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Abstract. A hybrid higher-order finite element boundary in-
tegral (FE-BI) technique is discussed where the higher-order
FE matrix elements are computed by a fully analytical pro-
cedure and where the gobal matrix assembly is organized
by a self-identifying procedure of the local to global trans-
formation. This assembly procedure applys to both, the FE
part as well as the BI part of the algorithm. The geometry is
meshed into three-dimensional tetrahedra as finite elements
and nearly orthogonal hierarchical basis functions are em-
ployed. The boundary conditions are implemented in a strong
sense such that the boundary values of the volume basis func-
tions are directly utilized within the BI, either for the tangen-
tial electric and magnetic fields or for the asssociated equiv-
alent surface current densities by applying a cross product
with the unit surface normals. The self-identified method for
the global matrix assembly automatically discerns the global
order of the basis functions for generating the matrix ele-
ments. Higher order basis functions do need more unknowns
for each single FE, however, fewer FEs are needed to achieve
the same satisfiable accuracy. This improvement provides a
lot more flexibility for meshing and allows the mesh size to
raise up toλ/3. The performance of the implemented sys-
tem is evaluated in terms of computation time, accuracy and
memory occupation, where excellent results with respect to
precision and computation times of large scale simulations
are found.

1 Introduction

The Finite Element Boundary Integral (FE-BI) method (Jin,
2002; Tzoulis and Eibert, 2005; Eibert and Hansen, 1997)
is an efficient numerical technique for solving electromag-

netic field problems. Traditional finite element methods rely
on utilizing the local information of the FEs. The fixed lo-
cal node order forces the local matrix elements to be trans-
formed into global ones. Facing low order (LO) basis func-
tions, the local-global transformation is easy as edge related
elements only follow the edge directions. When it comes
to higher order (HO) basis functions (Jin, 2002; Sun et al.,
2001; Ismatullah and Eibert, 2009; Jorgensen et al., 2004;
Graglia et al., 1997; Jorgensen et al., 2005), the basis func-
tions are also related to faces, volumes or even more com-
plicated structures. The local-global transformation proce-
dure introduces then considerably more difficulties. In this
paper, a self-identified hierarchical basis function method is
illustrated. This method effectively overcomes the problem
mentioned above and provides more feasibility within FE-BI.
Without fixing the node order or the sequence order of the ba-
sis functions for the local FEs, the self-identified hierarchical
basis function organization allows a simple assembly of the
global equation system. Simultaneously, this method guar-
antees the compatibility between FE and BI (Ismatullah and
Eibert, 2009) fluently. All arbitrarily shaped components are
meshed into tetrahedra (Volakis et al., 1998) apart from per-
fect electric conductors (PEC) or perfect magnetic conduc-
tors (PMC) whereE andH are forced to vanish inside the
volume. As FE-BI solves for the field distribution inside the
volume together with the corresponding equivalent surface
currents (Ismatullah and Eibert, 2009; Rao et al., 1982), the
self-identified hierarchical basis functions describe the dis-
tribution of fields within the tetrahedra. When observation
points tend to the enclosed boundary surface, the boundary
condition determines the continuity ofE andH fields (Har-
rington, 1961; Bladel, 1964; Mautz and Harrington, 1978).
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Figure 1.The definition of subscripts based on a single tetrahedron.
Every vertex index can be used as a row indexm or as a column
indexn.

So it is useful to guarantee that the basis functions for FE are
the same as the basis functions for the BI.

Derived from the equivalence theorem, basis functions for
BI are used to compose equivalent 2-D surface currents (Rao
et al., 1982; Chew et al., 2001; Ylä-Oijala and Taskinen,
2003). The currents are relevant to the surface unit normal
vector and the polarization of the fields, thus the tangential
component of FE basis functions on the surface is perpen-
dicular to the current basis functions. With respect to the cor-
responding sources (electric currentJ s or magnetic current
Ms) and the surface normal unit vector, the corresponding
subspaces ensure the compatibility between FE and BI.

The LO basis functions have shortcomings when the sim-
ulation accuracy and the large number of unknowns are con-
sidered. Precision and efficiency of LO are difficult to im-
prove with increasing numbers of unknowns. The solution
with LO basis functions demands the mesh size to be around
λ/20 toλ/8. With coarser meshes, the elements may intro-
duce inaccurate waveforms for field reconstruction.

The well-known mixed order basis functions are success-
ful for electromagnetic field distributions and surface cur-
rent reconstructions.Rao–Wilton–Glisson (RWG)(Rao et al.,
1982) basis functions are inherited as LO. AsRWGis very
effective for BI, it is implemented as the first order of Ro-
tational Subspace (0th order) in FE tetrahedra. The Nedelec
HO basis functions also form the first order of Gradient Sub-
space (1st order), the second order Rotational Subspace (2nd
order), an so on, where this paper is restricted to 2nd order.
Apart from BI, LO and HO basis functions are also utilized
within FE and they improve the accuracy for field computa-
tions. In FE-BI, 0th and 1st order basis functions for FE and
BI are easy to match. Both of them are edge related and fol-
low the same direction of the edge vector. The situations for
2nd order basis functions are more complicated. 2nd order
basis functions are face related, so that to achieve compati-
bility between FE and BI, the basis functions of them have to
maintain the same global node order. The tetrahedral FE ba-
sis functions defined in Table 1 have a format represented by
subscriptsk = (i,j) andk = (r,s, t) as illustrated in Fig. 1.
As elements of matrices need row and column positions, the
subscripts(mi,mj ) and(mr ,ms,mt ) are introduced for row

basis functions and subscripts(ni,nj ) and (nr ,ns,nt ) are
assigned to column basis functions. In this work,(mi,mj )

and(ni,nj ) contain the global order of local node numbers
for edge related basis functions, whereas(mr ,ms,mt ) and
(nr ,ns,nt ) represent the global order of nodes for face re-
lated basis functions, wherek = (i,j) andk = (r,s, t) store
the local node number of finite elements.

In FE analysis, the self-identified hierarchical basis func-
tions are derived from the geometrical information of the
tetrahedra. In the mesh file, the data structure for each tetra-
hedra contains six edge identities and four face identities.
Each edge is constructed with two node numbers and the
order of the two nodes determines the edge global direc-
tion. Every face has the identity of the corresponding out-
side boundary triangles, inside volume triangles or inside
boundary triangles. The outside boundary triangles are de-
scribed by three edges in certain directions. The first edge
gives out the first two nodes of the outside boundary trian-
gle, the last node can be found through another two edges.
The order of these three nodes are inherited as global node
order. The inside volume triangles and inside boundary tri-
angles are constructed by three nodes directly and the node
order is viewed as the global node order. Through the in-
dex of edge and face identities, the tetrahedral FEs can easily
consult the corresponding edges and triangles. Thus the de-
termined global node order can be set for the LO and HO ba-
sis functions. As shown in Fig. 1,(mi,ni) always represent
the starting point of the edge,(mj ,nj ) represent the ending
point and(mr ,nr), (ms,ns), (mt ,nt ) represent the node or-
der of the triangle. Practically, the local node numbers are
arrayed in the unique global order and assigned to the corre-
sponding subscripts. When generating the system matrices,
the assigned subscripts are set to the corresponding positions
into the list of basis functions. Thus elements of system ma-
trices are automatically assigned to global edges and faces.
If HO basis functions are implemented into FE, the matrix
elements can be calculated analytically and precisely. Since
these results are commonly not available in FE literature, it
is a major contribution of this paper to present these analyt-
ical matrix elements up to 2nd order. As the order of basis
functions is enlarged, the accuracy of the boundary integral
(BI) should also be improved. As it turns out, the integration
order for the testing surface integrals should be increased,
the adaptive numbers of quadrature points in the singular-
ity cancellation technique have to grow and larger maximum
numbers for spherical harmonic expansion terms are needed
within the Multilevel Fast Multipole Method (Eibert, 2005).

HO achieves satisfactory accuracy with larger mesh size
and it provides a better solution for non uniform finite ele-
ments. Good radar cross section (RCS) results of PEC struc-
tures coated by dielectric materials are acquired. Since LO
is inherited by the hierarchical bases, orthogonality or near-
orthogonality of basis functions is usefull for HO. Based on
the structure of tetrahedra, system matrices built from nearly
orthogonal basis functions converge faster and the solution is
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more accurate, so that the flexibility of mesh size provided by
HO gives a more feasible solution. Meanwhile, HO improves
the accuracy and also reduces the number of finite elements.

FE-BI solutions for coated spheres and the Flamme air-
craft referring to the self-identified hierarchical nearly or-
thogonal basis functions are explicitly illustrated. The ma-
terial of the layered sphere is homogeneous, isotropic and
lossy. A variety of FE-BI simulations up to 3 million un-
knowns based on self-identified hierarchical basis functions
are presented. The accuracy of HO testing cases is good, and
the simulation results based on HO basis functions are also
compared with LO situations.

2 Finite element variational formulation

Consider the configuration of an arbitrary volume as shown
in Fig. 2. A typical FE model consists of a finite volumeVa

with possibly anisotropic and inhomogeneous materials in-
side. The materials are characterized by relative permittivity
↔
εr(r) and relative permeability

↔
µr(r). Ad is the assembled

enclosed envelope and̂n(r) is the normal vector pointing out
of Va .

Assuming a field expansionE =
∑

unαn and H =∑
inαn as well as a suppressed time dependenceejωt , a lin-

ear system of equations (Jin, 2002; Tzoulis and Eibert, 2005)
is achieved as

([Rmn]−k2
0[Smn])[un]+jk0Z0[Tmn][ in]=−jk0Z0[wm]. (1)

The system matrices[Rmn], [Smn], [Tmn] and the right hand
side vector[wm] are defined as

[Rmn] =
∫∫∫
Va

{∇×am(r)·
↔
µr

−1(r)·∇×an(r)}dv, (2)

[Smn] =
∫∫∫
Va

{am(r) ·
↔
εr(r) · an(r)}dv, (3)

[Tmn] =
∫∫
©

Ad

am(r) · (an(r) × n̂(r))da, (4)

[wm] =
∫∫∫
Va

{am(r) · J d(r)}dv, (5)

where am and an are field basis functions,k0 = ω
√

ε0µ0
is the free space wave number,Z0 =

√
µ0/ε0 is the free

space intrinsic impedance, andJ d is a volume current den-
sity source.

The hierarchical basis functions are based on the nor-
malized barycentric (simplex) coordinates in FE tetrahedra
(λ0,λ1,λ2,λ3), whereλ0 + λ1 + λ2 + λ3 = 1. The functions
are also related to the gradients∇λi(i = 0,1,2,3) and the
volume of the tetrahedronVT . Equation (2) is related to
the curl of the basis functions. Equations (2) and (3) form
the system matrices related to electric field unknowns[un].

Figure 2. The general geometrical configuration for finite element–
boundary integral method.

Equation (4) generates the matrices related to surface mag-
netic field unknowns[in] where the integral region is the en-
velope ofVa . Equation (5) is related to the current excitation
inside the volume. AsVa =

∑
Ve andAd =

∑
Ae, integra-

tion intervals of Eqs. (2), (3), (4) and (5) are the combination
of finite elements. With simplex coordinates, the properties
of basis functions allow for an analytical solution of the ma-
trices in Eq. (1).

3 3-D HO self-identified basis functions

The general format of FE-BI basis functions for different
orders is displayed in Table 1.Ai (i = 0,1,2,3) is the lo-
cal face area vector related to surfaces of the tetrahedron
pointing into the volume,VT is the tetrahedral volume. Face
vectors are independent in the tetrahedron and the surface
tangential part of field basis functions compared with sur-
face current basis functions are perpendicular. The field basis
functions distribute inside the finite element volume. When
tending to the tetrahedral boundary edges and faces, the cor-
responding tangential parts of edge basis functions for 0th
and 1st order exist on the adjacent connected surfaces, they
are zero on other edges or faces. The tangential components
of face based functions for 2nd order only exist on the related
face, but vanish on the other unrelated faces and on all edges.

The compatibility between FE and BI is easily achieved by
utilizing self-identified hierarchical bases defined by global
node order. The identified hierarchical basis functionsαi are
composed of rotational first order (0th order) represented by
a1, gradient first order (1st order) represented byb1 and ro-
tational second order (2nd order) related toc2 andd2. Prop-
erties of identified hierarchical basis functions are displayed
in Table 1.(i,j) and(r,s, t) in Table 1 contain the local node
numbers in the series defined by global order. Also, the curl
of identified hierarchical basis functions is given.
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4 Analytical calculation of FE system matrices

With self-identified hierarchical basis functions, analytical
solutions for system matrices can be achieved through the
properties of simplex coordinates in tetrahedra. The inner
products of simplex coordinates (Lapidus and Pinder, 1982)
are given as

L2(λp;λq) =

∫∫∫
VT

λpλqdv = 6VT

X!

5!

X =

{
2,p = q

1,p 6= q
, {p,q} = {0,1,2,3}, (6)

L3(λr ;λp,λq) =

∫∫∫
VT

λrλpλqdv = 6VT

X!

6!

X =

{
2, r = p,q

1, r 6= p,q
, {r,p 6= q} = {0,1,2,3}, (7)

L4(λr ,λs;λp,λq)=

∫∫∫
VT

λrλsλpλqdv = 6VT

X!Y !

7!

X =

{
2, r = p,q

1, r 6= p,q
, {r,p 6= q} = {0,1,2,3}

Y =

{
2, s = p,q

1, s 6= p,q
, {s,p 6= q} = {0,1,2,3}. (8)

The dot and cross products between face vectors are defined
as

Ipq = Ap · Aq , {p 6= q} = {0,1,2,3}, (9)

T pq = Ap × Aq , {p 6= q} = {0,1,2,3}. (10)

Combining identified basis functions and their properties
(Table 1, Eqs. 6–10), the system matrix[Rmn] is calculated in
Table 2 and[Smn] is given in Table 3. From Eqs. (2) and (3),
matrices[Rmn] and[Smn] are symmetric, so that the elements
at symmetric positions in Tables 2 and 3 are identical and it
is explicit that the functions are the same along columns and
rows.

System matrices[Tmn] depend on the surface boundaries
of the volume, so that the dimension of the hierarchical space
is reduced. In fact Eq. (4) can be written as

[Tmn] =
∫∫
©

Ad

(am(r) × an(r)) · n̂(r))da, (11)

and the hierarchical space turns out to be

as = λi∇λj − λj∇λi =
1

2AT

(λilj − λj li)

{i,j} = {1,2,3}, {i < j}, (12)

bs = λi∇λj + λj∇λi =
1

2AT

(λilj + λj li)

{i,j} = {1,2,3}, {i < j}, (13)

cs = λrλs∇λt + λsλt∇λr − 2λrλt∇λs

=
1

2AT

(λrλslt + λsλt lr − 2λrλt ls)

{r,s, t} = {1,2,3}, {r < s < t}, (14)

ds = λrλs∇λt − λsλt∇λr

=
1

2AT

(λrλslt − λsλt lr)

{r,s, t} = {1,2,3}, {r < s < t} . (15)

With properties of surface triangle finite elements (Lapidus
and Pinder, 1982), it is shown that∫∫
AT

λ
m1
1 λ

m2
2 λ

m3
3 da = 2AT

m1!m2!m3!

(m1+m2+m3+2)!
, (16)

li × lj = −2AT (−1)j−i, {i < j}, (17)

AT =
1

2
t12× t13. (18)

Based on Eq. (11),[Tmn] is computed as

[Tmn] =

∫∫
AT

{[as,bs,cs,ds ]
T

×[as,bs,cs,ds ] · n̂(r)}da

=
1

6
[n̂A · n̂(r)]·

0 1 1 −1/2 1/2 1/2 1/4 1/4
−1 0 1 −1/2 1/2 −1/2 1/2 0
−1 −1 0 1/2 1/2 −1/2 1/4 −1/4
1/2 1/2 −1/2 0 0 0 −3/20 1/20

−1/2 −1/2 −1/2 0 0 0 0 −1/10
−1/2 1/2 1/2 0 0 0 3/20 1/20
−1/4 −1/2 −1/4 3/20 0 −3/20 0 −1/10
−1/4 0 1/4 −1/20 1/10 −1/20 1/10 0


.

(19)

From Eq. (5),[wm] can be written as

[wm] =

∫∫∫
VT




a1
b1
c2
d2

 · J d

dv, (20)

where the current sourceJ d can be used directly for the
product with self-identified 3-D basis functions and vector
[wm] can be easily solved.

Thus, with analytical solutions for the hierarchical basis
functions, the system matrices of FE integrals can be gener-
ated analytically and this avoids any numerical error accu-
mulations and generates accurate matrices.
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Table 1.Hierarchical basis functions and properties within the tetrahedron (Sun et al., 2001).

FE Vector Basis Functionsαi ∇ ×αi

R1 a1 λi∇λj − λj∇λi
λiAj −λj Ai

3VT
2∇λi × ∇λj

2
9V 2

T

(Ai × Aj )

G1 b1 λi∇λj + λj∇λi
λiAj +λj Ai

3VT
0 0

R2

c2

λrλs∇λt

+λsλt∇λr

−2λrλt∇λs

λrλsAt+λsλtAr−2λrλtAs
3VT

3λr∇λs × ∇λt

−3λt∇λr × ∇λs

1
3V 2

T

(λrAs × At

−λtAr × As)

d2
λrλs∇λt

−λsλt∇λr

λrλsAt−λsλtAr
3VT

λr∇λs × ∇λt

+2λs∇λr × ∇λt

+λt∇λr × ∇λs

1
9V 2

T

(λrAs × At

+2λsAr × At

+λtAr × As)

Table 2.Analytical solution for[Rmn] matrix elements.

∇×a1n ∇×b1n ∇×c2n ∇×d2n

∇×a1m
4

↔
µr

−1
(r)

81V 3
T

T ij · T ij 0
4

↔
µr

−1
(r)

81V 3
T

{T ij · T st

−T ij · T rs}

↔
µr

−1
(r)

162V 3
T

{T ij · T st

+2T ij · T rt

+T ij · T rs}

∇×b1m 0 0 0 0

∇×c2m

4
↔
µr

−1
(r)

81V 3
T

{T ij · T st

−T ij · T rs}

0

↔
µr

−1
(r)

9V 4
T

{L2(r;r)T st · T st

−L2(r; t)T st · T rs

−L2(t;r)T rs · T st

+L2(t; t)T rs · T rs}

↔
µr

−1
(r)

27V 4
T

{L2(r;r)T st · T st

+2L2(r;s)T st · T rt

+L2(r; t)T st · T rs

−L2(t;r)T rs · T st

−2L2(t;s)T rs · T rt

−L2(t; t)T rs · T rs}

∇×d2m

↔
µr

−1
(r)

162V 3
T

{T ij · T st

+2T ij · T rt

+T ij · T rs}

0

↔
µr

−1
(r)

27V 4
T

{L2(r;r)T st · T st

+2L2(r;s)T st · T rt

+L2(r; t)T st · T rs

−L2(t;r)T rs · T st

−2L2(t;s)T rs · T rt

−L2(t; t)T rs · T rs}

↔
µr

−1
(r)

81V 4
T

{L2(r;r)T st · T st

+2L2(r;s)T st · T rt

+L2(r; t)T st · T rs

+2L2(s;r)T rt · T st

+4L2(s;s)T rt · T rt

+2L2(s; t)T rt · T rs

+L2(t;r)T rs · T st

+2L2(t;s)T rs · T rt

+L2(t; t)T rs · T rs}

www.adv-radio-sci.net/12/1/2014/ Adv. Radio Sci., 12, 1–11, 2014
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Table 3.Analytical solution for[Smn] matrix elements.

a1n b1n c2n d2n

a1m

↔
εr (r)

9V 2
T

{L2(i; i)Ijj

−L2(i;j)Iji

−L2(j ; i)Iij
+L2(j ;j)Iii}

↔
εr (r)

9V 2
T

{L2(i; i)Ijj

+L2(i;j)Iji

−L2(j ; i)Iij
−L2(j ;j)Iii}

↔
εr (r)

9V 2
T

{L3(i;r,s)Ij t

+L3(i;s, t)Ijr

−2L3(i;r, t)Ijs

−L3(j ;r,s)Iit
−L3(j ;s, t)Iir

+2L3(j ;r, t)Iis}

↔
εr (r)

9V 2
T

{L3(i;r,s)Ij t

−L3(i;s, t)Ijr

−L3(j ;r,s)Iit
+L3(j ;s, t)Iir }

b1m

↔
εr (r)

9V 2
T

{L2(i; i)Ijj

+L2(i;j)Iji

−L2(j ; i)Iij
−L2(j ;j)Iii}

↔
εr (r)

9V 2
T

{L2(i; i)Ijj

+L2(i;j)Iji

+L2(j ; i)Iij
+L2(j ;j)Iii}

↔
εr (r)

9V 2
T

{L3(i;r,s)Ij t

+L3(i;s, t)Ijr

−2L3(i;r, t)Ijs

+L3(j ;r,s)Iit
+L3(j ;s, t)Iir

−2L3(j ;r, t)Iis}

↔
εr (r)

9V 2
T

{L3(i;r,s)Ij t

−L3(i;s, t)Ijr

+L3(j ;r,s)Iit
−L3(j ;s, t)Iir }

c2m

↔
εr (r)

9V 2
T

{L3(i;r,s)Ij t

+L3(i;s, t)Ijr

−2L3(i;r, t)Ijs

−L3(j ;r,s)Iit
−L3(j ;s, t)Iir
+2L3(j ;r, t)Iis}

↔
εr (r)

9V 2
T

{L3(i;r,s)Ij t

+L3(i;s, t)Ijr

−2L3(i;r, t)Ijs

+L3(j ;r,s)Iit
+L3(j ;s, t)Iir
−2L3(j ;r, t)Iis}

↔
εr (r)

9V 2
T

{L4(r,s;r,s)It t

+L4(r,s;s, t)Itr
−2L4(r,s;r, t)Its
+L4(s, t;r,s)Irt
+L4(s, t;s, t)Irr
−2L4(s, t;r, t)Irs
−2L4(r, t;r,s)Ist
−2L4(r, t;s, t)Isr
+4L4(r, t;r, t)Iss}

↔
εr (r)

9V 2
T

{L4(r,s;r,s)It t

−L4(r,s;s, t)Itr
+L4(s, t;r,s)Irt
−L4(s, t;s, t)Irr
−2L4(r, t;r,s)Ist
+2L4(r, t;s, t)Isr}

d2m

↔
εr (r)

9V 2
T

{L3(i;r,s)Ij t

−L3(i;s, t)Ijr

−L3(j ;r,s)Iit
+L3(j ;s, t)Iir }

↔
εr (r)

9V 2
T

{L3(i;r,s)Ij t

−L3(i;s, t)Ijr

+L3(j ;r,s)Iit
−L3(j ;s, t)Iir }

↔
εr (r)

9V 2
T

{L4(r,s;r,s)It t

−L4(r,s;s, t)Itr
+L4(s, t;r,s)Irt
−L4(s, t;s, t)Irr
−2L4(r, t;r,s)Ist
+2L4(r, t;s, t)Isr}

↔
εr (r)

9V 2
T

{L4(r,s;r,s)It t

−L4(r,s;s, t)Itr
−L4(s, t;r,s)Irt
+L4(s, t;s, t)Irr }

5 Surface integral formulation

With Huygen’s principle (Ismatullah and Eibert, 2009; Har-
rington, 1961; Chew et al., 2001), the radiation sources
can be replaced by equivalent electric surface currentsJ s

and magnetic surface currentsMs on the volume enclosed
boundaryAd for evaluation of free space radiation. The nu-
merical solution for the surface currents are based on the well
known EFIE, MFIE and CFIE (Ismatullah and Eibert, 2009;
Rao et al., 1982; Ylä-Oijala and Taskinen, 2003), given as

EFIE :
1

2
Ms+̂n×[3(Ms)+Z0K(J s)]=−n̂ × Einc, (21)

MFIE :
1

2
J s+̂n×

[
3(J s)−

1

Z0
K(Ms)

]
= n̂ × H inc, (22)

CFIE : αEFIE + Z0(1− α)̂n × MFIE, (23)

where the vector operators3 andK are calculated as
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and fully staffed, MBI
i is square, symmetrical and fully oc-355

cupied, V FE,BI are excitation vectors for FE-BI. Thus, the

complete combined system is written as

[
MFE

u MFE
i

MBI
u MBI

i

][
u
i

]
=

[
V FE

V BI

]
. (31)

The complete system solves the electric and magnetic fields360

simultaneously, thus equivalent surface electric and magnetic

currents can be achieved.

7 Numerical Results

To testify the accuracy of the analytical matrix elements

and the global matrix assembly in FE-BI, several numerical365

simulation results are shown in this section. A cogent demon-

stration is to utilize a coated sphere testing case, where a PEC

sphere is enclosed by a layer of dielectric material. The ana-

lytical RCS is well known as MIE Scattering (C. A. Balanis

(1989)). Good matching of RCS between analytical solution370

and numerical method verifies the efficacy of FE-BI. As a

more complicated testing case, a second sphere is displayed.

With higher frequency and finer mesh, more unknowns are

handled. Moreover, an example of FE-BI application in very

large scale simulations is shown through the RCS of the375

Flamme aircraft. As 0th order of FE-BI has been verified in

many published articles (A. Tzoulis and T. F. Eibert (2005);

T. F. Eibert and V. Hansen (1997); T. F. Eibert (2007)), it can

be utilized as a reference for HO FE-BI. Efficiency of FE-

BI based on different orders of self-identified basis functions380

are presented. The sphere simulations were performed on a

PC with Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83 GHz

processor, installed memory (RAM) 16.0 GB and 64-bit op-

erating system. The simulation of the Flamme aircraft was

operated on a Server with Intel(R) Xeon(R) CPU E5630 @385

2.53 GHz (2 processors), installed memory (RAM) 96.0 GB

and 64-bit operating system. All simulations were computed

on one core.

7.1 Coated Sphere I

For the coated sphere, the RCS from 0th, 1st and 2nd or-390

der of self-identified basis functions for FE-BI are compared

with MIE scattering as shown in Fig. 3. The coated sphere

consists of a PEC core with radius 0.9 m and a layer of di-

electrics with thickness 0.1 m. The dielectric layer properties

are given by ǫr = 3− 0.1j and µr = 1.0. The incident wave395

is 550 MHz and propagating towards +z direction and the

electric field is 100 V/m along x direction (Ex = 100 V/m).

For 0th order, the mesh size was set to 0.04 m in Hy-

permesh software (HyperWorks (2012)), and the mean edge

length is 4.65 cm, with minimum edge length 2.24 cm and400

maximum edge length 8.11 cm. The total unknowns are

154 822. The running time was 1 314.8 s. For 1st order, the

same mesh as for 0th order was utilized. The total unknowns
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are 309 644. The running time was 4 763.4 s. For 2nd or-

der, the mesh size is set 0.1 m, and the mean edge length405

is 10.93 cm, with minimum edge length 6.48 cm and maxi-

mum edge length 18.08 cm. The total unknowns are 70 448.

The running time was 419.6 s.

The mesh size of LO is around λ/8 and the mesh size

of HO is enlarged up to around λ/3. HO with coarser mesh410

and fewer unknowns achieves also accurate result as LO with

finer mesh.

7.2 Coated Sphere II

For the second coated sphere testing case, numerical RCS

from different orders are also compared with MIE scattering.415

The second coated sphere contains a PEC sphere core with

radius 0.5 m, and the PEC core is enclosed with a dielectric

layer with thickness 0.0025 m. The properties of the dielec-

tric layer are presented with ǫr = 2.5− 0.5j and µr = 1.0.

The incident wave is 3 GHz and propagating toward +z di-420

rection and the electric field is 100 V/m along x direction

(Ex = 100 V/m). The results for the RCS are shown in Fig. 4.
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3(X) = −

∫∫
©

Ad

(∇G0 × X)da, (24)

K(X) = −jk0

 1

k0
2
∇

∫∫
©

Ad

G0∇
′

· Xda +

∫∫
©

Ad

XG0da

 . (25)

Einc andH inc are incident electric and magnetic fields,G0
is the scalar Green’s function in free space andα is a number
between zero and one.J s andMs are given as

J s = n̂ × H , Ms = −n̂ × E. (26)

Thus the electric and magnetic currents can be written as

J s =

∑
inn̂ × an, Ms = −

∑
unn̂ × an. (27)

With f n = n̂ × an (Ylä-Oijala and Taskinen, 2003), J s and
Ms are expanded as

J s =

NI∑
n=1

inf n, Ms = −

NM∑
n=1

unf n, (28)

wheref n is the 2-D surface hierarchical basis function for
BI, in and un in Eq. (27) are coefficients with respect to
the surface elements and the total number of BI unknowns
is N = NI + NM .

The discretized solution for MoM can be achieved through
Galerkin’s process and fast solutions as given by (Ismatul-
lah and Eibert, 2009, 2008; Notaros, 2002; Eibert, 2005; No-
taros, 2008) can be utilized. The definition of HOf n is in
2-D derived from 3-D HOan, thus the system matrices from
MoM and FE will be compatible based on the same geomet-
rical structure information of the object. The system matrices
from BI are described inIsmatullah and Eibert(2009).
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and fully staffed, MBI
i is square, symmetrical and fully oc-355
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complete combined system is written as
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MFE

u MFE
i

MBI
u MBI

i

][
u
i

]
=

[
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]
. (31)
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consists of a PEC core with radius 0.9 m and a layer of di-

electrics with thickness 0.1 m. The dielectric layer properties

are given by ǫr = 3− 0.1j and µr = 1.0. The incident wave395

is 550 MHz and propagating towards +z direction and the

electric field is 100 V/m along x direction (Ex = 100 V/m).

For 0th order, the mesh size was set to 0.04 m in Hy-
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length is 4.65 cm, with minimum edge length 2.24 cm and400

maximum edge length 8.11 cm. The total unknowns are
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6 Linear algebraic equation system

To solve the electric field[u] and the magnetic field[i], the
subsystem from FE in form of Eq. (1) and the subsystem gen-
erated by BI (Ismatullah and Eibert, 2009) must be combined
as a complete system. The BI subsystem based onEFIE may
introduce resonances into the final system, so it is necessary
to utilize CFIE with similarly satisfiable accuracy. As a re-
sult, the subsystems can be regarded as[
MFE

u

]
[u] +

[
MFE

i

]
[i] =

[
V FE]

, (29)[
MBI

u

]
[u] +

[
MBI

i

]
[i] =

[
V BI] , (30)

where M
FE,BI
u,i is the sub-matrix derived from FE-BI for

correspondingu and i. MFE
u is square, symmetrical and

sparse,MFE
i is rectangular and sparse,MBI

u is rectangular and
fully staffed,MBI

i is square, symmetrical and fully occupied,
V FE,BI are excitation vectors for FE-BI. Thus, the complete
combined system is written as[

MFE
u MFE

i

MBI
u MBI

i

][
u

i

]
=

[
V FE

V BI

]
. (31)

The complete system solves the electric and magnetic fields
simultaneously, thus equivalent surface electric and magnetic
currents can be achieved.

7 Numerical results

To testify the accuracy of the analytical matrix elements and
the global matrix assembly in FE-BI, several numerical sim-
ulation results are shown in this section. A cogent demon-
stration is to utilize a coated sphere testing case, where a
PEC sphere is enclosed by a layer of dielectric material. The
analytical RCS is well known as MIE Scattering (Balanis,
1989). Good matching of RCS between analytical solution
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Figure 5. The geometry of a Flamme airplane.

and numerical method verifies the efficacy of FE-BI. As a
more complicated testing case, a second sphere is displayed.
With higher frequency and finer mesh, more unknowns are
handled. Moreover, an example of FE-BI application in very
large scale simulations is shown through the RCS of the
Flamme aircraft. As 0th order of FE-BI has been verified
in many published articles (Tzoulis and Eibert, 2005; Eib-
ert and Hansen, 1997; Eibert, 2007), it can be utilized as a
reference for HO FE-BI. Efficiency of FE-BI based on dif-
ferent orders of self-identified basis functions are presented.
The sphere simulations were performed on a PC with In-
tel(R) Core(TM)2 Quad CPU Q9550 @ 2.83 GHz proces-
sor, installed memory (RAM) 16.0 GB and 64-bit operating
system. The simulation of the Flamme aircraft was operated
on a Server with Intel(R) Xeon(R) CPU E5630 @ 2.53 GHz
(2 processors), installed memory (RAM) 96.0 GB and 64-
bit operating system. All simulations were computed on one
core.

7.1 Coated sphere I

For the coated sphere, the RCS from 0th, 1st and 2nd order of
self-identified basis functions for FE-BI are compared with
MIE scattering as shown in Fig. 3. The coated sphere consists
of a PEC core with radius 0.9 m and a layer of dielectrics with
thickness 0.1 m. The dielectric layer properties are given by
εr = 3− 0.1j andµr = 1.0. The incident wave is 550 MHz
and propagating towards+z direction and the electric field is
100 V/m alongx direction (Ex = 100 V/m).

For 0th order, the mesh size was set to 0.04 m in Hy-
permesh software (HyperWorks, 2012), and the mean edge
length is 4.65 cm, with minimum edge length 2.24 cm and
maximum edge length 8.11 cm. The total unknowns are
154 822. The running time was 1314.8 s. For 1st order, the
same mesh as for 0th order was utilized. The total unknowns
are 309 644. The running time was 4763.4 s. For 2nd or-
der, the mesh size is set 0.1 m, and the mean edge length is
10.93 cm, with minimum edge length 6.48 cm and maximum

Figure 6.Bistatic RCS of Flamme @ 2.5 GHz onxy cut plane (ϑ =

90◦).

edge length 18.08 cm. The total unknowns are 70 448. The
running time was 419.6 s.

The mesh size of LO is aroundλ/8 and the mesh size
of HO is enlarged up to aroundλ/3. HO with coarser mesh
and fewer unknowns achieves also accurate result as LO with
finer mesh.

7.2 Coated sphere II

For the second coated sphere testing case, numerical RCS
from different orders are also compared with MIE scattering.
The second coated sphere contains a PEC sphere core with
radius 0.5 m, and the PEC core is enclosed with a dielectric
layer with thickness 0.0025 m. The properties of the dielec-
tric layer are presented withεr = 2.5− 0.5j andµr = 1.0.
The incident wave is 3 GHz and propagating toward+z di-
rection and the electric field is 100 V/m alongx direction
(Ex = 100 V/m). The results for the RCS are shown in Fig. 4.

For 0th order, the mesh size was set to 0.01 m, and the
mean edge length is 0.858 cm, with minimum edge length
0.250 cm and maximum edge length 1.631 cm. The total un-
knowns are 411 339. The running time was 3525.6 s. For 1st
order, the same mesh as 0th order is utilized. The total un-
knowns are 822 678. The running time was 4271.3 s. For
2nd order, there are two testing cases. One uses the same
mesh as 0th and 1st order. The total unknowns are 1 973 604.
The running time was 7725.5 s. Another simulation utilizes
mesh size 0.03 in Hypermesh, and the mean edge length
is 2.554 cm. The minimum edge is 0.250 cm and maximum
edge length 4.316 cm. The total unknowns are 202 522. The
running time was 1357.6 s.

The numerical RCS results are compared with MIE. The
mesh size of LO is aroundλ/8, while HO with finer mesh
size is also working well though a lot more unknowns are

Adv. Radio Sci., 12, 1–11, 2014 www.adv-radio-sci.net/12/1/2014/
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Figure 7. Bistatic RCS of Flamme @ 2.5 GHz onxz cut half plane
(ϕ = 0◦).

Figure 8. Bistatic RCS of Flamme @ 2.5 GHz onyz cut half plane
(ϕ = 90◦).

settled. When the mesh size of HO increases up to around
λ/4, HO with coarser mesh for FE-BI maintains good pre-
cision as the results from LO with finer mesh as shown in
Fig. 4.

7.3 Flamme

The Flamme case is an application of FE-BI for very large
scale simulation. The Flamme is located in thexy plane, with
nose heading along the+x axis, as shown in Fig. 5. The
Flamme is enclosed by a layer of lossy dielectric material
with thickness of approximately 1 cm. The permittivity of the
dielectric material isεr = 1.21−10j and the permeability is
µr = 1. The simulation frequency is 2.5 GHz. The incident
plane wave propagates towards−x direction, with electric

Figure 9. Bistatic RCS of Flamme @ 2.5 GHz onxz cut half plane
(ϕ = 180◦).

Figure 10.Bistatic RCS of Flamme @ 2.5 GHz onyz cut half plane
(ϕ = 270◦).

field (Ez = 100 V/m). To visualize absorbing effects of the
lossy dielectric material, a PEC Flamme simulated with BI
with 0th order of basis functions is utilized for comparison.

The RCS of PEC and layered Flamme in different cut
planes are shown in Figs. 6–10. The PEC Flamme is simu-
lated through BI with 0th order of self-identified basis func-
tions, the layered Flamme is simulated through FE-BI with
0th, 1st and 2nd order of self-identified basis functions. As
the efficacy of 0th order with finer mesh has been verified,
here it is used as a reference. The RCS comparison shows
that most of input power goes over the Flamme. In scattered
directions, the scattered power is evidently absorbed by the
dielectric material. Figure 11 shows the equivalent surface
electric current of the covered Flamme.

www.adv-radio-sci.net/12/1/2014/ Adv. Radio Sci., 12, 1–11, 2014
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Figure 11. Electric surface current density|J | in A/m distribu-
tion of a coveredFlammeairplane with plane wave incidence @
2.5 GHz.

For PEC, the mesh size of the PEC Flamme was set to
0.01 m, and the mean edge length is 1.011 cm, with minimum
edge length 0.100 cm and maximum edge length 2.559 cm.
The total unknowns are 692 952. The number of BI elec-
tric currents is 692 952 and the number of BI magnetic cur-
rents is 0. The number of levels for MLFMM is 8 and the
peak memory consumption was 4083.746 MBytes. The run-
ning time was 75 529.3 s. For 0th order, the mesh size of
the layered Flamme was set to 0.01 m, and the mean edge
length is 1.083 cm, with minimum edge length 0.044 cm and
maximum edge length 2.671 cm. The total unknowns are
2 081 547. The number of BI electric currents is 690 960 and
the number of BI magnetic currents is 602 284. The number
of levels for MLFMM is 8 and the peak memory consump-
tion was 11 384.43 MBytes. The run time was 23 511.6 s. For
1st order, the mesh size of layered Flamme was set to 0.02 m,
the mean edge length is 1.770 cm, with minimum edge length
0.065 cm and maximum edge length 3.933 cm. The total un-
knowns are 1 252 430. The number of BI electric currents is
427 144 and the number of BI magnetic currents is 360 976.
The number of levels for MLFMM is 7 and the peak memory
consumption was 8825.734 MBytes. The running time was
12 141.3 s. For 2nd order, the mesh size was set to 0.02 m,
and the mean edge length is 1.770 cm, with minimum edge
length 0.065 cm and maximum edge length 3.933 cm. The
total unknowns are 2 941 242. The number of BI electric cur-
rents is 712 284 and the number of BI magnetic currents is
602 004. The number of levels for MLFMM is 8 and the
peak memory consumption was 18 536.68 MByte. The run-
ning time was 47 871.3 s.

8 Conclusion

Self-identified hierarchical 3-D vector basis functions were
generated for the hybrid finite element (FE) – boundary
integal (BI) technique, where analytical solutions for the
FE matrix elements have been presented up to 2nd order.
Self-identified basis functions provide feasibility for FE and
effectively maintain compatibility with BI. Going from 1st
to 2nd order, FE-BI allows for a mesh size increase fromλ/8
up toλ/3. From coated sphere testing cases, good accuracy
was found and the Flamme simulations displayed that FE-BI
based on self-identified basis functions can be applied for
very large scale simulations.

Edited by: U. van Rienen
Reviewed by: two anonymous referees
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