¼ 0:15. Images estimated in the CI-
based scheme for (g) Pmc ¼ 0:01, (h) Pmc ¼ 0:05, (i) Pmc ¼ 0:15. Images estimated in the MMSE-based scheme for (j)
Pmc ¼ 0:01, (k) Pmc ¼ 0:05, (l) Pmc ¼ 0:15.
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