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in a 2d Navigation Task
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This paper presents some recent developments in YARP middleware, aimed to improve 
its integration with ROS. They include a new mechanism to read/write ROS transform 
frames and a new set of standard interfaces to intercommunicate with the ROS navi-
gation stack. A novel set of YARP companion modules, which provide basic navigation 
functionalities for robots unable to run ROS, is also presented. These modules are 
optional, independent from each other, and they provide compatible functionalities to 
well-known packages available inside ROS framework. This paper also discusses how 
developers can customize their own hybrid YARP-ROS environment in the way it best 
suits their needs (e.g., the system can be configured to have a YARP application sending 
navigation commands to a ROS path planner, or vice  versa). A number of available 
possibilities is presented through a set of chosen test cases applied to both real and 
simulated robots. Finally, example applications discussed in this paper are also made 
available to the community by providing snippets of code and links to source files hosted 
on github repository https://github.com/robotology.1
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1. INTRodUCTIoN

YARP is an open-source robotics middleware, specifically designed to be modular, non-invasive, 
and flexible. It promotes software re-usability by means of abstract interfaces and modular software 
paradigms, and it allows to distribute computational tasks across a system by offering multi-platform 
network communication primitives (Fitzpatrick et al., 2014).

YARP development is historically correlated to the iCub robot (Metta et  al., 2010; Natale 
et  al., 2016), a child-sized humanoid platform for the study of cognitive robotics. In these 
years, the iCub community focused its attention on topics such as human–robot interaction, 
visual attention, machine learning, object manipulation, and grasping. Balancing a bipedal walk-
ing robot like iCub is a problem that has been   addressed only recently by some research groups  
(Hu et al., 2016; Nava et al., 2016). This is the reason why a standard navigation interface was missing 
in YARP so far.

On the other side, ROS, an Ubuntu-based middleware developed around the PR2 wheeled robot, 
addressed the problem of making a mobile platform to navigate into a 2D environment from the 
very beginning (Quigley et al., 2009; Cousins, 2010). Over the past years, the ROS navigation stack 
has grown in comprehensiveness, wrapping or including bindings to basically all state-of-the-art 
algorithms and third-party libraries (Marder-Eppstein et al., 2010).

This paper has two goals. First, to provide the YARP community a way to re-use the massive 
amount of code that has been developed within the ROS community. Second, Yarp is a multi-
platform framework which can run on Windows, Linux and MacOs, while ROS is currently limited 

1 http://doi.org/10.5281/zenodo.1116278.
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FIgURe 1 | Typical scenario in which multiple YARP modules, each of them instantiating its own yarp::dev::transfomClient, communicate with a single 
yarp::dev::transformServer. The latter is responsible for synchronizing YARP transforms with ROS data, publishing and subscribing to /tf and /tf_static 
topics.
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to Ubuntu-based systems. Thus, Yarp can be used to interface 
applications belonging to the two different frameworks and run-
ning on different operating systems. This goal is accomplished 
through a set of dedicated YARP classes and interfaces, as shown 
in the following sections.

2. YARP/RoS INTeRFACe

2.1. YARP Ports and RoS Topics
YARP inter-module communication is traditionally imple-
mented through network objects called ports. In a typical usage 
scenario, a sender module opens an output port (identified by a 
symbolic name, registered onto a nameserver) and writes data 
to it. Analogously, a receiver module, which wants to perform 
a read operation, opens an input port with a different symbolic 
name. Sender and receiver are thus decoupled, and the user is 
responsible for making connections/disconnections between the 
two ports.

In ROS, inter-module communication is obtained through a 
publisher/subscriber paradigm, based on the concept of topic. The 
subscriber manifests its intention of receiving a specific stream of 
data by registering to a topic, without caring about the identity 
of the node (or nodes) that is actually publishing it. Connections 
are not managed by the user but by a central authority, called ROS 
Master, which also checks if publishers and receivers comply on 
the same data format. Indeed, ROS communication is strongly 
typed and it employs a set of standard formats defined in message 
(.msg) files.

The possibility to communicate natively with ROS has 
been recently integrated into YARP. Special classes such as 
yarp::os::Node, yarp::os::Publisher, and 

yarp::os::Subscriber have been introduced to allow a 
user to handle ROS topics. Additionally, a specialized converter, 
namely yarpidl_rosmsg, was developed to automatically generate 
C++ header files from ROS.msg files and to allow the usage of 
ROS data types inside YARP.

An example of a YARP module directly publishing data onto  
a ROS topic, without linking any external ROS library, is shown 
in Section I in Supplementary Material.

2.2. TransformServer and TransformClient
Tf is a ROS package which allows a distributed system to keep 
track of multiple coordinate frames over time. For example, a 
module may be able to compute and publish the transformation 
from reference frame /a to reference frame /b while a different 
module may be able to publish the transformation from frame 
/b to frame /c. By subscribing to the /tf topic, a third module can 
retrieve the broadcasted transforms and compute the resulting 
transformation from /a to /c.

This mechanism is pervasive in all ROS. Remarkable applica-
tion examples are move-it (a motion planning framework for 
mobile manipulation), Rviz (a 3D visualization tool), and the 
ROS navigation stack. In this latter case, tf is typically used to 
keep track of the estimated robot position with respect to an 
odometry reference frame or to a map origin. Thus, it is clear 
that it is not possible to obtain a complete YARP-ROS integration 
without implementing a mechanism that is able to handle ROS 
frame transforms in YARP.

To overcome this limitation, we developed a YARP device 
called transformServer. TransformServer collects and stores frame 
transforms by subscribing to /tf and /tf_static topics and makes 
these information available to a YARP transformClient instance 
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inside a user module (Figure  1). TransformClient is an entity 
which implements the yarp::dev::IFrameTransform 
interface (see Sections II and III in Supplementary Material). 
Available methods allow the user to query the server about the 
registered YARP and ROS transforms, to perform kinematic 
computations, and to register on the server new transforms 
computed by YARP modules.

3. YARP CLASSeS ANd INTeRFACeS  
FoR NAVIgATIoN

This section presents the new YARP classes and interfaces  
specifically designed for managing maps and controlling a robot 
during a navigation task. Detailed description of available meth-
ods and usage examples are shown in Supplementary Material.

3.1. Mapgrid2d
The class yarp::dev::MapGrid2D is the main YARP class 
used to store map data. Similar to ROS occupancy grid message 
(nav_msgs/OccupancyGrid.msg), data are organized in square 
cells of fixed size (e.g., 0.05 m × 0.05 m), each of them storing the 
probability of being occupied by a fixed obstacle (e.g., a wall). This 
information is typically used to localize the robot in an environ-
ment previously mapped by a SLAM algorithm. In addition to 
this property, map cells are also provided with an additional flag 
(Section IV in Supplementary Material), which can be used to 
control the robot behavior. For example, a user can choose to set 
keep-out areas, which should be avoided by the robot when it 
computes its path, or critical areas in which the robot should stop 
when an obstacle is encountered (instead of finding an alternate 
path). Finally, MapGrid2D is equipped with methods to save/load 
maps both in YARP and in a ROS compatible format.

3.2. Map2dLocation
A yarp::dev::Map2DLocation is a support class used to 
store user location information. A location is composed of the 
location name, the map name to which the location refers to, and 
the (x,y,θ) coordinates w.r.t. the map origin. Locations are typically 
stored together with maps in a map2DServer (see Section 4.1)  
so that a user can invoke the navigation APIs using the loca-
tion name instead of the corresponding coordinates. Locations 
are also used by map2DServer to define interconnection points 
between multiple YARP maps.

3.3. IMap2d
yarp::dev::IMap2D is a pure virtual interface dedicated to 
the management of MapGrid2D and Map2DLocation enti-
ties. A Map2DServer (Section 4.1) implements methods of this 
interface to satisfy the requests from a Map2DClient. The complete 
listing of the methods belonging to yarp::dev::IMap2D as 
well as an application example is shown in Sections V and VI in 
Supplementary Material.

3.4. INavigation2d
yarp::dev::INavigation2D is a pure virtual interface 
shared between all client/server modules, which performs 

navigation tasks. The most classical usage in a user applica-
tion requires the instantiation of a yarp::dev::INaviga
tion2DClient to send navigation commands to the robot 
(e.g., “go to the entrance room”). On the other side, the server 
counterpart, which can be any module implementing the same 
yarp::dev::INavigation2D interface (e.g., robot-
PathPlanner, see Section 4.6), receives the goal command and 
computes the path required by the robot to reach the goal.

INavigation2D contains methods to start, pause, and resume 
navigation tasks, both in absolute (with respect to the map 
reference frame) or in relative coordinates (with respect to the 
robot reference frame) (Section VII Supplementary Material). 
Additionally, it allows the user to assign names to the current 
robot position and to important locations on the map. These 
names might be used instead of absolute coordinates when com-
manding a goal to the robot. Finally, the user can query the current 
status of the navigation task. The enum returned by the method  
INavigation2D::getNavigationStatus() can be 
used by the client application to know when the goal has been 
reached or if a problem occurred (Section VIII in Supplementary 
Material).

4. YARP ModULeS ANd TooLS  
FoR NAVIgATIoN

This section describes the YARP modules and tools which con-
stitute the core of the YARP navigation suite. They are provided 
inside robotology/yarp and robotology/naviga
tion github repositories. A comparison between these YARP 
tools and similar ones provided by ROS is reported in Table 1.

4.1. Map2dServer
Map2DServer implements the methods of the YARP interface 
yarp::dev::IMap2D, and it allows a client application 
(such as the navigation module) to store and retrieve maps 
(yarp::dev::MapGrid2D) from memory. It can be initialized  
at startup by a map collection file which contains an index of all map 
files to be used in the session. It must be noticed that this module 
only behaves as a storage, and it contains neither information about 
the current robot position nor the name of the map in which the 
robot finds itself. These tasks are performed by other modules (e.g., 
localizationServer, Section 4.4) which interact with the map2Dser-
ver when they need to obtain map data. Finally, this module imple-
ments some methods of the yarp::dev::INavigation2D 
interface, allowing to store/retrieve user notable locations 
(yarp::dev::Map2DLocation) on a map.

4.2. BaseControl
BaseControl is the core YARP module used to control a mobile 
robot. It receives cartesian velocity commands ( x, y, θ) either 
from a navigation module or from a joystick device, and it 
computes the corresponding actuators actions required to 
achieve them. BaseControl is also responsible for computing 
robot odometry, i.e., estimating the robot position in the world 
using measured motions of robot actuators. Computed data 
are published on a YARP port both as a vector (x,y,θ) and, via 
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TABLe 1 | Similarities and correspondences between YARP and ROS modules with similar functionalities.

YARP RoS Notes

Map2DServer map_server map_server offers a single map via ROS latched topic/map. Map2DServer acts a storage for multiple maps and 
user-defined locations

BaseControl – In ROS, there is no equivalent module. Each kind of robot exposes its own specific control interface

Mapper2D gmapping gmapping performs loop closure detection and simultaneous localization and mapping. Mapper2D allows to set 
not only the occupancy value of the cell but also the YARP map flag

LocalizationServer – LocalizationServer does not have a direct correspondence in ROS. It acts as a bridge for a ROS localization 
module like Adaptive Montecarlo Localization (AMCL) adding the support for YARP map collections (not directly 
supported in ROS)

– AMCL YARP navigation suite currently does not provide any localization system for mobile robots. A YARP user may 
use a ROS module such as AMCL to estimate the robot position against a known map or use its own localization 
system

RobotGoto move_base-base_local_planner The two modules have similar functionalities although ROS base_local_planner supports multiple algorithms (e.g., 
Trajectory Rollout and Dynamic Window Approach) while RobotGoto artificial potential fields approach is more 
tailored to work together with YARP RobotPathPlanner

RobotPathPlanner move_base-global_planner The two modules have similar functionalities and use comparable algorithms
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transformClient, as a transform between the origin of the odom-
etry system (/odom) and the robot (/mobile_base). This allows 
a ROS module to interface with the robot by subscribing to the  
/tf topic.

4.3. Mapper2d
Mapper2D is a simple YARP module which registers laser scans 
to build an occupancy-based map. The module is not equipped 
with a loop closure detector, nor with an internal localization 
algorithm; thus, it is not suitable to perform stand-alone SLAM 
tasks. Instead, it is designed to receive accurate localization data 
from an external source (e.g., a Google Tango device) either via 
YARP port or via transformClient.

4.4. LocalizationServer
LocalizationServer is an auxiliary tool which acts as the server 
side of a Navigation2DClient for the INavigation2D:: 
getCurrentPosition() and INavigation2D::set
InitialPose()methods. Robotology/navigation repository 
does not provide a default localization system for a mobile 
robot. A YARP user may thus choose to employ a YARP-based 
localization system (such as Robust-View-Graph-SLAM), 
or a ROS-based one (e.g., AMCL, RTAB-Map, Tango-ROS-
Streamer). In this latter case, LocalizationServer acts as a bridge 
between the ROS world (which is single map) and the YARP 
world (which is multi-map). When the user sets an initial 
position to initialize the localization algorithm, it specifies 
a yarp::dev::Map2DLocation which is translated 
to a string (the map name, handled by the Map2DServer) 
and a (x,y,θ) vector. This latter is sent with a geometry_msgs/
PoseWithCovarianceStamped message to the ROS localization 
module as the estimated robot pose with respect to the origin 
frame of the current map.

4.5. Robotgoto
This module computes the cartesian velocities ( x, y, θ) of the 
mobile base required to reach the commanded goal, given the 

current robot position (provided through a transformClient) and 
a set of parameters that controls the trajectory generation (e.g., 
differential drive or holonomic robot kinematics, heading and 
goal tolerance, etc.).

RobotGoto does not use any map information, except for the 
local occupancy grid which is continuously updated according 
to sensor data. An artificial potential field algorithm is employed 
to allow the robot to avoid obstacles obstructing the path to the 
goal. Depending on the configuration parameters, if a deadlock is 
detected, navigation may be paused (waiting a human to remove 
the obstacle) or aborted. In this latter case, the high-level path 
planner is notified by a specific yarp::dev::INavigation
2D::NavigationStatusEnum, as shown in Section VIII 
and Figure S1 in Supplementary Material.

4.6. RobotPathPlanner
This module is responsible for generating the navigation way-
points to be pursued by a local navigation module (e.g., robotGoto). 
By implementing the INavigation2D interface, robotPath-
Planner acts as the server counterpart of a Navigation2DClient 
instantiated by a user module. For example, when the user 
calls the INavigation2D::gotoAbsolutePosition() 
method to command the robot to reach a new goal, robotPath-
Planner becomes in charge of performing the navigation task, 
notifying the user about its current status (e.g., in progress, goal  
reached, etc.).

The algorithm acts as follows. RobotPathPlanner retrieves  
from a Map2DServer instance the current map of the area. A 
valid path from the current robot location to the goal is computed 
using A* algorithm. If the path does not exists, navigation is 
aborted. Otherwise the path, initially defined as a vector of map 
cells, is transformed into a sequence of navigation waypoints. 
To be accepted, these waypoints must satisfy some user-defined 
parameters (e.g., minimum distance between the cells etc.). 
Waypoints are then put in a queue and sent one by one to a local 
navigation algorithms (such as robotGoto) which will pursue 
them.
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FIgURe 2 | Two realistic application scenarios, in which different combinations of YARP (green) and ROS (blue) modules are employed. Solid lines represent YARP 
port connections. Dashed lines represent ROS topic connections (Rviz connections are omitted for diagram clearness). Colored markers indicate the YARP 
interfaces employed to interconnect the various client/server modules. Gazebo simulator is represented as a hybrid YARP/ROS module because its modular design 
allows to execute plugins belonging to both frameworks (Mingo Hoffman et al., 2014).
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RobotPathPlanner is also responsible for processing the 
YARP flags assigned to particular areas of the map. These flags 
may belong to two different categories. Those which alter the 
navigation trajectory (such as keep-out areas) are directly pro-
cessed by the module during the trajectory generation phase. 
Instead, flags which alter the robot behavior (e.g., areas in which 
the robot must proceed at a different speed or interrupt the 
navigation if an obstacle is detected on the path) are not directly 
processed. Indeed, since they affect the behavior of the local 
navigation task, a proper  set of commands is generated and 
sent to RobotGoto to modify the default navigation parameters.

Finally, RobotPathPlanner is able to show the computed robot 
trajectory by means of the standard YARP graphical visualization 
tool yarpview and, additionally, to receive navigation commands 
from it (dragging an arrow on the map will be interpreted as goal 
command).

5. NAVIgATIoN INTegRATIoN  
ANd eXAMPLeS

YARP and ROS may inter-operate in several ways to attain a 
navigation task. Different possibilities range from using a full 
YARP-based framework to using the complete ROS navigation 
stack. In between there exist a number of possible combinations: 
as shown in previous sections, most of the YARP components can 
be replaced by a ROS equivalent or vice versa, depending on the 
user needs and preferences.

Figure  2 shows two illustrative scenarios. The first example 
refers to a simulated wheeled robot in Gazebo, a generic, multi-
robot, physics simulator. The navigation task is carried out by 
robotGoto/robotPathPlanner modules. Since ROS map_server 
is used, robotPathPlanner employs only the occupancy grid 
information and no YARP map flags are available.

The second example refers to a real wheeled robot (i.e. R1 
(Parmiggiani et al., 2017)) controlled by yarpRobotInterface, the 
core YARP application which manages the low-level hardware 
control. In this case, navigation task is carried out by ROS naviga-
tion stack encapsulated inside move_base node.

It must be noticed that, in both scenarios, the final end-user 
is a YARP application which instantiate a yarp::dev::INa
vigation2DClient. Section IX in Supplementary Material 
shows a simple application which controls the robot to reach 
a location stored into the map server, unaware of which 
framework and control modules are employed underneath. 
The included sequence diagram (Figure S2 in Section X in 

Supplementary Material) shows the timing and the messages 
exchanged between the clients opened by the example and the  
connected external modules (i.e., LocalizationServer, Map2D-
Server, robotPathPlanner).

Finally, a set of examples of increasing complexity is included 
in the github repository (Figure S3 in Section X in Supplementary 
Material), as well as some skeleton applications which the user 
can exploit to develop its own navigation modules.

6. CoNCLUSIoN ANd FUTURe WoRK

In this paper, we showed latest developments to improve 
YARP interoperability with ROS. These improve-
ments allow a robotics developer to use YARP mid-
dleware without giving up popular and convenient ROS 
features, such as the /tf package. By introducing a brand new 
set of standard interfaces, such as yarp::dev::IMap2D and 
yarp::dev::INavigation2D, YARP is now capable of 
performing a 2D navigation task, natively or interacting with ROS.

Future work will be aimed to further improve YARP-ROS inte-
gration. YARP transformServer is currently unable to interpolate/
extrapolate frames over time, an advanced feature that is instead 
available in the ROS /tf package, which allows users to ask for 
the pose of a frame at a specific time instant, in the past or even 
in the future. Additionally, YARP is currently unable to manage 
octomaps or other 3D data types. Their introduction is thus a 
required step to allow foot planning of a bipedal robot on a highly 
structured terrain.
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