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Abstract. A hybrid higher-order finite element boundary in- netic field problems. Traditional finite element methods rely
tegral (FE-BI) technique is discussed where the higher-ordepn utilizing the local information of the FEs. The fixed lo-
FE matrix elements are computed by a fully analytical pro- cal node order forces the local matrix elements to be trans-
cedure and where the gobal matrix assembly is organizedormed into global ones. Facing low order (LO) basis func-
by a self-identifying procedure of the local to global trans- tions, the local-global transformation is easy as edge related
formation. This assembly procedure applys to both, the FEelements only follow the edge directions. When it comes
part as well as the Bl part of the algorithm. The geometry isto higher order (HO) basis functiondi, 2002 Sun et al.
meshed into three-dimensional tetrahedra as finite element®001, Ismatullah and Eibert2009 Jorgensen et al2004
and nearly orthogonal hierarchical basis functions are emGraglia et al. 1997 Jorgensen et al2005, the basis func-
ployed. The boundary conditions are implemented in a strongions are also related to faces, volumes or even more com-
sense such that the boundary values of the volume basis fun@licated structures. The local-global transformation proce-
tions are directly utilized within the Bl, either for the tangen- dure introduces then considerably more difficulties. In this
tial electric and magnetic fields or for the asssociated equivpaper, a self-identified hierarchical basis function method is
alent surface current densities by applying a cross producilustrated. This method effectively overcomes the problem
with the unit surface normals. The self-identified method for mentioned above and provides more feasibility within FE-BI.
the global matrix assembly automatically discerns the globaMWithout fixing the node order or the sequence order of the ba-
order of the basis functions for generating the matrix ele-sis functions for the local FEs, the self-identified hierarchical
ments. Higher order basis functions do need more unknowngasis function organization allows a simple assembly of the
for each single FE, however, fewer FEs are needed to achievglobal equation system. Simultaneously, this method guar-
the same satisfiable accuracy. This improvement provides antees the compatibility between FE and Bhfatullah and
lot more flexibility for meshing and allows the mesh size to Eibert 2009 fluently. All arbitrarily shaped components are
raise up tor/3. The performance of the implemented sys- meshed into tetrahedr&dlakis et al, 1998 apart from per-
tem is evaluated in terms of computation time, accuracy andect electric conductors (PEC) or perfect magnetic conduc-
memory occupation, where excellent results with respect tadors (PMC) whereE and H are forced to vanish inside the
precision and computation times of large scale simulationssolume. As FE-BI solves for the field distribution inside the
are found. volume together with the corresponding equivalent surface
currents [smatullah and Eiber2009 Rao et al. 1982, the
self-identified hierarchical basis functions describe the dis-
1 Introduction tribution of fields within the tetrahedra. When observation
points tend to the enclosed boundary surface, the boundary
The Finite Element Boundary Integral (FE-BI) methdéh( condition determines the continuity & and H fields Har-
2002 Tzoulis and Eibert2005 Eibert and Hanserll997)  rington 1961 Bladel 1964 Mautz and Harrington1978.
is an efficient numerical technique for solving electromag-
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basis functions and subscripts;,»;) and (n,,ns,n;) are
assigned to column basis functions. In this wak;, m ;)
and(n;,n;) contain the global order of local node numbers
for edge related basis functions, wheréas , m;,m;) and
(n,,ns,n,) represent the global order of nodes for face re-
(mg, ng) lated basis functions, wheke= (i, j) andk = (r, s, 1) store
the local node number of finite elements.
(m;,n;) In FE analysis, the self-identified hierarchical basis func-
my, mr) tions are derived from the ical i i
geometrical information of the
Figure 1. The definition of subscripts based on a single tetrahedron.tetrahedra' I_n the_mesh f"?’ th‘? _data structure for Qach _tgtra-
Every vertex index can be used as a row indewr as a column  hedra contains six edge identities and four face identities.
indexn. Each edge is constructed with two node numbers and the
order of the two nodes determines the edge global direc-
tion. Every face has the identity of the corresponding out-
So it is useful to guarantee that the basis functions for FE areside boundary triangles, inside volume triangles or inside
the same as the basis functions for the BI. boundary triangles. The outside boundary triangles are de-
Derived from the equivalence theorem, basis functions forscribed by three edges in certain directions. The first edge
Bl are used to compose equivalent 2-D surface currétas (  gives out the first two nodes of the outside boundary trian-
et al, 1982 Chew et al. 2001, Yla-Oijala and Taskinen  gle, the last node can be found through another two edges.
2003. The currents are relevant to the surface unit normalThe order of these three nodes are inherited as global node
vector and the polarization of the fields, thus the tangentialorder. The inside volume triangles and inside boundary tri-
component of FE basis functions on the surface is perpenangles are constructed by three nodes directly and the node
dicular to the current basis functions. With respect to the cor-order is viewed as the global node order. Through the in-
responding sources (electric curreht or magnetic current  dex of edge and face identities, the tetrahedral FEs can easily
M) and the surface normal unit vector, the correspondingconsult the corresponding edges and triangles. Thus the de-
subspaces ensure the compatibility between FE and Bl.  termined global node order can be set for the LO and HO ba-
The LO basis functions have shortcomings when the sim-sis functions. As shown in Fig. Lin;, n;) always represent
ulation accuracy and the large number of unknowns are conthe starting point of the edgér ;, n ;) represent the ending
sidered. Precision and efficiency of LO are difficult to im- point and(m,, n,), (my, ny), (m, n,) represent the node or-
prove with increasing numbers of unknowns. The solutionder of the triangle. Practically, the local node numbers are
with LO basis functions demands the mesh size to be aroundrrayed in the unique global order and assigned to the corre-
A/20 to /8. With coarser meshes, the elements may intro-sponding subscripts. When generating the system matrices,
duce inaccurate waveforms for field reconstruction. the assigned subscripts are set to the corresponding positions
The well-known mixed order basis functions are successinto the list of basis functions. Thus elements of system ma-
ful for electromagnetic field distributions and surface cur- trices are automatically assigned to global edges and faces.
rent reconstructionfao—Wilton—Glisson (RWGlRao et al, If HO basis functions are implemented into FE, the matrix
1982 basis functions are inherited as LO. R&Gis very  elements can be calculated analytically and precisely. Since
effective for Bl, it is implemented as the first order of Ro- these results are commonly not available in FE literature, it
tational Subspace (Oth order) in FE tetrahedra. The Nedeleis a major contribution of this paper to present these analyt-
HO basis functions also form the first order of Gradient Sub-ical matrix elements up to 2nd order. As the order of basis
space (1st order), the second order Rotational Subspace (2ridnctions is enlarged, the accuracy of the boundary integral
order), an so on, where this paper is restricted to 2nd order(Bl) should also be improved. As it turns out, the integration
Apart from BI, LO and HO basis functions are also utilized order for the testing surface integrals should be increased,
within FE and they improve the accuracy for field computa- the adaptive nhumbers of quadrature points in the singular-
tions. In FE-BI, Oth and 1st order basis functions for FE andity cancellation technique have to grow and larger maximum
Bl are easy to match. Both of them are edge related and folnumbers for spherical harmonic expansion terms are needed
low the same direction of the edge vector. The situations fowithin the Multilevel Fast Multipole MethodHibert, 2005.
2nd order basis functions are more complicated. 2nd order HO achieves satisfactory accuracy with larger mesh size
basis functions are face related, so that to achieve compatand it provides a better solution for non uniform finite ele-
bility between FE and BI, the basis functions of them have toments. Good radar cross section (RCS) results of PEC struc-
maintain the same global node order. The tetrahedral FE baures coated by dielectric materials are acquired. Since LO
sis functions defined in Table 1 have a format represented bys inherited by the hierarchical bases, orthogonality or near-
subscriptsk = (i, j) andk = (r, s, t) as illustrated in Fig. 1. orthogonality of basis functions is usefull for HO. Based on
As elements of matrices need row and column positions, thehe structure of tetrahedra, system matrices built from nearly
subscriptgm;, m ;) and(m,, ms, m;) are introduced for row  orthogonal basis functions converge faster and the solution is

(mi' "‘1') (m¢,ne)
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more accurate, so that the flexibility of mesh size provided by

HO gives a more feasible solution. Meanwhile, HO improves Outside

- dielectric ielectri ~ o
the accuracy and also reduces the number of finite elements. ¢ Em\? /ggfl‘:ﬁg;“ E™ O™
FE-BI solutions for coated spheres and the Flamme air- Outside

craft referring to the self-identified hierarchical nearly or- PEC _

. . .. . Boundary Inside
thogonal basis functions are explicitly illustrated. The ma- |~ Dielectric
terial of the layered sphere is homogeneous, isotropic and _ B;ungr.v
lossy. A variety of FE-BI simulations up to 3 million un- Iosie e
knowns based on self-identified hierarchical basis functions Boundary
are presented. The accuracy of HO testing cases is good, and o)
the simulation results based on HO basis functions are also
compared with LO situations. Closed

Surface FEBI object

2 Finite element variational formulation

Figure 2. The general geometrical configuration for finite element—
boundary integral method.

Consider the configuration of an arbitrary volume as shown

in Fig. 2. A typical FE model consists of a finite volurivg

with possibly anisotropic and inhomogeneous materials in-
side. The materials are characterized by relative permittivity

27(r) and relative permeability?f, (r). Ag is the assembled

enclosed envelope afdr) is the normal vector pointing out

of V,.

Assuming a field expansiorE = u,a, and H =
3 i, as well as a suppressed time dependeritg a lin-
ear system of equationdif, 2002 Tzoulis and Eibert2005
is achieved as

([Run]—k3[SmnDlunl+ ko ZAd T mnlin]l=—jkoZdwm]. (1)

The system matricd®R,,.,.1, [Snnl, [Tmn] @and the right hand
side vectofw,,] are defined as

[Rmn]:// (VX (r)- 12 (r) - Vxa, (r)}dv, (2)
‘/(l

[Snal = / / {an(r)-&(r) - a,(r)}dv, 3)
‘/{l

[Tl =ﬁam(r) (@n(r) x 7(r))da, (4)
Ag

[wn] = f / (m(P) - Ta(F)}dw, 5)
Va

wherea,, anda, are field basis functionsy = w./€oio
is the free space wave numbéefg = /1io/€o is the free
space intrinsic impedance, agg is a volume current den-
sity source.

Equation (4) generates the matrices related to surface mag-
netic field unknown$i, ] where the integral region is the en-
velope ofV,. Equation (5) is related to the current excitation
inside the volume. AY, =)V, andA; =) A,, integra-

tion intervals of Egs. (2), (3), (4) and (5) are the combination
of finite elements. With simplex coordinates, the properties
of basis functions allow for an analytical solution of the ma-
trices in Eq. (1).

3 3-D HO self-identified basis functions

The general format of FE-BI basis functions for different
orders is displayed in Table #; (i =0,1,2,3) is the lo-
cal face area vector related to surfaces of the tetrahedron
pointing into the volumeYr is the tetrahedral volume. Face
vectors are independent in the tetrahedron and the surface
tangential part of field basis functions compared with sur-
face current basis functions are perpendicular. The field basis
functions distribute inside the finite element volume. When
tending to the tetrahedral boundary edges and faces, the cor-
responding tangential parts of edge basis functions for Oth
and 1st order exist on the adjacent connected surfaces, they
are zero on other edges or faces. The tangential components
of face based functions for 2nd order only exist on the related
face, but vanish on the other unrelated faces and on all edges.
The compatibility between FE and Bl is easily achieved by
utilizing self-identified hierarchical bases defined by global
node order. The identified hierarchical basis functienare

The hierarchical basis functions are based on the norecomposed of rotational first order (Oth order) represented by
malized barycentric (simplex) coordinates in FE tetrahedraa1, gradient first order (1st order) representedbhyand ro-

(X0, A1, A2, A3), WhereAg + A1+ A2 + A3 = 1. The functions
are also related to the gradiers,; (i =0,1,2,3) and the
volume of the tetrahedrofvz. Equation (2) is related to

tational second order (2nd order) relatedt@ndd,. Prop-
erties of identified hierarchical basis functions are displayed
in Table 1.(i, j) and(r, s, t) in Table 1 contain the local node

the curl of the basis functions. Equations (2) and (3) formnumbers in the series defined by global order. Also, the curl

the system matrices related to electric field unknoynig.
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4 Analytical calculation of FE system matrices

With self-identified hierarchical basis functions, analytical a; = 1; Vi
solutions for system matrices can be achieved through the
properties of simplex coordinates in tetrahedra. The inner

products of simplex coordinatekgpidus and Pindel982
are given as

X!
Lo(hp; Ag) = //ﬁpkqdv = 6VT§
Vr

Finite element matrix for hierarchical basis functions

and the hierarchical space turns out to be

—AjVAi = %(Xﬂj —Ajl)
{i, 7} ={123},{i < j}, (12)
by =X VA +A;jVA; = i()»l'lj +A5l;)
2A7T
{i, 7} ={123},{i < j}, (13)
Cs = MAs VA +AsA VA, — 200 VA

1
= _()\r)\slt +)\s)\tlr - Zkr)\tls)

2p=q 01,23 6 2AT
=11z, PeI=10123) ©6) {rs, ) =1{L,2,3},{r <s <1}, (14)
dy =M AsVA — Agh VA,
1
= — Ay — AsMly)
Lg(x,,xp,xq)_//fx Aph dv_6VT—' 2AT
6! {ros.t}={123),{r <s <t}. (15)
2.r = With properties of surface triangle finite elementsgidus
1y # {r p#q}=1{0,1,23}, (7)  and Pinder1982, it is shown that
Imolma!
SV VLY Py y P 16
// 273 T mitmatms+2) (19
d 6 X'y!
La(hr, As; Ap, A ArAshphgdv = 6V,
4Gr Asihp be) /// T Lixlj=—2A7 (-7~ {i < j}, (17)
1
2,r = AT=§t12Xt13~ (18)
Dorp£q)=(01.23) |
1r 7'5 Based on Eq. (11]T,.,] is computed as
2, -
Y= {1 S# s, p #4931 =1{0,1,2,3}. (8) [Tmn]Z/{[avasscmds]T x[as, by, ¢5,ds] -n(r)}da
S
The dot and cross products between face vectors are defined = é[ﬁ; )]
as
0 1 1 -12 12 Y2 14 14
-1 0 1 -1/2 12 -12 12 0
Ipg=Ap-Ag.{p #q}=1{0,1,2,3}, (9) 1 -1 0 Y2 12 -12 14 -1/4
12 12 -12 0 0 0 —3/20 120
-1/2 -1/2 -12 0 0 0 0 -1/10
-1/2 12 12 0 0 0 320 120
-1/4 -1/2 -1/4 320 0 -3/20 0 -1/10
Tpg=ApxAg{p#q}=1{0,123}. (10) i —1;4 o/ 1/41 —{/20 110 —1;20 1/10 c/)
19
Combining identified basis functions and their properties _ (19)
(Table 1, Egs. 6-10), the system mafif,, ] is calculatedin ~ From Eq. (5)[w,,] can be written as
Table 2 andS,,,,] is given in Table 3. From Egs. (2) and (3), a1
matricedR,,,, ] and[S,,,,] are symmetric, so that the elements by
at symmetric positions in Tables 2 and 3 are identical and ifwm,] = /// e | Ja ¢ dv, (20)
is explicit that the functions are the same along columns and Vi d»
rows.

System matrice§T ,,] depend on the surface boundaries Where the current sourcg¢, can be used directly for the
of the volume, so that the dimension of the hierarchical spacéroduct with self-identified 3-D basis functions and vector

is reduced. In fact Eq. (4) can be written as [w,] can be easily solved.
Thus, with analytical solutions for the hierarchical basis

~ functions, the system matrices of FE integrals can be gener-
[Tn] :#(a’"(r) X @ (r)) -n(r))da, (11) ated analytically and this avoids any numerical error accu-
Ad mulations and generates accurate matrices.

www.adv-radio-sci.net/12/1/2014/
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Table 1. Hierarchical basis functions and properties within the tetrahe®an ét al. 2007).

FE Vector Basis Functionsg; V x a;
AiAj—AjA; 2 (7. .
Rl ag )‘iV)‘j_)‘jV)\i # ZV)\.i XV)»]' gsz(Az XA/)
AL A;
G| by | AVAj+A;V R e 0 0
ArAs VA 1
" +A:A,SV A: s A A Ay =20 Ay 30 Vg X Vs Bz (v As x Ay
203 Vi o —3h Vs x Vhs Doidr x Ap)
R2
1
Ar Vg x VA g (ArAs X Ay
d Arhs Vs hd A=k Ay +2r}» Vi x V’}L vy
20 VA 3Vr sVar t 1205 Ay X Ay
+A: VA, x VAg A A, X Ag)
Table 2. Analytical solution for{R,;, ] matrix elements.
Vxazy, Vxby, Vxceoy, Vxdo,
e () (r)
4,u, (r) T:..T 162V3 {Tij Y
v 4,u, (r) 0 3 { ij st
X@1m 81V3 T T 81V _T:..T } +2TU . Trl
AR +Tij-Trs}
Vxbim 0 0 0 0
o ) (1 (i) Ty Ty
B D)o rir) T - T 27
45 ") T .T g BTt st 2Ly )Tt - T
VXeom 81vy tTij - Tt 0 —Lo(r; )T st - Trs +Lo(r; )5t - Trs
_Tij'Trs} —Lo@t;r)Trs - Tyt —Lot;r)Trs - Tt
+Lo(t;)Trs - Trs} —2Ly(t;8)Tys - Tyt
—Lo(t; )T ys - Trs}
“élV(Z HLa(ri )Tt - Tt
Mé7V(:) {Lo(r;r)Tst - Ty +2L2(r§ )T - Ty
+Lo(r;0)Tss- T
/l; (g) {T Tyt +2L2(V;S)Tsl Ty +2L2(( . ))TA:Z . 1}:5
Vxdop 16vi 0 +Lo(r; )T - Thrg 2085r) Ly - Lst
+2T’/ ) Trt —Lz(l' I’)T .T : +4L2(S; S)Trt : Trt
+Tij Tys} ’ ooy +2L(s; )Tyt - Ths

—2Lo(t: $)Trs - Tre
—Lot;t)Trs - Trs)

+Lo(t;r)T s - Tyt
+2Lo(t;8)Tys - Tyt
+Lo(t; )T s - Trs}

www.adv-radio-sci.net/12/1/2014/

Adv. Radio Sci.,

12, 1%, 2014



Table 3. Analytical solution for[S;,;,] matrix elements.
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ain

by,

C2n

doy,

%{Lz(l’; Dljj
ayy, —La(i; )i
—La(j;)1;;
+Lo(j; i)

%Mz(!’: D1
+Lo(; j)ji
—La(j; )1
—La(j; )i}

G Latin ol
+L3(Gi 5,01,
—2L3(i;r, )1 g
—L3(j;r,8) 1t
—L3(j;s, )1y
+2L3(j;r, )15}

&) (g i .
TVTZ{LS(L r, S)Ijt

—L3a(i; s,t)Ij,
—L3(j;r. )1
+L3(j; s, )1}

G (1ot
T#{LZ(L l)[JJ

by, +L2G5 )i
—La(j; D1ij
—Lo(j; D 1ii}

SR Lol
+Lo(i: )i
+L2(j; D)1
+Lo(j; )i}

%{La(i; ros) s
+L3(5s,0)1
—2L3(i;r, )]s
+L3(j;r,s)1i;
+L3(j; s, )1,
—2L3(j;r, )]s}

g—yg{Lsa; ),
—L3(i;s,01,
+L3(js )
—L3(j;s, )i}

z—‘(/’TZ){Lg(i; )l
+L3(ss, )1,
Com —2L3(i;l‘,l‘)1js
—L3a(j;r,s)li;
—L3(j;s, iy
+2L3(j;r, 1) i)

%{Lg(i; ros)
+L3(ss, 1)1,
—2L3(i;r, 01
+L3(j; 7)1
+L3(j; s, )1,
—2L3(j;r, )]s}

%{Lw,s; ro) I
+La(r,s;s,t)
—2L4(r,s;1,0) 15
+La(s,t;r,8)rt
+La(s,t;8, )y
—2L4(s,t;r,t) g
—2L4(r t;r,5) 5t
—2L4(r, t;5,t) L5y
HAL4(r, 151, 1) L5}

V2
—La(r,s55,t) Ity
+La(s,t;r, )1
—Lg(s,t;8,t) 1y
—2L4(r,t;r,8) g

+2L4(r, t; 5, 1) s/}

{La(r,s;r,8) i

SO L atior )
T‘/%{LB(I, r, S)I]l

dy, —L3(@i;s,0)1j,
—L3(j;r,$) 1
+L3(j;s,0) 1))

Zf‘(,;z){h(i; r,8)1j
~L3(i; 5,01}y
+L3(jsr, s) 1
—L3(j;s. 01}

& :
G a5l

—La(r,s55,t) Iy
+La(s,t;r,8) ]t
—La(s,t;8,t) 1y
—2L4(r,t;r,8) g
F2LA(r, t;8,1) I5r}

%V’T;{u(r, s57,8) 11t
—Lg(r,s;s,t) 1
—Lg(s,t;r,8) 1y
+La(s, 158, 0) 1}

5 Surface integral formulation

With Huygen’s principle ksmatullah and Eiber2009 Har-

rington, 1961, Chew et al. 2001, the radiation sources
can be replaced by equivalent electric surface currghts
and magnetic surface curreni$; on the volume enclosed
boundaryA, for evaluation of free space radiation. The nu- cfrJE -

merical solution for the surface currents are based on the well

known EFIE, MFIE and CFIEl$matullah and Eiber2009

Rao et al. 1982 Yla-Oijala and Taskiner2003, given as

Adv. Radio Sci., 12, 141, 2014

1 .
EFIE: EMS+71\><[A(MX)+ZOK(JS)]=—?Zx E™, (21)

1 1 .

MFIE: EJﬂLﬁx[A(JS)—Z—K(Ms)}z nx H™, (22)
0

«EFIE + Zo(l— )i x MFIE, (23)

where the vector operatorsandK are calculated as

www.adv-radio-sci.net/12/1/2014/
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Figure 3. Bistatic RCS of Coated Sphere | @ 550 MHz .oncut

half plane ¢ = 0°).

AX) = —#(vco x X)da,

Ad

K(X) = —jko 2

E"¢ and H'™ are
is the scalar Gree

(24)

V# GoV' - Xda +{p XGoda (25)

Aa Aa

incident electric and magnetic fieldsg
n’s function in free space arisla number

between zero and ong, and M, are given as

Js:ﬁXH’ Ms

=-nxE. (26)

Thus the electric and magnetic currents can be written as

Js = § inh X ay,

Msz—Zunﬁx a,. (27)

With f, =7 x a, (Yla-Oijala and Taskiner2003, J, and

M are expanded

Ny Nm
Js=Zinfn’ Ms=_Zunfn’
n=1 n=1

where f, is the 2-

as

(28)

D surface hierarchical basis function for

Bl, i, andu, in Eq. (27) are coefficients with respect to
the surface elements and the total number of Bl unknowns

iSN=N;+Ny.

The discretized solution for MoM can be achieved through

Galerkin’s process and fast solutions as given lsynatul-
lah and Eibert2009 2008 Notaros 2002 Eibert 2005 No-
taros 2008 can be utilized. The definition of HF,, is in
2-D derived from 3-D HQx,,, thus the system matrices from stration is to utilize a coated sphere testing case, where a
MoM and FE will be compatible based on the same geometPEC sphere is enclosed by a layer of dielectric material. The
rical structure information of the object. The system matricesanalytical RCS is well known as MIE ScatterinBalanis

from Bl are descri

bed itsmatullah and Eiber2009.

www.adv-radio-sci.net/12/1/2014/
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6 Linear algebraic equation system

To solve the electric fielflu] and the magnetic fielfi], the
subsystem from FE in form of Eq. (1) and the subsystem gen-
erated by Bl [smatullah and Eiber2009 must be combined

as a complete system. The Bl subsystem basdtFoB may
introduce resonances into the final system, so it is necessary
to utilize CFIE with similarly satisfiable accuracy. As a re-
sult, the subsystems can be regarded as

[MEE] (] + [MFE] 1] = [VFE],
[ME (] + [ME'] 1] = [V,

(29)

(30)
where MMF"IT:B' is the sub-matrix derived from FE-BI for
correspondingy and i. M}fE is square, symmetrical and
sparseM| Eis rectangular and sparse?! is rectangular and
fully staffed,Ml.B' is square, symmetrical and fully occupied,
VFEBI are excitation vectors for FE-BI. Thus, the complete
combined system is written as

[ IR

The complete system solves the electric and magnetic fields
simultaneously, thus equivalent surface electric and magnetic
currents can be achieved.

VFE
VBl

MFE MFE

Bl B (31)
u 1

7 Numerical results

To testify the accuracy of the analytical matrix elements and
the global matrix assembly in FE-BI, several numerical sim-
ulation results are shown in this section. A cogent demon-

1989. Good matching of RCS between analytical solution

Adv. Radio Sci., 12, 14, 2014
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and numerical method verifies the efficacy of FE-BI. As a

more complicated testing case, a second sphere is displayefigure 6. Bistatic RCS of Flamme @ 2.5 GHz ary cut plane ¢ =

With higher frequency and finer mesh, more unknowns are?®)-

handled. Moreover, an example of FE-BI application in very

large scale simulations is shown through the RCS of the

Flamme aircraft. As Oth order of FE-BI has been verified €d9€ length 18.08cm. The total unknowns are 70448. The
in many published articlesTgoulis and Eibert2005 Eib- ~ 'unning time was 419.6s. ,

ert and Hanserll997 Eibert 2007, it can be utilized as a ~_1he mesh size of LO is around/8 and the mesh size
reference for HO FE-BI. Efficiency of FE-BI based on dif- ©f HO is enlarged up to around/3. HO with coarser mesh

ferent orders of self-identified basis functions are presented2nd fewer unknowns achieves also accurate result as LO with
The sphere simulations were performed on a PC with In-finér mesh.
tel(R) Core(TM)2 Quad CPU Q9550 @ 2.83 GHz proces-
sor, installed memory (RAM) 16.0 GB and 64-bit operating 7.2 Coated sphere |
system. The simulation of the Flamme aircraft was operateci: . .
on a Server with Intel(R) Xeon(R) CPU E5630 @ 2.53 GHz or th_e second coated sphere testing case, numerlcal_ RCS
(2 processors), installed memory (RAM) 96.0GB and 64- from different orders are also compared with MIE scattering.
bit operating system. All simulations were computed on oneThPf second coated sphere contgms a PEC sphere core V\.”th
core. radius 9.5 m, and the PEC core is encloseq with a dle!ectrlc
layer with thickness 0.0025 m. The properties of the dielec-
tric layer are presented wit) =2.5— 0.5 and pu, = 1.0.
7.1 Coated sphere | The incident wave is 3 GHz and propagating towarddi-
rection and the electric field is 100 V/m alongdirection
For the coated sphere, the RCS from Oth, 1st and 2nd order dff, = 100 V/m). The results for the RCS are shown in Fig. 4.
self-identified basis functions for FE-BI are compared with  For Oth order, the mesh size was set to 0.01m, and the
MIE scattering as shown in Fig. 3. The coated sphere consistmean edge length is 0.858 cm, with minimum edge length
of a PEC core with radius 0.9 m and a layer of dielectrics with0.250 cm and maximum edge length 1.631 cm. The total un-
thickness 0.1 m. The dielectric layer properties are given byknowns are 411 339. The running time was 3525.6 s. For 1st
¢ =3—0.1j andu, = 1.0. The incident wave is 550 MHz order, the same mesh as Oth order is utilized. The total un-
and propagating towardsz direction and the electric fieldis knowns are 822 678. The running time was 4271.3s. For
100 V/m alongx direction (€, = 100 V/m). 2nd order, there are two testing cases. One uses the same
For Oth order, the mesh size was set to 0.04 m in Hy-mesh as Oth and 1st order. The total unknowns are 1973 604.
permesh softwareHyperWorks 2012, and the mean edge The running time was 7725.5s. Another simulation utilizes
length is 4.65cm, with minimum edge length 2.24 cm andmesh size 0.03 in Hypermesh, and the mean edge length
maximum edge length 8.11cm. The total unknowns areis 2.554 cm. The minimum edge is 0.250 cm and maximum
154 822. The running time was 1314.8s. For 1st order, theedge length 4.316 cm. The total unknowns are 202 522. The
same mesh as for Oth order was utilized. The total unknownsunning time was 1357.6 s.
are 309644. The running time was 4763.4s. For 2nd or- The numerical RCS results are compared with MIE. The
der, the mesh size is set 0.1 m, and the mean edge length imesh size of LO is aroun#/8, while HO with finer mesh
10.93 cm, with minimum edge length 6.48 cm and maximumsize is also working well though a lot more unknowns are

Adv. Radio Sci., 12, 141, 2014 www.adv-radio-sci.net/12/1/2014/
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settled. When the mesh size of HO increases up to around o _
A/4, HO with coarser mesh for FE-BI maintains good pre- field (£; = 100V/m). To visualize absorbing effects of the

cision as the results from LO with finer mesh as shown inlossy dielectric material, a PEC Flamme simulated with Bl
Fig. 4. with Oth order of basis functions is utilized for comparison.

The RCS of PEC and layered Flamme in different cut
planes are shown in Figs. 6-10. The PEC Flamme is simu-
lated through BI with Oth order of self-identified basis func-
The Flamme case is an application of FE-BI for very largetions, the layered Flamme is simulated through FE-BI with
scale simulation. The Flamme is located in tiyeplane, with  Oth, 1st and 2nd order of self-identified basis functions. As
nose heading along thex axis, as shown in Fig. 5. The the efficacy of Oth order with finer mesh has been verified,
Flamme is enclosed by a layer of lossy dielectric materialhere it is used as a reference. The RCS comparison shows
with thickness of approximately 1 cm. The permittivity of the that most of input power goes over the Flamme. In scattered
dielectric material i€, = 1.21— 105 and the permeability is  directions, the scattered power is evidently absorbed by the
ur = 1. The simulation frequency is 2.5 GHz. The incident dielectric material. Figure 11 shows the equivalent surface
plane wave propagates towards direction, with electric  electric current of the covered Flamme.

7.3 Flamme

Adv. Radio Sci., 12, 14, 2014

www.adv-radio-sci.net/12/1/2014/



10 L. Li et al.: Finite element matrix for hierarchical basis functions

8 Conclusion

>4.08e-01
<4.08e-01
<373-01
<3.426-01
<311e-01
<2.80e-01
<2.49¢-01
<2.18e-01
<1.87¢-01
<1.56e-01
<1.25¢-01
<9.39e-02
<6.29e-02 /f
<3.19e-02
<872-04

Self-identified hierarchical 3-D vector basis functions were
generated for the hybrid finite element (FE) — boundary
integal (BI) technique, where analytical solutions for the
FE matrix elements have been presented up to 2nd order.
Self-identified basis functions provide feasibility for FE and
effectively maintain compatibility with Bl. Going from 1st

to 2nd order, FE-BI allows for a mesh size increase figi@

up tox/3. From coated sphere testing cases, good accuracy
was found and the Flamme simulations displayed that FE-BI
based on self-identified basis functions can be applied for
very large scale simulations.

Max = 4.54e-01
Min =8.72e-04
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