
February 2018 | Volume 5 | Article 51

Code
published: 16 February 2018

doi: 10.3389/frobt.2018.00005

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Maxime Petit,

Imperial College London,
United Kingdom

Reviewed by:
Daniel Camilleri,

University of Sheffield,
United Kingdom

Ayse Kucukyilmaz,
University of Lincoln,

United Kingdom

*Correspondence:
Marco Randazzo

marco.randazzo@iit.it

Specialty section:
This article was submitted to

Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 20 August 2017
Accepted: 16 January 2018

Published: 16 February 2018

Citation:
Randazzo M, Ruzzenenti A and

Natale L (2018) YARP-ROS
Inter-Operation in a 2D Navigation

Task.
Front. Robot. AI 5:5.

doi: 10.3389/frobt.2018.00005

YARP-RoS Inter-operation
in a 2d Navigation Task
Marco Randazzo*, Andrea Ruzzenenti and Lorenzo Natale

iCub Facility, Istituto Italiano di Tecnologia, Genova, Italy

This paper presents some recent developments in YARP middleware, aimed to improve
its integration with ROS. They include a new mechanism to read/write ROS transform
frames and a new set of standard interfaces to intercommunicate with the ROS navi-
gation stack. A novel set of YARP companion modules, which provide basic navigation
functionalities for robots unable to run ROS, is also presented. These modules are
optional, independent from each other, and they provide compatible functionalities to
well-known packages available inside ROS framework. This paper also discusses how
developers can customize their own hybrid YARP-ROS environment in the way it best
suits their needs (e.g., the system can be configured to have a YARP application sending
navigation commands to a ROS path planner, or vice versa). A number of available
possibilities is presented through a set of chosen test cases applied to both real and
simulated robots. Finally, example applications discussed in this paper are also made
available to the community by providing snippets of code and links to source files hosted
on github repository https://github.com/robotology.1

Keywords: YARP, autonomous navigation, SLAM, mobile robots, iCub, R1, RoS, C++ interfaces

1. INTRodUCTIoN

YARP is an open-source robotics middleware, specifically designed to be modular, non-invasive,
and flexible. It promotes software re-usability by means of abstract interfaces and modular software
paradigms, and it allows to distribute computational tasks across a system by offering multi-platform
network communication primitives (Fitzpatrick et al., 2014).

YARP development is historically correlated to the iCub robot (Metta et al., 2010; Natale
et al., 2016), a child-sized humanoid platform for the study of cognitive robotics. In these
years, the iCub community focused its attention on topics such as human–robot interaction,
visual attention, machine learning, object manipulation, and grasping. Balancing a bipedal walk-
ing robot like iCub is a problem that has been addressed only recently by some research groups
(Hu et al., 2016; Nava et al., 2016). This is the reason why a standard navigation interface was missing
in YARP so far.

On the other side, ROS, an Ubuntu-based middleware developed around the PR2 wheeled robot,
addressed the problem of making a mobile platform to navigate into a 2D environment from the
very beginning (Quigley et al., 2009; Cousins, 2010). Over the past years, the ROS navigation stack
has grown in comprehensiveness, wrapping or including bindings to basically all state-of-the-art
algorithms and third-party libraries (Marder-Eppstein et al., 2010).

This paper has two goals. First, to provide the YARP community a way to re-use the massive
amount of code that has been developed within the ROS community. Second, Yarp is a multi-
platform framework which can run on Windows, Linux and MacOs, while ROS is currently limited

1 http://doi.org/10.5281/zenodo.1116278.

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00005&domain=pdf&date_stamp=2018-02-16
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00005
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:marco.randazzo@iit.it
https://doi.org/10.3389/frobt.2018.00005
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00005/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00005/full
http://loop.frontiersin.org/people/134406
http://loop.frontiersin.org/people/470002
http://loop.frontiersin.org/people/36032
https://github.com/robotology
http://doi.org/10.5281/zenodo.1116278

FIgURe 1 | Typical scenario in which multiple YARP modules, each of them instantiating its own yarp::dev::transfomClient, communicate with a single
yarp::dev::transformServer. The latter is responsible for synchronizing YARP transforms with ROS data, publishing and subscribing to /tf and /tf_static
topics.

2

Randazzo et al. YARP-ROS Inter-Operation in a 2D Navigation Task

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 5

to Ubuntu-based systems. Thus, Yarp can be used to interface
applications belonging to the two different frameworks and run-
ning on different operating systems. This goal is accomplished
through a set of dedicated YARP classes and interfaces, as shown
in the following sections.

2. YARP/RoS INTeRFACe

2.1. YARP Ports and RoS Topics
YARP inter-module communication is traditionally imple-
mented through network objects called ports. In a typical usage
scenario, a sender module opens an output port (identified by a
symbolic name, registered onto a nameserver) and writes data
to it. Analogously, a receiver module, which wants to perform
a read operation, opens an input port with a different symbolic
name. Sender and receiver are thus decoupled, and the user is
responsible for making connections/disconnections between the
two ports.

In ROS, inter-module communication is obtained through a
publisher/subscriber paradigm, based on the concept of topic. The
subscriber manifests its intention of receiving a specific stream of
data by registering to a topic, without caring about the identity
of the node (or nodes) that is actually publishing it. Connections
are not managed by the user but by a central authority, called ROS
Master, which also checks if publishers and receivers comply on
the same data format. Indeed, ROS communication is strongly
typed and it employs a set of standard formats defined in message
(.msg) files.

The possibility to communicate natively with ROS has
been recently integrated into YARP. Special classes such as
yarp::os::Node, yarp::os::Publisher, and

yarp::os::Subscriber have been introduced to allow a
user to handle ROS topics. Additionally, a specialized converter,
namely yarpidl_rosmsg, was developed to automatically generate
C++ header files from ROS.msg files and to allow the usage of
ROS data types inside YARP.

An example of a YARP module directly publishing data onto
a ROS topic, without linking any external ROS library, is shown
in Section I in Supplementary Material.

2.2. TransformServer and TransformClient
Tf is a ROS package which allows a distributed system to keep
track of multiple coordinate frames over time. For example, a
module may be able to compute and publish the transformation
from reference frame /a to reference frame /b while a different
module may be able to publish the transformation from frame
/b to frame /c. By subscribing to the /tf topic, a third module can
retrieve the broadcasted transforms and compute the resulting
transformation from /a to /c.

This mechanism is pervasive in all ROS. Remarkable applica-
tion examples are move-it (a motion planning framework for
mobile manipulation), Rviz (a 3D visualization tool), and the
ROS navigation stack. In this latter case, tf is typically used to
keep track of the estimated robot position with respect to an
odometry reference frame or to a map origin. Thus, it is clear
that it is not possible to obtain a complete YARP-ROS integration
without implementing a mechanism that is able to handle ROS
frame transforms in YARP.

To overcome this limitation, we developed a YARP device
called transformServer. TransformServer collects and stores frame
transforms by subscribing to /tf and /tf_static topics and makes
these information available to a YARP transformClient instance

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

3

Randazzo et al. YARP-ROS Inter-Operation in a 2D Navigation Task

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 5

inside a user module (Figure 1). TransformClient is an entity
which implements the yarp::dev::IFrameTransform
interface (see Sections II and III in Supplementary Material).
Available methods allow the user to query the server about the
registered YARP and ROS transforms, to perform kinematic
computations, and to register on the server new transforms
computed by YARP modules.

3. YARP CLASSeS ANd INTeRFACeS
FoR NAVIgATIoN

This section presents the new YARP classes and interfaces
specifically designed for managing maps and controlling a robot
during a navigation task. Detailed description of available meth-
ods and usage examples are shown in Supplementary Material.

3.1. Mapgrid2d
The class yarp::dev::MapGrid2D is the main YARP class
used to store map data. Similar to ROS occupancy grid message
(nav_msgs/OccupancyGrid.msg), data are organized in square
cells of fixed size (e.g., 0.05 m × 0.05 m), each of them storing the
probability of being occupied by a fixed obstacle (e.g., a wall). This
information is typically used to localize the robot in an environ-
ment previously mapped by a SLAM algorithm. In addition to
this property, map cells are also provided with an additional flag
(Section IV in Supplementary Material), which can be used to
control the robot behavior. For example, a user can choose to set
keep-out areas, which should be avoided by the robot when it
computes its path, or critical areas in which the robot should stop
when an obstacle is encountered (instead of finding an alternate
path). Finally, MapGrid2D is equipped with methods to save/load
maps both in YARP and in a ROS compatible format.

3.2. Map2dLocation
A yarp::dev::Map2DLocation is a support class used to
store user location information. A location is composed of the
location name, the map name to which the location refers to, and
the (x,y,θ) coordinates w.r.t. the map origin. Locations are typically
stored together with maps in a map2DServer (see Section 4.1)
so that a user can invoke the navigation APIs using the loca-
tion name instead of the corresponding coordinates. Locations
are also used by map2DServer to define interconnection points
between multiple YARP maps.

3.3. IMap2d
yarp::dev::IMap2D is a pure virtual interface dedicated to
the management of MapGrid2D and Map2DLocation enti-
ties. A Map2DServer (Section 4.1) implements methods of this
interface to satisfy the requests from a Map2DClient. The complete
listing of the methods belonging to yarp::dev::IMap2D as
well as an application example is shown in Sections V and VI in
Supplementary Material.

3.4. INavigation2d
yarp::dev::INavigation2D is a pure virtual interface
shared between all client/server modules, which performs

navigation tasks. The most classical usage in a user applica-
tion requires the instantiation of a yarp::dev::INaviga
tion2DClient to send navigation commands to the robot
(e.g., “go to the entrance room”). On the other side, the server
counterpart, which can be any module implementing the same
yarp::dev::INavigation2D interface (e.g., robot-
PathPlanner, see Section 4.6), receives the goal command and
computes the path required by the robot to reach the goal.

INavigation2D contains methods to start, pause, and resume
navigation tasks, both in absolute (with respect to the map
reference frame) or in relative coordinates (with respect to the
robot reference frame) (Section VII Supplementary Material).
Additionally, it allows the user to assign names to the current
robot position and to important locations on the map. These
names might be used instead of absolute coordinates when com-
manding a goal to the robot. Finally, the user can query the current
status of the navigation task. The enum returned by the method
INavigation2D::getNavigationStatus() can be
used by the client application to know when the goal has been
reached or if a problem occurred (Section VIII in Supplementary
Material).

4. YARP ModULeS ANd TooLS
FoR NAVIgATIoN

This section describes the YARP modules and tools which con-
stitute the core of the YARP navigation suite. They are provided
inside robotology/yarp and robotology/naviga
tion github repositories. A comparison between these YARP
tools and similar ones provided by ROS is reported in Table 1.

4.1. Map2dServer
Map2DServer implements the methods of the YARP interface
yarp::dev::IMap2D, and it allows a client application
(such as the navigation module) to store and retrieve maps
(yarp::dev::MapGrid2D) from memory. It can be initialized
at startup by a map collection file which contains an index of all map
files to be used in the session. It must be noticed that this module
only behaves as a storage, and it contains neither information about
the current robot position nor the name of the map in which the
robot finds itself. These tasks are performed by other modules (e.g.,
localizationServer, Section 4.4) which interact with the map2Dser-
ver when they need to obtain map data. Finally, this module imple-
ments some methods of the yarp::dev::INavigation2D
interface, allowing to store/retrieve user notable locations
(yarp::dev::Map2DLocation) on a map.

4.2. BaseControl
BaseControl is the core YARP module used to control a mobile
robot. It receives cartesian velocity commands (x, y, θ) either
from a navigation module or from a joystick device, and it
computes the corresponding actuators actions required to
achieve them. BaseControl is also responsible for computing
robot odometry, i.e., estimating the robot position in the world
using measured motions of robot actuators. Computed data
are published on a YARP port both as a vector (x,y,θ) and, via

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

TABLe 1 | Similarities and correspondences between YARP and ROS modules with similar functionalities.

YARP RoS Notes

Map2DServer map_server map_server offers a single map via ROS latched topic/map. Map2DServer acts a storage for multiple maps and
user-defined locations

BaseControl – In ROS, there is no equivalent module. Each kind of robot exposes its own specific control interface

Mapper2D gmapping gmapping performs loop closure detection and simultaneous localization and mapping. Mapper2D allows to set
not only the occupancy value of the cell but also the YARP map flag

LocalizationServer – LocalizationServer does not have a direct correspondence in ROS. It acts as a bridge for a ROS localization
module like Adaptive Montecarlo Localization (AMCL) adding the support for YARP map collections (not directly
supported in ROS)

– AMCL YARP navigation suite currently does not provide any localization system for mobile robots. A YARP user may
use a ROS module such as AMCL to estimate the robot position against a known map or use its own localization
system

RobotGoto move_base-base_local_planner The two modules have similar functionalities although ROS base_local_planner supports multiple algorithms (e.g.,
Trajectory Rollout and Dynamic Window Approach) while RobotGoto artificial potential fields approach is more
tailored to work together with YARP RobotPathPlanner

RobotPathPlanner move_base-global_planner The two modules have similar functionalities and use comparable algorithms

4

Randazzo et al. YARP-ROS Inter-Operation in a 2D Navigation Task

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 5

transformClient, as a transform between the origin of the odom-
etry system (/odom) and the robot (/mobile_base). This allows
a ROS module to interface with the robot by subscribing to the
/tf topic.

4.3. Mapper2d
Mapper2D is a simple YARP module which registers laser scans
to build an occupancy-based map. The module is not equipped
with a loop closure detector, nor with an internal localization
algorithm; thus, it is not suitable to perform stand-alone SLAM
tasks. Instead, it is designed to receive accurate localization data
from an external source (e.g., a Google Tango device) either via
YARP port or via transformClient.

4.4. LocalizationServer
LocalizationServer is an auxiliary tool which acts as the server
side of a Navigation2DClient for the INavigation2D::
getCurrentPosition() and INavigation2D::set
InitialPose()methods. Robotology/navigation repository
does not provide a default localization system for a mobile
robot. A YARP user may thus choose to employ a YARP-based
localization system (such as Robust-View-Graph-SLAM),
or a ROS-based one (e.g., AMCL, RTAB-Map, Tango-ROS-
Streamer). In this latter case, LocalizationServer acts as a bridge
between the ROS world (which is single map) and the YARP
world (which is multi-map). When the user sets an initial
position to initialize the localization algorithm, it specifies
a yarp::dev::Map2DLocation which is translated
to a string (the map name, handled by the Map2DServer)
and a (x,y,θ) vector. This latter is sent with a geometry_msgs/
PoseWithCovarianceStamped message to the ROS localization
module as the estimated robot pose with respect to the origin
frame of the current map.

4.5. Robotgoto
This module computes the cartesian velocities (x, y, θ) of the
mobile base required to reach the commanded goal, given the

current robot position (provided through a transformClient) and
a set of parameters that controls the trajectory generation (e.g.,
differential drive or holonomic robot kinematics, heading and
goal tolerance, etc.).

RobotGoto does not use any map information, except for the
local occupancy grid which is continuously updated according
to sensor data. An artificial potential field algorithm is employed
to allow the robot to avoid obstacles obstructing the path to the
goal. Depending on the configuration parameters, if a deadlock is
detected, navigation may be paused (waiting a human to remove
the obstacle) or aborted. In this latter case, the high-level path
planner is notified by a specific yarp::dev::INavigation
2D::NavigationStatusEnum, as shown in Section VIII
and Figure S1 in Supplementary Material.

4.6. RobotPathPlanner
This module is responsible for generating the navigation way-
points to be pursued by a local navigation module (e.g., robotGoto).
By implementing the INavigation2D interface, robotPath-
Planner acts as the server counterpart of a Navigation2DClient
instantiated by a user module. For example, when the user
calls the INavigation2D::gotoAbsolutePosition()
method to command the robot to reach a new goal, robotPath-
Planner becomes in charge of performing the navigation task,
notifying the user about its current status (e.g., in progress, goal
reached, etc.).

The algorithm acts as follows. RobotPathPlanner retrieves
from a Map2DServer instance the current map of the area. A
valid path from the current robot location to the goal is computed
using A* algorithm. If the path does not exists, navigation is
aborted. Otherwise the path, initially defined as a vector of map
cells, is transformed into a sequence of navigation waypoints.
To be accepted, these waypoints must satisfy some user-defined
parameters (e.g., minimum distance between the cells etc.).
Waypoints are then put in a queue and sent one by one to a local
navigation algorithms (such as robotGoto) which will pursue
them.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

5

Randazzo et al. YARP-ROS Inter-Operation in a 2D Navigation Task

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 5

FIgURe 2 | Two realistic application scenarios, in which different combinations of YARP (green) and ROS (blue) modules are employed. Solid lines represent YARP
port connections. Dashed lines represent ROS topic connections (Rviz connections are omitted for diagram clearness). Colored markers indicate the YARP
interfaces employed to interconnect the various client/server modules. Gazebo simulator is represented as a hybrid YARP/ROS module because its modular design
allows to execute plugins belonging to both frameworks (Mingo Hoffman et al., 2014).

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

6

Randazzo et al. YARP-ROS Inter-Operation in a 2D Navigation Task

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 5

RobotPathPlanner is also responsible for processing the
YARP flags assigned to particular areas of the map. These flags
may belong to two different categories. Those which alter the
navigation trajectory (such as keep-out areas) are directly pro-
cessed by the module during the trajectory generation phase.
Instead, flags which alter the robot behavior (e.g., areas in which
the robot must proceed at a different speed or interrupt the
navigation if an obstacle is detected on the path) are not directly
processed. Indeed, since they affect the behavior of the local
navigation task, a proper set of commands is generated and
sent to RobotGoto to modify the default navigation parameters.

Finally, RobotPathPlanner is able to show the computed robot
trajectory by means of the standard YARP graphical visualization
tool yarpview and, additionally, to receive navigation commands
from it (dragging an arrow on the map will be interpreted as goal
command).

5. NAVIgATIoN INTegRATIoN
ANd eXAMPLeS

YARP and ROS may inter-operate in several ways to attain a
navigation task. Different possibilities range from using a full
YARP-based framework to using the complete ROS navigation
stack. In between there exist a number of possible combinations:
as shown in previous sections, most of the YARP components can
be replaced by a ROS equivalent or vice versa, depending on the
user needs and preferences.

Figure 2 shows two illustrative scenarios. The first example
refers to a simulated wheeled robot in Gazebo, a generic, multi-
robot, physics simulator. The navigation task is carried out by
robotGoto/robotPathPlanner modules. Since ROS map_server
is used, robotPathPlanner employs only the occupancy grid
information and no YARP map flags are available.

The second example refers to a real wheeled robot (i.e. R1
(Parmiggiani et al., 2017)) controlled by yarpRobotInterface, the
core YARP application which manages the low-level hardware
control. In this case, navigation task is carried out by ROS naviga-
tion stack encapsulated inside move_base node.

It must be noticed that, in both scenarios, the final end-user
is a YARP application which instantiate a yarp::dev::INa
vigation2DClient. Section IX in Supplementary Material
shows a simple application which controls the robot to reach
a location stored into the map server, unaware of which
framework and control modules are employed underneath.
The included sequence diagram (Figure S2 in Section X in

Supplementary Material) shows the timing and the messages
exchanged between the clients opened by the example and the
connected external modules (i.e., LocalizationServer, Map2D-
Server, robotPathPlanner).

Finally, a set of examples of increasing complexity is included
in the github repository (Figure S3 in Section X in Supplementary
Material), as well as some skeleton applications which the user
can exploit to develop its own navigation modules.

6. CoNCLUSIoN ANd FUTURe WoRK

In this paper, we showed latest developments to improve
YARP interoperability with ROS. These improve-
ments allow a robotics developer to use YARP mid-
dleware without giving up popular and convenient ROS
features, such as the /tf package. By introducing a brand new
set of standard interfaces, such as yarp::dev::IMap2D and
yarp::dev::INavigation2D, YARP is now capable of
performing a 2D navigation task, natively or interacting with ROS.

Future work will be aimed to further improve YARP-ROS inte-
gration. YARP transformServer is currently unable to interpolate/
extrapolate frames over time, an advanced feature that is instead
available in the ROS /tf package, which allows users to ask for
the pose of a frame at a specific time instant, in the past or even
in the future. Additionally, YARP is currently unable to manage
octomaps or other 3D data types. Their introduction is thus a
required step to allow foot planning of a bipedal robot on a highly
structured terrain.

AUTHoR CoNTRIBUTIoNS

MR: development of YARP interfaces and classes for navigation;
development of the navigation modules belonging to https://
github.com/robotology/navigation repository; and experiments
with real and simulated robots. AR: development of transform-
Server/transformClient, development of automatic tests for
frameTransform and navigation interfaces; and experiments with
real and simulated robots. LN: development of YARP framework
and scientific supervision.

SUPPLeMeNTARY MATeRIAL

The Supplementary Material for this article can be found online
at http://www.frontiersin.org/articles/10.3389/frobt.2018.00005/
full#supplementary-material.

ReFeReNCeS

Cousins, S. (2010). Ros on the pr2. IEEE Robot. Autom. Mag. 17, 23–25. doi:10.1109/
MRA.2010.938502

Fitzpatrick, P., Ceseracciu, E., Domenichelli, D., Paikan, A., Metta, G., and
Natale, L. (2014). A middle way for robotics middleware. J. Software Eng. Robot.
5, 42–49. Available at: https://joser.unibg.it/index.php?journal=joser&page=
article&op=view&path%5B%5D=69

Hu, Y., Eljaik, J., Stein, K., Nori, F., and Mombaur, K. (2016). “Walking of the
iCub humanoid robot in different scenarios: implementation and performance
analysis,” in IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids) (Cancun, Mexico), 690–696.

Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., and Konolige, K.
(2010). “The office marathon: robust navigation in an indoor office
environment,” in International Conference on Robotics and Automation,
Anchorage, AK.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/robotology/navigation
https://github.com/robotology/navigation
http://www.frontiersin.org/articles/10.3389/frobt.2018.00005/full#supplementary-material
http://www.frontiersin.org/articles/10.3389/frobt.2018.00005/full#supplementary-material
https://doi.org/10.1109/MRA.2010.938502
https://doi.org/10.1109/MRA.2010.938502
https://joser.unibg.it/index.php?journal=joser&page=article&op=view&path%5B%5D=69
https://joser.unibg.it/index.php?journal=joser&page=article&op=view&path%5B%5D=69

7

Randazzo et al. YARP-ROS Inter-Operation in a 2D Navigation Task

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 5

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., et al. (2010).
The iCub humanoid robot: an open-systems platform for research in cogni-
tive development. Neural Netw. 23, 1125–1134. doi:10.1016/j.neunet.2010.
08.010

Mingo Hoffman, E., Traversaro, S., Rocchi, A., Ferrati, M., Settimi, A.,
Romano, F., et al. (2014). Yarp Based Plugins for Gazebo Simulator. Springer
International Publishing, 333–346. Available at: https://link.springer.com/
chapter/10.1007/978-3-319-13823-7_29

Natale, L., Paikan, A., Randazzo, M., and Domenichelli, D. E. (2016). The iCub
software architecture: evolution and lessons learned. Front. Robot. AI 3:24.
doi:10.3389/frobt.2016.00024

Nava, G., Romano, F., Nori, F., and Pucci, D. (2016). “Stability analysis and design of
momentum-based controllers for humanoid robots,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (Daejeon, South Korea),
680–687.

Parmiggiani, A., Fiorio, L., Scalzo, A., Sureshbabu, A. V., Randazzo, M.,
Maggiali, M., et al. (2017). “The design and validation of the R1

personal humanoid,” in International Conference on Intelligent Robots (IROS),
Vancouver, BC.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., et al. (2009). “Ros: an
open-source robot operating system,” in ICRA Workshop on Open Source Software,
Kobe, Japan.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2018 Randazzo, Ruzzenenti and Natale. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner are credited and that
the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.1016/j.neunet.2010.
08.010
https://doi.org/10.1016/j.neunet.2010.
08.010
https://link.springer.com/chapter/10.1007/978-3-319-13823-7_29
https://link.springer.com/chapter/10.1007/978-3-319-13823-7_29
https://doi.org/10.3389/frobt.2016.00024
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	YARP-ROS Inter-Operation in a 2D Navigation Task
	1. Introduction
	2. YARP/ROS Interface
	2.1. YARP Ports and ROS Topics
	2.2. TransformServer and TransformClient

	3. YARP Classes and Interfaces for Navigation
	3.1. MapGrid2D
	3.2. Map2DLocation
	3.3. IMap2D
	3.4. INavigation2D

	4. YARP Modules and Tools for Navigation
	4.1. Map2DServer
	4.2. BaseControl
	4.3. Mapper2D
	4.4. LocalizationServer
	4.5. RobotGoto
	4.6. RobotPathPlanner

	5. Navigation Integration and Examples
	6. Conclusion and Future Work
	Author Contributions
	Supplementary Material
	References

