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1. Introduction 

Recent studies (Katona, M., Radnai, 2017; Liberto et al., 2017; Woo et al., 2017) have shown that e-mobility is 
one of the most promising solutions for reducing pollutant and greenhouse emissions, especially in large urban areas. 
Electrification of both private and public transport may also produce several improvements from an energy saving 
viewpoint. Nevertheless, the problem of traffic congestion is not going to be solved by the introduction of electric 
vehicles, because the number of circulating vehicles remains the same. The problem, instead, can be addressed by 
introducing appropriate restrictions on traffic entering the city center and/or by supporting multi-modal transportation 
choices. The adoption of a multimodal system that envisages the interchange between private electric mobility and 
public transport would require vehicles to stop in suburban areas, thus reducing the congestion of the central areas. 
This would also promote an efficient charging management through a vehicle-to-grid approach in which the electric 
vehicles assume the function of "demand peak stabilizers". 

In this work, we develop a model able to represent multimodal choice behaviors that we use to assess the share of 
the private electric vehicle demand that can be moved onto public transport. In doing so, we assume that the Park & 
Ride (P&R) sites are equipped with charging stations that facilitate the transition from private to public mode. We 
also introduce a function to simulate an incentive policy that provides economic benefits for P&R users. 

Unlike usual practice in transport engineering, we adopt a data driven approach to calibrate the P&R demand. We 
use real and open data obtained from different sources, i.e. geo-referenced traffic data from probe vehicles (Floating 
Car Data - FCD) and open data related to the planned service and the network structure of the public transport. The 
FCD adopted in the study include about 150’000 cars tracked during the whole month of May 2013 in the metropolitan 
area of Rome. The use of FCD to extract mobility patterns and travel behaviors in urban areas is widespread in the 
scientific literature (Liberto et al., 2010; Mastroianni et al., 2016; Fusco et al., 2016; Liberto et al., 2017; Nigro et al., 
2017). The characterization of the P&R sites, instead, is based on the open data delivered by Rome public transport 
agencies, while information on the level of the public transport service (such as travel times and number of vehicles 
adopted for every origin-destination trip) is computed with CSA routing algorithms, as reported in Biazzo et al. (2017). 

The outline of the remainder is as follows. In Section 2 we present the proposed methodology to build the P&R 
simulation model, providing details on its explanatory variables and the Random Forest algorithm that has been used 
to calibrate them. Section 3 summarizes the results for the Rome case study, including a sensitivity analysis. Finally, 
Section 4 proposes an economic benefits policy to increase P&R demand by electric vehicles and discuss avenues for 
future works. 

2. Methodology 

This section describes the methodology adopted for calibrating and validating the P&R model. The model is 
configured as a model of aggregated nature: the output is the P&R demand share generated by each traffic zone of the 
study area for each time interval during the average working day. However, differently from the common approach in 
literature, which founds the mode choice on random utility models, in this study we adopt a data driven approach. 
Thus, the demand model is calibrated based on real and open data from different sources, i.e. geo-referenced traffic 
data from probe vehicles (FCD), open data about the planned service and the network structure of the public transport, 
several statistical information. The general relation to be calibrated is the following: 

 

 (GO
Park/ GO)|Dt =  𝑓𝑓(x1, x2, . . . , x𝑛𝑛)                     (1) 

 
where GO

Park/ GO is the share of generated trips from the traffic zone O that would make P&R in the time interval 
Dt. For the calibration phase, this value can be obtained from probe vehicles, once computed the number of FCD data 
generated by zone O and reaching the P&R sites (GO

FCD|Park), divided for the total number of FCD generated by zone 
O (GO

FCD). The explanatory variables x1, x2, ... , xn are mainly related to 1) the accessibility of the Park & Ride sites, 
2) impedances due to the travel times on the public transport, 3) location and occupancy of the P&R sites; 4) 
characteristics related to the activity system in the starting point of the trip. 
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A machine learning technique, i.e. Random Forest (RF) method, is adopted for the calibration of the model, with 
reference to an application case of high dimensions and high complexity (the city of Rome, Italy).  

In the following, details of RF and of the explanatory variables are reported. 

2.1. Random Forest (RF) 

The method used for the calibration and validation of the model belongs to the Machine Learning (ML) techniques. 
Since the functional form of the model is unknown, nor it is known which of the explanatory variables can mostly 

affect the increase/decrease of the P&R share, we decided to adopt a ML technique for the identification of the function 
f in (1).  ML are non-parametric techniques (Hastie et al., 2008), i.e. not constrained by a functional form and free 
from any kind of a priori assumption of statistical distribution. The idea behind ML is to replicate the learning process 
of the analysed phenomenon, making decisions and predictions based on the available data. 

The specific ML adopted is called Random Forest (RF). Breiman (2001) proposed RF as a new classification and 
regression technique in supervised learning. RF creates an ensemble of decision tree and randomly selects a subset of 
features to grow each tree. This method provides the class mode (in the case of classification) or the average prediction 
(in the case of regression) of individual trees. The final model (Figure 1) is obtained by combining several parallel 
decision trees and averaging the probability obtained by each tree. Each tree is trained on a subset of the data and it is 
validated on the remaining ones (so-called training and test phases). 

Fig. 1. Random Forest and Decision Tree. 

In transport engineering, advanced ML techniques such as decision trees or RF have been recently exploited due 
to the increase in the availability of traffic data and the consequent diffusion of data-driven approaches.  

Usually, in transport literature, similar techniques are used for travel time prediction. Zhang and Haghani (2015) 
tested a Gradient Boosting Regression Tree (GBM) for the forecast of travel times in a freeway. Kažic et al. (2015) 
applied RF to predict the vehicle flow by using car traffic counts from loop detectors. Zarei et al. (2013) adopted RF 
for a short-term traffic prediction, using traffic data from the peak and off-peak hours of the day and training different 
models for each period.  

If we consider the use of RF for demand forecasting, there are few and very recent contributions in literature. Ghasri 
et al. (2017) used decision tree and RF for reproducing individual mobility patterns without reflecting individual 
behaviours. Ashqar et al. (2017) used RF to predict the number of bikes available at bike sharing stations. Liu et al. 
(2017) compared RF with two regression methods (autoregressive integrated moving average, ARIMA, and support 
vector regression, SVR) to estimate the demand for four different on-demand shared transport services. 

2.2. Explanatory variables 

The variables considered as an input for the training phase of RF can be classified as: 
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 Variables depending on the starting point of the trip (origin/starting traffic zone O) and the starting time interval 
(Dt) of the trip, specifically: 
o Impedance on private transport x1 (2), i.e. the average access time from the traffic zone O to the P&R sites 

belonging to the catchment area of O, weighted for the O-P&R flows; 
o Impedances on public transport: x2, x2_bis, x3, x3_bis: 

x2 (3) is an average travel time from the P&R sites belonging to the catchment area of O to all the 
destinations, weighted for the O-P&R flows; x2_bis (4) is similar to x2, but it considers the number of 
transfers by public transport instead of the travel time.  
In x3 (5) the travel times on public transport are weighted for the origin-destination (OD) flow, while x3_bis 
(6) is similar to x3, but it considers the number of transfers by public transport instead of the travel time; 

o Travel time differences between P&R and car-only mode x4 (7); x4 represents the travel time advantage the 
user may have following the adoption of the P&R mode. The advantage is positive if the total travel time, 
sum of the parking access plus the travel time by public transport, is less than the time required to go from 
O to D by car; 

o The average occupancy of the P&R sites belonging to the catchment area of the origin/starting traffic zone 
O, x5 (8). 

 Variables depending only on the characteristics of the starting point of the trip (origin/starting traffic zone O) 
and not by the time interval, specifically: 
o The variable x6 that represents the geographical extent of the origin/starting traffic zone O [km2]; 
o The variable x7 that represents the population density of O (between 18 and 70 years old as possible users 

of the P&R service); 
o The variable x8, i.e. a binary variable equal to 1 if O is within the Main Ring Road of Rome (where the 

metro lines are located), 0 otherwise; 
o The variable x9 that represents the number of urban railway stations and metro stations in the starting zone 

O.  
 Variables depending only on the time interval, specifically: 

o The dummy variable x10, that is equal to 1 if the starting time interval of the trip is inside the morning peak 
(between 6:00am and 11:00am for home-work trips by public transport), 0 otherwise.   

 
x1 = (∑ 𝑡𝑡𝑂𝑂𝑂𝑂𝑓𝑓𝑂𝑂𝑂𝑂𝑃𝑃∈𝑂𝑂 )/(∑ 𝑓𝑓𝑂𝑂𝑂𝑂𝑃𝑃∈𝑂𝑂 ) = (∑ 𝑡𝑡𝑂𝑂𝑂𝑂𝑓𝑓𝑂𝑂𝑂𝑂𝑃𝑃∈𝑂𝑂 )/ GO

Park                                                                                              (2)    

x2 = (∑ 𝑡𝑡𝑃𝑃⟶∗
𝑇𝑇𝑇𝑇𝑓𝑓𝑂𝑂𝑂𝑂𝑃𝑃∈𝑂𝑂 )/(∑ 𝑓𝑓𝑂𝑂𝑂𝑂𝑃𝑃∈𝑂𝑂 ) = (∑ 𝑡𝑡𝑃𝑃⟶∗

𝑇𝑇𝑇𝑇𝑓𝑓𝑂𝑂𝑂𝑂𝑃𝑃∈𝑂𝑂 )/ GO
Park                                                                                (3)  

x2_bis = (∑ 𝑚𝑚𝑃𝑃⟶∗
𝑇𝑇𝑇𝑇𝑓𝑓𝑂𝑂𝑂𝑂𝑃𝑃∈𝑂𝑂 )/(∑ 𝑓𝑓𝑂𝑂𝑂𝑂𝑃𝑃∈𝑂𝑂 ) = (∑ 𝑡𝑡𝑃𝑃⟶∗

𝑇𝑇𝑇𝑇𝑓𝑓𝑂𝑂𝑂𝑂𝑃𝑃∈𝑂𝑂 )/ GO
Park                                                                                                             (4) 

x3 = (∑ 𝑓𝑓𝑂𝑂𝑂𝑂((𝐷𝐷 ∑ 𝑡𝑡𝑃𝑃𝑃𝑃 𝑃𝑃∈𝑂𝑂 )/𝑛𝑛𝑃𝑃∈𝑂𝑂))/ GO                                                                                                                        (5) 

x3_bis= (∑ 𝑓𝑓𝑂𝑂𝑂𝑂((𝐷𝐷 ∑ 𝑚𝑚𝑃𝑃𝑃𝑃 𝑃𝑃∈𝑂𝑂 )/𝑛𝑛𝑃𝑃∈𝑂𝑂))/ GO                                                                                                                (6) 

x4 = ∑ (𝑡𝑡𝑂𝑂𝑂𝑂 − ( ∑ (𝑡𝑡𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃∈𝑂𝑂 )/𝑛𝑛𝑃𝑃∈𝑂𝑂))𝐷𝐷                                                                                                                   (7) 

x5 = (∑ 𝑟𝑟𝑃𝑃𝑃𝑃∈𝑂𝑂 )/𝑛𝑛𝑃𝑃∈𝑂𝑂                                                                                                                                                         (8) 

where: 

𝑡𝑡𝑂𝑂𝑂𝑂 = travel time by car from the origin/starting traffic zone O to the P&R site P; 
𝑓𝑓𝑂𝑂𝑃𝑃 = vehicle flow from the origin/starting traffic zone O to the P&R site P; 
GO

Park = generated trips from the origin/starting traffic zone O making P&R;              
𝑡𝑡𝑃𝑃⟶∗

𝑇𝑇𝑇𝑇 = average travel time on public transport to reach all the destinations of the city from the P&R site P; 
𝑚𝑚𝑃𝑃⟶∗

𝑇𝑇𝑇𝑇 = average number of transfers by public transport to reach all the destinations of the city from the P&R 
site P; 
𝑚𝑚𝑃𝑃𝑃𝑃  = number of transfers by public transport from the P&R site P to the destination D; 
𝑓𝑓𝑂𝑂𝑂𝑂 = vehicle flow from the origin/starting traffic zone O to the final destination D; 
𝑡𝑡𝑃𝑃𝑃𝑃 = travel time by public transport from the P&R site P to the final destination D; 
𝑛𝑛𝑃𝑃∈𝑂𝑂 = number of P&R sites belonging to the catchment area of the origin/starting traffic zone O;  
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GO = generated trips from the origin/starting traffic zone O 
𝑡𝑡𝑂𝑂𝑂𝑂 = travel time by private transport from the origin/starting traffic zone O to the final destination D; 
𝑟𝑟𝑃𝑃 = occupancy of the P&R site P.  
In order to compute both the dependent and independent variables required to calibrate (1), several data have been 

adopted. 
Characteristics and location of the P&R sites in the metropolitan area of Rome are derived by open data provided 

by the Mobility Agency of Rome and by the main Rome’s public transport operator (ATAC). Actually, P&R sites 
allow leaving the car free in case of subscription to the public transport service.  The collected characteristics of the 
P&R sites (40 Park & Ride sites with 20’000 parking lots) are dimension, capacity and public transport lines 
interchange. The definition of the area of each P&R site is essential for the correct computation of the number of 
vehicles entering or leaving the P&R site. 

An extensive collection of geo-referenced data (FCD), carried out by a sample of probe vehicles equipped with an 
on-board unit (OBU), have been adopted to reconstruct the private vehicles demand and the P&R demand. 
Specifically, we use a large dataset of FCD by OctoTelematics (Nigro et al., 2017, Liberto et al., 2017) that includes 
about 150’000 vehicles tracked during the whole month of May 2013 in the metropolitan area of Rome. We organized 
the information derived by FCD as follows: 

 Origin-Destination matrix, containing the number of trips and travel times between each origin-destination 
pair for each departure time interval; 

 Origin-P&R site matrix, containing the number of trips and travel times between each origin- P&R site pair 
for each departure time interval; 

 P&R site matrix, containing information about the occupancy level in every P&R site for each time interval.  
The occupancy of the P&R sites in each time interval is a basic information for the P&R model, since if the 

occupancy is equal to the capacity, it compromises the possibility to receive additional demand. In most of the P&R 
sites in Rome we found that the occupancy reaches the maximum level between 08:00 and 09:00, and then remains 
almost constant until 14:00; from this time onwards there is a progressive reduction of the occupancy of the P&R site 
(e.g. Laurentina P&R site, Figure 2, left). 

Fig. 2. (a) Example of occupancy level by FCD; (b) zoning system. 

The data were subject to a data filtering process to improve their significance for calibration purposes. In the O-D 
matrix, the trips with a travel time exceeding 4 hours have been deleted. In the O-P&R matrix, the trips with a travel 
time exceeding 2 hours have been deleted. Moreover, an analysis has been performed on the trips by distance classes 
of 5 km. For each class, the minimum time and the maximum time used to travel the minimum distance and the 
maximum distance within the single class have been calculated, by using a maximum speed of 100 km/h and a 
minimum speed of 10 km/h. In this way, the trips with an average travel time less than the minimum time or with an 
average travel time greater than the maximum time have been deleted. 

The spatial resolution adopted in the study is based on 277 zones (Figure 2, right), 155 urban zones to describe the 
mobility demand inside the municipality of Rome, while122 zones for the other municipalities within the province of 
Rome. Adopting this resolution, the linear regression between the trips generated by every origin adopting FCD data 

 



414	 Marina Ferrara  et al. / Transportation Research Procedia 37 (2019) 409–416
6 Ferrara et al./ Transportation Research Procedia 00 (2018) 000–000 

and the population statistics provided by census data showed a 𝑅𝑅2 correlation factor equal to 0.65 for the urban zones 
inside the municipality of Rome and equal to 0.82 outside.  

The temporal resolution required an aggregation of one hour for each time interval. The trips occurred during the 
night hours (00:00 h - 04:00 h) are not taken into account, due to the low representativeness of the P&R demand in 
these hours. 

We noted a remarkable variability between the values of average access times to the different P&R sites, with a 
maximum travel time equal to 1 hour and a minimum travel time of 10 minutes. Considering all the P&R sites, an 
average access time of 24 minutes and a standard deviation of 12 minutes have been calculated. Instead, the 
distribution of the distances travelled from the origin to the P&R sites showed that the average distance travelled is 
equal to 11 km with a standard deviation of 6 km. All these values are compatible with the case of the city of Rome. 

Further information used for the calibration of the model concern the level of service provided by the public 
transport and expressed by its travel times and number of transfers for every origin-destination or P&R site-destination 
trip, for every time interval. These data have been obtained adopting CSA routing algorithm with the introduction of 
specific variations that permit to take into account also pedestrian path to change stop or vehicle (Biazzo et al., 2017). 

3. Results 

3.1. Calibration and validation of the RF 

Before starting the calibration process, the following filtering criteria have been adopted on the explanatory and on 
the independent variables to be adopted into the model: 
 Origin of the trips where GO

Park and GO, as derived by FCD, are equal to zero have been deleted, since it implies 
that no monitored flow started the trip from that origin in that time interval; 

 Any outlier has been removed. Specific outliers have been found on the variables x1, x4, x6, x7 as they showed 
unexpected corresponding values of the P&R share; 

 if any correlation (Pearson coefficient higher than |0.7|) is founded between the independent variables (x1, x2, ... 
, xn), a choice has to be done in terms of the variable to be adopted. This was the case of x2 and x2_bis, as well 
as x3 and x3_bis, where the high correlation suggested the adoption of only x2 and x3; 

 a minimum threshold of 0.5% has been introduced on the P&R share computed by FCD. Lower values may 
derive by a poor reliability of the FCD detection rate rather than a low propensity to the P&R mode.      

Fig. 3. (a) Average and standard deviation of the weights; (b) Average and standard deviation of the errors for both the calibration and the 
validation phase. 

The aim of these criteria was to provide a database as clean as possible to the forecasting method.  
The final database counts for 832 elements and 10 independent variables. It has been divided according to a cross-
validation method into two subsets: 70% used to train the model (training data set) and the remaining 30% (validation 
data set) to evaluate its predictive capability; 1’000 extractions of the training and test datasets have been conducted 
in order to derive the average results.  The calibration of the model by RF generated the weights (feature’s importance) 
relative to the importance of each independent variable (Figure 3, left): this allows establishing which variable has the 
higher predictive power in the model. The weights are expressed as a percentage, thus the sum of the weights is equal 
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to 1. The average occupancy of the P&R sites (x5), followed by the impedances on private and public transport reported 
the higher weights. Instead, the lower effects are reported by the dummy variables x8 about the location of the zone 
and x10 about the starting time of the trip.  

In order to evaluate the goodness of fit of the model, several statistics have been computed on the test datasets. 
Figure 3 (right) reports the average values of these statistics together with their standard deviation. It is possible to 
note an average percentage error between the model and the data of about 40% with a correlation (R2) in the test phase 
of about 0.75. 

3.2. Sensitivity analysis 

The model has been subject to several tests for its evaluation. Firstly, a sensitivity analysis is conducted on the 
parameters of the RF, specifically the number of trees that make up the RF (higher number of trees implies higher 
stability of the model, but higher computational times) and the maximum depth reached by each tree (higher maximum 
depth, higher the risk of overfitting). Several RFs were built, in which the number of trees have been modified between 
50 and 2’000, evaluating the average error between model and data, as well as the standard deviation. The same 
analysis has been performed by varying the maximum depth of random forests between 10 and 500 levels. The analysis 
showed that the variability of the result decreases as the number of trees increases (Figure 4, left) and a clear difference 
between the RF with 10 depth levels and the others (Figure 4, right). The optimal parameter values for the RF have 
been then set as 1’000 number of trees and 20 as the maximum depth.  

 

 

 

 

 

Fig. 4. (a) MSE for different number of trees; (b) MSE for different maximum depth. 

Then, fixed the optimal parameter for RF, a sensitivity analysis is performed modifying the values of two of the 
most important independent variables and analyzing the results of the model in terms of estimated P&R share. 

The variables adopted for this sensitivity analysis were x1 (impedance on private transport) and x5 (average 
occupancy of the P&R sites). Thus, several changes in the P&R sites access time and in the parking occupancy level 
have been applied on three specific zones of Rome. Results underline a higher elasticity of the model for an increase 
of x1 up to 50% (i.e. a reduction of P&R share of one percentage point is modelled if the average access time to the 
P&R sites changes from about 10 minutes to about 20 minutes). Instead, the P&R share is less sensitive to variation 
of x1 higher than 50%. About the parking occupancy, results report as expected a nonlinear trend between x5 and the 
P&R share indicating that a given P&R share can correspond to both a low occupancy state (high capacity available, 
filling phase of the P&R site) and a high occupancy state (no more capacity, no more demand). 

4. Implication of electric vehicles in the RF model and further research 

The P&R model has been calibrated and validated on the actual mobility scenario in Rome, where penetration rate 
of electric vehicles is almost zero (0.02% of private vehicles circulating in the whole province of Rome, OpenData 
MIT). However, the most interesting variables usually explaining the P&R behaviour has been introduced adopting 
an aggregate data driven approach. Actually, P&R sites in Rome are freely available for subscribers to the public 
transport service and this is the reason why no monetary cost is introduced in the model. 

Considering the increasing number of electric vehicles, several policies can be considered to push the electric cars 
to the P&R choice. These policies can be quantified through an economic benefit due to a discount on the public 

 



416	 Marina Ferrara  et al. / Transportation Research Procedia 37 (2019) 409–416
8 Ferrara et al./ Transportation Research Procedia 00 (2018) 000–000 

transport subscription and/or to a discount in the electricity bill. The discount in the electricity bill is even more 
realistic in case the electric vehicle, parking in the P&R site, give back part of its energy to the electricity grid (Vehicle 
To Grid). The energy fed into the grid is paid to the user directly in the electricity bill together with an economic 
incentive (i.e. the discount on the electricity bill) for making available its energy. 

In the P&R model, the policies can be incorporated with an additional function linking the increase in the P&R 
share with the economic incentive I:  

 
(GO

Park/ GO)|Dt =  𝑓𝑓(x1, x2, . . . , x𝑛𝑛) + I(Economic benefit €)                            (9) 

where Economic benefit € = g (discount on public transport subscription; discount on the electricity bill)  

A first estimate of the possible discount on the electricity bill has been computed in the hypothesis of night-time 
charging at home of the electric vehicle, an average access and egress distance to/from the P&R site of 10 km and a 
safety threshold to not leave the vehicle completely without energy. Not being able to refer to similar cases in the 
literature, for the unit price of energy, we referred to the value adopted for domestic users actually producing energy 
through photovoltaic panels and feeding it into the energy network (Article 6, LD n. 387/03). The discount estimate 
resulted in approximately 500€ for one year. Further research will be required to evaluate the willingness of accepting 
the policy by road users, as well as how the policy can influence the mode choice and specifically, the P&R share.  
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