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Abstract

Contemporary neuroscience has embraced network science and dynamical systems to
study the complex and self-organized structure of the human brain. Despite the devel-
opments in non-invasive neuroimaging techniques, a full understanding of the directed
interactions in whole brain networks, referred to as effective connectivity , as well as their
role in the emergent brain dynamics is still lacking. The main reason is that estimating
brain connectivity requires solving a formidable large-scale inverse problem from indi-
rect and noisy measurements. Building on the dynamic causal modeling framework,
the present study offers a novel method for estimating whole-brain effective connectivity
from resting-state functional magnetic resonance data. To this purpose sparse estima-
tion methods are adapted to infer the parameters of our novel model, which is based on
a linearized, region-specific haemodynamic response function. The resulting algorithm is
shown to compare favorably with state-of-the art methods when tested on both synthetic
and real data. We also provide a graph-theoretical analysis on the whole-brain effective
connectivity estimated using data from a cohort of healthy individuals, which reveals
properties such as asymmetry in the connectivity structure as well as the different roles
of brain areas in favoring segregation or integration.

Keywords: effective connectivity, fMRI, sparsity, Dynamic Causal Modeling, resting-
state

1. Introduction

The study of the human brain as a complex network plays a central role in contem-
porary neuroscience. It is now widely believed that cognitive processes are not localized
to a specific brain region but arise from the interplay of several areas [70]. The study and
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validation of this concept, known as functional integration, critically relies on the analy-
sis of the anatomical and functional relations between brain regions, which is defined in
terms of brain connectivity. The development of non-invasive neuroimaging techniques
has allowed to identify different types of brain connectivity, ranging from anatomical
(structural) links, to statistical (functional) and directed (effective) connections (see
[71, 24, 43] for a review). Their joint analysis appears to be crucial to understand the
complex organization of the human brain, which in turn plays a key role in predicting
the effect of brain lesions [7, 67] as well as in studying and designing brain stimulation
treatments [41, 38, 36, 10]. While whole-brain characterizations exist for structural (SC)
and functional connectivity (FC) [33, 83, 89], a thorough understanding of whole-brain
directed interactions (as described by effective connectivity) remains elusive. The main
reason for this gap lies in the fact that effective connectivity (EC) is often defined in
terms of a generative model for the blood oxygen level dependent (BOLD) signal. The
latter is measured with functional Magnetic Resonance Imaging (fMRI). Inferring EC
requires estimating a large number of parameters from a relatively small dataset [81],
which turns out being an ill-posed inverse problem.

Accordingly, inference of whole-brain effective connectivity appears as a key open
challenge for the neuroscience community [52, 18, 3]. Besides the complexity of the
estimation problem, validation of the estimated effective connectivity networks is still
an open issue.

A classical approach for effective connectivity estimation relies on a nonlinear dy-
namical model. The latter accounts for both the directed dependencies among neural
populations and the mapping from neural activity to observations. This framework is
known in the neuroimaging community as Dynamic Causal Modelling1 (DCM); it was
originally developed to deal with fMRI data [25, 11] and later extended to handle EEG
and MEG data [12, 37]. The original deterministic formulation [25] only accounted for
task-dependent fMRI data, where neural activity is driven by known external stimuli.
A stochastic DCM, driven by endogenous random fluctuations, was later developed to
deal with resting state [26]. DCM inversion is commonly performed assuming a prior
for the model parameters and using the Variational Bayes approach to compute an ap-
proximation of their posterior [25, 21]. This procedure is particularly challenging for
stochastic DCMs, because it requires to infer not only the model parameters but also
the latent neural activity [29, 23]. This latter issue was solved in [26, 53] by postulating
a linear model for the haemodynamic response, allowing to reformulate the DCM in the
frequency domain and simplifying the model inversion.

Within the DCM framework, effective connectivity estimation typically starts by
postulating a family of candidate network topologies and proceeds by inverting a DCM
for each topology; finally, the best hypothesis is chosen using Bayesian model selection
(BMS) [22, 75, 74]. However, the number of possible network topologies is combinatorial

1There is some debate in the literature on the use of the terms directed and causal, see e.g. [82]. We
prefer to avoid entering in this debate and therefore we shall always use the term directed connections
when talking about EC.

2



in the number of network nodes (i.e., brain regions). This poses severe challenges due to
(i) the need to invert a huge number of competing DCMs and (ii) the need to compare
a combinatorial number of alternatives which leaves very low statistical significance to
the final selected network topology (EC). These issues have been partially overcome by
resorting to techniques known as post-hoc model selection [22] or Bayesian model reduc-
tion [27], which allow to invert one fully connected model and to subsequently perform a
greedy selection over the nested models. Despite the availability of these approaches, the
inversion of a classical DCM remains ill-posed and computationally intensive for large
brain networks, thus limiting its applicability to networks including about ten nodes
[14, 53, 80]. More recently, the introduction of sparsity inducing priors on the connec-
tivity matrix has extended the use of resting-state DCM to graphs composed of tens of
nodes [63, 54]. Another approach, known as regression DCM [19], was recently applied
to infer task-dependent effective connectivity among 104 brain regions [18]; the price to
be paid in regression DCMs is that a linear and known haemodynamics model needs to
be postulated.

Outside the DCM framework, models which attempt to establish Granger-type causal-
ity directly on observed BOLD signals have been developed. For instance, effective con-
nectivity was recently treated as a parameter of the model describing brain resting-state
dynamics as an Ornstein-Uhlenbeck process. Note that this approach neglects the effect
of the haemodynamic response. Under this modelling assumption, a fast procedure was
proposed to estimate brain directed dependencies [32] and applied to whole-brain net-
works. The estimated effective connectivity profiles proved to be reliable signatures for
subject identification as well as for task/rest condition detection [31, 42].

While the aforementioned approaches for effective connectivity estimation rely on
the specification of a generative model of the available measurements, Bayesian nets
provide an alternative model-free framework. Under the assumption that brain effective
connections form a directed acyclic graph (DAG), these methods typically evaluate con-
ditional probabilities to assess network adjacencies [48, 50, 57]. Among them, the Fast
Greedy Equivalence Search (FGES) was recently applied to a voxel-wise whole-brain
network [47]. According to the validation study performed in [68], and more recently
confirmed in [61], Bayesian nets successfully detect existing connections, but are much
less powerful in estimating link directionality.

The main contribution of the present work is to offer a novel effective connectivity
estimation procedure for resting-state fMRI data, hereafter named sparse DCM. Our
method is based on a simplification of the standard resting-state DCM [26] and can be
applied to whole-brain data. The main differences with respect to standard DCMs are
the following:

1. DCMs and the Ornstein-Uhlenbeck model adopted in [32] are formulated in continuous-
time; our model is converted in discrete-time while keeping a continuous-time phys-
ical parametrization (effective connectivity). In this way we better exploit the low
temporal resolution of fMRI scanners so as to simplify (from the computational
point of view) the burden of model inversion without loosing in statistical perfor-
mance.
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2. We propose a statistical linearisation of the haemodynamic response function
(HRF), thus obtaining a linear stochastic generative model of resting-state fMRI
data. This allows to translate the priors on the physiological parameters describing
the haemodynamic model [6] into a prior on the HRF that can be exploited when
performing model inversion. A preliminary version of this procedure was proposed
in [45], and it is generalized in the present study to account for the haemodynamic
variability across brain areas.

3. Following the Sparse Bayesian Learning (SBL) approach [78], a sparsity-inducing
prior is formulated on the matrix describing the effective connectivity network. In
addition, the iterative reweighted procedure introduced in [85] is adapted to our
framework.

4. An expectation-maximization (EM) algorithm [13, 66] is used to invert our simpli-
fied (linear) DCM. Insights on the algorithm initialization are provided in terms
of (i) a procedure for automatic initialization and (ii) analyses on the role of prior
knowledge about effective connectivity patterns on initialization, which might be
important for clinical applications.

The second contribution of the present work is to provide a thorough comparison
of state-of-the-art methods for estimating effective connectivity models, ranging from
DCM-type [26] (including our sparse DCM) to Bayesian nets [69, 49, 47, 64, 56, 61] and
Granger causality [2].

The third contribution of the current study is to offer an extensive study on em-
pirical fMRI data for a whole-brain parcellation [34]. In this real scenario, the effective
connectivity pattern inferred by sparse DCM was validated by measuring its ability to re-
produce subject-specific functional connectivity on new data. Building on these results,
we also provide a graph-theoretical analysis on the whole-brain effective connectivity
networks estimated for a cohort of subjects, computing metrics such as nodes strength,
clustering coefficient and path lengths [58]. This large-scale analysis is typically per-
formed on functional or structural networks [5, 17], while only few results are available
for effective connectivity graphs, see e.g. [32, 55, 18].

Note that the generative model adopted here is related to that proposed in [60]
and further developed in [59]. There are however some key differences, most notably:
(i) a different linearization strategy for the HRF and (ii) the use of the EM algorithm
combined with an iterative-reweighted procedure [85] to invert the specified generative
model and to obtain a sparse connectivity pattern.

Alternative, and possibly richer, modelling frameworks could of course be consid-
ered. For instance, in the control and system identification community several dynam-
ical models with an underlying network structure have been studied (see [87, 8, 84, 90]
and references therein). The sparse DCM model provides a good trade-off between
model complexity and the need to account for physiological insights and computational
issues, all of which should be considered when estimating models for high dimensional
data (fMRI recordings) from relatively small (i.e., measured for short time intervals)
datasets.

This article is structured to reflect its three main contributions. The first part reviews
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the classical DCM framework and introduces our sparse DCM model. The second part
establishes the face, construct and predictive validity of the scheme. The third part
illustrates a further application of sparse DCM by addressing a generic issue in functional
integration from the perspective of graph theory.

2. Methods and Materials

2.1. Dynamic Causal Modeling

A Dynamic Causal Model (DCM), as proposed by Friston et al. [25], is a nonlinear
multiple input multiple output (MIMO) dynamical system. It is driven by experimen-
tally designed inputs (task) and by random neural fluctuations (resting-state). It outputs
the BOLD fMRI response y(t) for each of the monitored brain areas. The DCM consists
of two components: a differential equation describing the coupling among neuronal pop-
ulations, and a dynamic map from the neuronal activity to the measured BOLD signal
y(t), the so-called haemodynamic response. Let x(t) = [x1(t) · · · xn(t)]> denote the
hidden neural activity of n brain regions at time t. The DCM takes the following form:

ẋ(t) = f(x(t), u(t); θf ) + v(t)

y(t) = h(x(t); θh) + e(t), e(t) ∼ N (0, R), (1)

where u(t) denotes experimental manipulations (such as external stimuli, task demands),
v(t) is a stochastic term representing intrinsic brain fluctuations, and e(t) accounts for
observation noise with covariance matrix R. The parameters θf describe the model at
the neuronal level, including effective connectivity, while θh are biophysical parameters
defining the haemodynamic response. The original DCM formulation [25] assumes that
the neural activity is elicited only by external stimuli u(t), thus neglecting the stochastic
source v(t), and postulates a bilinear form for f :

ẋ(t) =

A+

m∑
j=1

uj(t)Bj

x(t) + Cu(t). (2)

In this case θf := {A,B1, · · · , Bm, C} encode couplings among neural activity and exter-
nal inputs. Specifically, A represents the network connectivity (effective connectivity) in
the absence of external excitations, Bj accounts for the change in the neuronal coupling
due to the j-th input; finally, C models the direct influence of experimental manipula-
tions on the neuronal activity.

A variant of the original DCM was introduced by [26] in order to deal with resting-
state fMRI (rs-fMRI) data. In this setting, external stimuli are absent, that is u(t) = 0,
and the random fluctuations v(t) are responsible for driving the neural activity. Function
f in (1) becomes linear:

ẋ(t) = Ax(t) + v(t) (3)

with A representing effective connectivity.
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The second component of a DCM, that is the haemodynamic response h appearing
in Eq. (1), is modeled through a nonlinear, biophysically inspired, dynamical system.
It takes the neural activity xi(t) as input and outputs the corresponding BOLD signal
bi(t) [6, 28, 76] :

ṙi(t) = xi(t)− κiri(t)− ηi(fi(t)− 1), i = 1, ..., n (4)

ḟi(t) = ri(t) (5)

τiv̇i(t) = fi(t)− v1/ξi
i (t) (6)

τiq̇i(t) = (fi(t)/ρi)
[
1− (1− ρi)1/fi(t)

]
− v1/ξi−1

i (t)qi(t) (7)

bi(t) = V0k1(1− qi(t)) + V0k2 (1− qi(t)/vi(t)) + V0k3(1− vi(t)). (8)

The haemodynamic states {ri, fi, vi, qi} are biophysical quantities: ri denotes the va-
sodilatatory signal, fi is the blood inflow, vi and qi are respectively the blood volume
and the deoxyhemoglobin content. The output equation (8) depends on the resting
blood volume fraction V0 (typically V0 = 0.02) and on the constants k1, k2 and k3.
These have found different characterizations in the literature, as reviewed in [76]. Also
the parameters θh = {κi, ηi, τi, ξi, ρi; i = 1, .., n} have a biological meaning, see [25].
In the latter study, a prior distribution for θh has been specified. When adopting the
DCM framework, effective connectivity is estimated by inverting the DCM using mea-
sured fMRI data. In a Bayesian framework this inversion cannot be computed in closed
form. Most often Variational Bayes techniques under the Laplace approximation (VBL)
[21, 11] are exploited. When resting-state fMRI data are considered and neural dynamics
is assumed to be described by Eq. (3), the DCM inversion becomes more challenging
than in the task-dependent domain (that is, when Eq. (2) is used). While in the latter
case, only the parameters θf and θh have to be inferred, in the first situation, also the
neural states x(t) have to be estimated. Two procedures are commonly used to this
end: Dynamic Expectation Maximization (DEM) [29] and Generalized Filtering (GF)
[23, 39]; even if both adopt the Variational Bayes procedure, DEM uses the mean-field
and the Laplace approximations, while GF only exploits the latter. However, a different
approach, known as spectral DCM (spDCM) [26, 52] has been proven superior to these
methods, both in terms of face validity and of computational complexity [53]. Differ-
ently from DEM and GF, which operate in time domain, spDCM replaces the stochastic
generative model (3)-(8) with a deterministic model producing the cross-spectra of the
original fMRI time-series. In this way, endogenous neural states x(t) are no longer esti-
mated, but only the time-invariant parameters describing their cross-spectra have to be
inferred.
Despite the widespread use of these approaches in computational neuroscience, their
applicability is limited to small brain networks, in the order of ten nodes. Increasing the
number of regions leads to a relevant rise in the number of parameters to be estimated
and in turn to an exponential growth of the computational time required to invert these
models. These limitations particularly affect DEM and GF, which have to estimate both
the hidden neural states trajectories x(t) and the parameters. On the other hand, the
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computational efficiency of spDCM was recently exploited to invert large-scale DCMs,
comprising up to 36 brain regions [54]. To improve the robustness and further reduce
the computational burden, we introduce below a simplification of the original DCM
framework and a simplified (Expectation-Maximization) procedure for its inversion.

2.2. Linear DCM

The proposed reformulation of the classical DCM for rs-fMRI [26] involves both a
discretization and a linearization of the original non-linear continuous-time model. The
former is dictated by the low temporal resolution of fMRI scanners: since they indirectly
measure the neuronal activity at time intervals of length TR (typically ranging from 0.7
to 3 seconds), it is reasonable to adopt a discrete-time version2 of Eq. (3). This is derived
by simply observing that

x(kTR + TR) = eA(kTR+TR−kTR)x(kTR) +

∫ kTR+TR

kTR

eA(kTR+TR−s)v(s) ds

= eATR x(kTR) +

∫ TR

0
eAτv(τ) dτ.

Using the simplified notation x(k) := x(kTR) and defining w(k) :=
∫ TR

0 eAτv(τ) dτ , the
sampled version of Eq. (3) becomes

x(k + 1) = eATRx(k) + w(k). (9)

Furthermore, we assume that v(t), t ∈ R, in (3) is white Gaussian noise with intensity
σ2In where In denotes the identity matrix of size n ; consequently, w(k) is white Gaussian
with variance [30]

Q = σ2

∫ TR

0
eAτeA

>τdτ. (10)

The haemodynamic response (4)-(8) is linearised following a statistical approach as
follows: we consider a Finite Impulse Response (FIR) model which takes as input a
neuronal state xi(k) and outputs the BOLD signal bi(k) := bi(kTR):

bi(k) =
s−1∑
l=0

hi,l xi(k − l), i = 1, ..., n. (11)

The length s of the impulse response hi := [hi,0 · · · hi,s−1]> is chosen large enough
to retain the relevant temporal dependencies. The finite impulse responses hi are as-
signed a Gaussian prior distribution hi ∼ N (µh,Σh), by exploiting the empirical priors
for the parameters θh appearing in the non-linear model (4)-(8) of the haemodynamic

2Issues related to estimation of sparse continuous time models from low-rate (i.e. large TR) measure-
ments have been also recently discussed in [88].
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response. The exact procedure we followed rests on statistical linearization techniques
and is reported in Appendix A.

Having replaced the non-linear component of the DCM for rs-fMRI with a linear
map, we can formulate the proposed DCM variant as a stochastic linear state-space
model. In particular, defining

x(k) :=
[
x>(k) x>(k − 1) · · · x>(k − s+ 1)

]> ∈ Rns

w(k) := [w>(k) 0]> ∈ Rns,

model (1) with the linearization (11) can be written in the form{
x(k + 1) = Ax(k) + w(k)

y(k) = Hx(k) + e(k).
(12)

Matrices A and H in (12) are defined as

A :=

[
eATR 0
In(s−1) 0

]
(13)

H :=


h1,0 0 · · · 0 h1,1 0 · · · 0 · · · h1,s−1 0 · · · 0

0 h2,0
. . .

... 0 h2,1
. . .

... · · · 0 h2,s−1
. . .

...
...

. . .
. . . 0

...
. . .

. . . 0 · · · ...
. . .

. . . 0
0 · · · 0 hn,0 0 · · · 0 hn,1 · · · 0 · · · 0 hn,s−1

 .
To complete the model specification, in line with Eqs. (10) and (1), we further assume:

w(k) ∼ N (0,Q), Q := blkdiag(Q, ςIn(s−1)) (14)

e(k) ∼ N (0, R), R := diag(λ2
1, ..., λ

2
n) (15)

where blkdiag(·) and diag(·) respectively denote the block-diagonal and the diagonal
operators, while ς = 10−15 is a scalar positive constant chosen small enough to guarantee
that Q is invertible. The bold notation has been used to represent extended quantities.
Section 2.3 will describe how the parameters

θ := {A, σ, h1, ..., hn, λ1, ..., λn} (16)

which specify the linear model in (12), are estimated using an Expectation-Maximization
(EM) algorithm.

For a fixed value of θ, we define the model Functional Connectivity (FC) as

[F̂C]ij =
[Σy]ij√

[Σy]ii[Σy]jj
. (17)

where Σy is the stationary output covariance matrix Σy = HΣxH
>+R and the station-

ary state covariance Σx is the solution of the Lyapunov equation Σx = AΣxA
>+Q. The
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model FC (17) can be computed using the parameters θ̂ estimated from a run of rs-fMRI
data (according to the procedure detailed in Section 2.3). Note that the “empirical” FC,
defined as the correlation between the empirical BOLD time-series, can be seen as a
sample estimate of the model FC in (17). A comparison between the two, e.g. based on
the Pearson Correlation Coefficient (PearsonCC) between the two matrices, will serve
as a validation step for the estimation routine when a ground-truth is not available, that
is when dealing with empirical fMRI data. A more reliable validation can be obtained
by comparing the model FC in (17) computed from the estimated θ̂ with the empirical
FC obtained in a different run from the same subject, i.e. from new data that have not
been used for parameters inference: a good agreement would be a reasonable indicator
of the generalization capabilities of the estimated model.

2.3. Sparse estimation algorithm

We now describe a procedure to estimate the parameter vector θ of model (12) from
measurements {y(k)}Nk=1 of the BOLD signal.

Following a Bayesian perspective, we first assign a prior pγ(θ) so as to reflect ei-
ther prior knowledge (e.g., on typical haemodynamic responses as in [25]) or to favor
reconstruction of a sparse effective connectivity matrix A. The parameters γ, known
as hyperparameters in the Bayesian learning framework, define the prior and are also
estimated from data as discussed below. Ideally, one would like to find θ and γ that
maximize the marginal posterior

pγ(θ|Y ) =

∫
pγ(X, θ|Y ) dX (18)

where Y := [y>(1) · · · y>(N)]> and X := [x>(0) · · · x>(N)]>, playing the role of
measured and latent variables, respectively. However, the computation of such a high-
dimensional integral is typically avoided by exploiting the decomposition pγ(θ|Y ) ∝
p(Y |θ)pγ(θ) and a tractable lower bound of the likelihood

p(Y |θ) =

∫
p(X, Y |θ) dX. (19)

An appropriate bound can be found e.g. resorting to the EM algorithm [13].
Before delving into algorithmic details, the prior pγ(θ) will be specified. It will be

assumed that pγ(θ) ∝ pγ(A)p(σ)
∏n
i=1 p(hi)p(λi), where p(σ) and p(λi), i = 1, ..., n, are

uninformative priors while the hi’s are i.i.d. Gaussian hi ∼ N (µh,Σh). A key role is
played by the sparsity inducing prior pγ(A) for the connectivity matrix A. Following
the Sparse Bayesian Learning (SBL) perspective [78], the elements [A]ij of matrix A
are postulated to be independent zero mean Gaussian with variances γk, i.e. pγ(a) ∼
N (0, diag(γ1, · · · , γn2)) with a := vec(A>) denoting the vectorization of A>. SBL was
originally proposed to deal with classical regression problems where no hidden variables
are present and where observations are corrupted by white Gaussian noise. Under this
setting, the hyperparameters γ := {γk}n

2

k=1 will be estimated through marginal likelihood
maximization (also known as type-II maximum likelihood method). As a consequence,
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under generic conditions, the maximum likelihood ML estimates of certain γi’s will be
zero and the Gaussian posterior distribution of the corresponding element ai of matrix
A will concentrate around zero, leading to a zero MAP estimate. To compute the
ML estimate, the hyperparameters {γi}n2

i=1 are updated, as an inner step of the EM-
type algorithm described below, following the reweighted `1 approach proposed in [85].
This procedure provides an automatic selection of a sparsity pattern in the estimated
effective connectivity matrix A, thus avoiding the combinatorial search over candidate
network structures, which becomes practically infeasible in reasonably sized networks
(tens to hundreds of nodes). Further details will be provided in Appendix C. Though
the introduction of post-hoc model selection [22] and Bayesian Model Reduction [27] have
extremely simplified the search over candidate DCM models, classical DCM approaches
[21, 29, 23, 26, 53] remain affected by the issue of combinatorial model search. During the
last decade, several studies have tried to alleviate this drawback by specifying different
sparsity priors for the connectivity matrix A [60, 63, 59, 54, 18], in line with the approach
we propose here.

We now provide the details regarding how the MAP estimate

θ̂ = arg max
θ

ln p(Y |θ) + ln pγ(θ) (20)

is obtained using an EM procedure that iteratively optimizes a lower bound of the
(log)posterior. Classically, EM maximizes ln p(Y |θ) by iteratively maximizing its lower
bound

L(q(X), θ) =

∫
q(X) (ln p(X, Y |θ)− ln q(X)) dX (21)

with respect to an arbitrary distribution q(X) and θ. In the statistical learning literature
L(q(X), θ) is also known as (negative) free-energy. At the l-th iteration of the algorithm,
L(q(X), θ(l)) is maximized by q(l+1)(X) = p(X|Y, θ(l)). Plugging this into (21), one
obtains

L(q(l+1)(X), θ) =

∫
p(X|Y, θ(l)) ln p(X, Y |θ)dX−

∫
p(X|Y, θ(l)) ln p(X|Y, θ(l))dX. (22)

In our MAP setting (20) the a-priori information on θ needs to be included. Neglecting
the terms that do not depend on θ and γ, a lower bound of the posterior is given by

Q(θ, θ(l)) =

∫
p(X|Y, θ(l)) ln p(X, Y |θ) dX + ln pγ(θ). (23)

Using the Markovian property of system (12), Q(θ, θ(l)) can be rewritten as [62, Ch.12]

Q(θ, θ(l)) =

N∑
k=1

∫
p(x(k),x(k − 1)|Y, θ(l)) ln p(x(k)|x(k − 1), θ) dx(k)dx(k − 1) (24)

+

N∑
k=1

∫
p(x(k)|Y, θ(l)) ln p(y(k)|x(k), θ) dx(k) + ln pγ(θ)

10



where the smoothing distributions

p(x(k)|Y, θ(l)) = N (x̂s(k),Ps(k)) (25)

p(x(k),x(k − 1)|Y, θ(l)) = N
([

x̂s(k)
x̂s(k − 1)

]
,

[
Ps(k) Ps(k)G>(k − 1)

G(k − 1)Ps(k) Ps(k − 1)

])
(26)

can be computed by means of the Rauch-Tung-Striebel smoother (RTSS) [51]. Its im-
plementation is summarized in Appendix B (Algorithm 2). Plugging (25) and (26) into
(24) we get

Q(θ, θ(l)) = ln pγ(θ)− N

2
ln |2πQ| − N

2
ln |2πR| (27)

− N

2
tr
[
Q−1

(
Λ−ΨA> −AΨ> + AΥA>

)]
− N

2
tr
[
R−1

(
∆− ΞH> −HΞ> + HΛH>

)]
where

Λ =
1

N

N∑
k=1

Ps(k) + x̂s(k) [x̂s(k)]> ,

Ψ =
1

N

N∑
k=1

Ps(k)G(k − 1) + x̂s(k) [x̂s(k − 1)]> ,

Υ =
1

N

N∑
k=1

Ps(k − 1) + x̂s(k − 1) [x̂s(k − 1)]> ,

Ξ =
1

N

N∑
k=1

y(k) [x̂s(k)]> , ∆ =
1

N

N∑
k=1

y(k)y>(k).

In summary, our algorithm alternates between an RTS smoother, which computes the
distributions (25)-(26) for a fixed θ, and the maximization of function Q(θ, θ(l)) in
Eq. (27) to update θ. At each iteration also the hyper-parameters {γi}n2

i=1 are updated;
this is the key step for inducing sparsity on A. The complete routine is reported in
Appendix B (Algorithm 1).

In terms of computational cost, each iteration has complexity O
(
(ns)3

)
due to matrix

inversions in the RTS smoother, see step 13 of Algorithm 1. Thus, for N iterations,
the computational cost scales as O((ns)3N). In our experiments the number N of EM
iterations ranged in the interval [20, 400] depending on sampling time and on the number
of monitored regions. Results on average execution times on a specific hardware can be
found in Sections 3.1 and 3.2.

A further issue that calls for attention is the non-convexity of problem (20), which

might have many local minima. As such the initialization θ(0) and {γ(0)
i }n

2

i=1 plays a
crucial role, especially when dealing with large DCMs. We experimentally investigated
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the impact of this stage on the estimated DCM and we found that the values of {γ(0)
i }n

2

i=1

do not strongly affect the final outcome of the EM algorithm, while the initialization of
the effective connectivity matrix A seems to be more critical. Some of these results will be
reported in Section 3.3.5 where large-scale DCMs are considered. As an outcome of the
latter investigation further hints on initialization are found in Appendix B (Algorithm 1).

A last warning concerns sparsity of A: due to numerical issues, some of the param-
eters γ̂k’s become small but not zero. Thus, we obtain quasi-sparse solutions Â, i.e.
with many entries having very small absolute values. These entries are irrelevant to any
practical purpose and, to facilitate interpretation of the results, are thresholded to zero
to make Â rigorously sparse. An automated thresholding criterion based on functional
connectivity notions will be proposed and discussed (see Sec. 3.1 and also Sec. 3.3.2).

2.4. Synthetic data

Some Monte-Carlo studies on synthetic datasets were conducted. The synthetic rs-
fMRI data were generated using SPM12 routines spm_int_J, spm_fx_fmri and spm_gx_fmri

(http://www.fil.ion.ucl.ac.uk/spm/). Routine spm_gx_fmri was modified to gen-
erate different haemodynamic responses, each generated randomly drawing θh from the
empirical distributions reported in [25].

Two generative models, with respectively 7 and 66 brain regions, were used. The
former setup resembles a local brain network, while the latter simulates a whole-brain
network. A fixed sparsity pattern was assigned to matrix A in both setups. In the 7-
regions network the non-zero entries were fixed in order to resemble the connectivity of
a local brain network. The 66-nodes network was obtained using the human connectome
derived from diffusion-weighting imaging in [34]: following [18], a structural connection
between two brain areas was assumed to be present only if the average inter-regional
fiber density was larger than 0.06. This thresholding favored the stability of the DCM
constructed starting from the connectome matrix. In both setups, the absolute values
of the non-zero (off-diagonal) entries of A were sampled from a normal distribution with
mean 0.2 and variance 0.0025, while their signs were drawn from a Bernoulli distribution
with parameter p = 0.5. The diagonal entries of A were fixed to -0.5 to prevent instability
issues. The endogenous fluctuations v(t) were modelled using Gaussian white noise with
intensity σ2In = 0.01 · In. Using these generative models, 20 Monte-Carlo sets with N =
300 samples of BOLD signal time-series were generated, randomizing both the driving
noise and the effective connectivity matrix A. Several sampling times TR = {0.5s, 1s, 2s}
were tested in the 7-regions setting, while only TR = 2s was considered for the 66-nodes
DCM. The signal-to-noise ratio (SNR) was fixed to 3 in all datasets. Figures S1 and S23

in the Supplementary Material show a sample of the generated data.
In addition, to study the impact of data SNR on the performance of our algorithm,

we conducted an extensive simulation study using a fixed connectivity matrix A, defined

3All the tables, sections and figures referenced with the prefix “S” (e.g. S1(a)) are found in the
Supplementary Material.
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as

A =



−0.5 0 0 0 −0.2 0 0
0 −0.5 0 −0.45 −0.3 0 0
0 0 −0.5 0.8 0 0 0
0 0.6 0 −0.5 −0.1 0.6 0

0.3 0 −0.55 0 −0.5 0.2 0
0 0 0 0 0.3 −0.5 0.45

0.15 0 0.2 0 0 0 −0.5


. (28)

We generated 9 datasets with 20 Monte-Carlo runs each, by varying the data SNR in
the set {1, 5, 10} and the sampling time TR in the set {1, 5, 10}. The generated BOLD
time-series contained again N = 300 samples and the endogenous fluctuations v(t) were
modelled as described above.

Remark 1. Note that in this paper synthetic data were always generated using a sparse
directed connectivity matrix A. This reflects the belief that brain networks are organized
as small world (and thus sparse). In future work we shall also consider more general
conditions where the model might be quasi-sparse or not sparse at all, in order to test how
different approaches perform in terms of approximating a generic model with a sparse
one.

We tested our method against several state-of-the-art algorithms in terms of its
ability to retrieve the true underlying directed connectivity, namely:

• spDCM with post-hoc selection [22]. The SPM12 routines spm_dcm_fmri_csd and
spm_dcm_post_hoc were used with driving inputs a-priori switched off.

• Multivariate Granger Causality (MVGC). The order of the estimated VAR model
was chosen through Bayesian Information Criterion (BIC) for the data coming
from the 7-regions DCM and by means of Akaike Information Criterion (AIC)
when dealing with the whole-brain DCM. In both cases, the Geweke’s χ2 test
with FDR correction and significance level equal to 0.2 was used to detect the
connectivity structure. Routine tsdata_to_var of the MVGC Matlab Toolbox
[2] was used to estimate effective connectivity, while routines var_to_autocov,
autocov_to_pwcgc and mvgc_pval were used to assess the connectivity structure.

• Some causal search algorithms included in the suite Tetrad (http://www.phil.
cmu.edu/tetrad/):

– Peter and Clark (PC) algorithm equipped with Fisher-Z test [69];

– Peter and Clark method using Fast Adjacency Search stable algorithm [9] for
the adjacency estimation (PCstable), also equipped with Fisher-Z test;

– Fast Greedy Equivalence Search (FGES) adopting Fisher-Z score [49, 47];

– Linear Non-Gaussian Acyclic Modelling (Lingam) [64];

– an optimized version of the CCD algorithm (CCDmax) using Fisher-Z test
[56];
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– Fast Adjacency Skewness (FASK) algorithm equipped with Gaussian BIC
score as a conditional independence test [61].

For all these algorithms we used classes LoadContinuousDataAndSingleGraph and
Simulations to import the synthetic BOLD data and the true effective connectiv-
ity graph. We used classes Statistics and Comparison (in particular the routine
compareFromSimulations) to evaluate the performance of the various algorithms.
Finally, for all of them we used the default parameters settings.

The performance was measured both in terms of Root Mean Squared Error (RMSE) on
the estimated connectivity matrix A, as well as in terms of accuracy, precision, sensitiv-
ity and specificity in retrieving the effective connectivity network (presence/absence of
directed links). These are defined as:

accuracy =
TP + TN

P + N
, precision =

TP

TP + FP

sensitivity =
TP

P
, specificity =

TN

N
(29)

where P and N respectively denote the number of non-zero (existing edges) and zero
entries in the true connectivity matrix, while TP and TN are respectively the number
of non-zero and zero entries that are correctly retrieved by the estimation algorithm;
finally, FP is the number of connections that exist in the estimated connectivity, but do
not exist in the true effective network.

Remark 2. We warn the reader that all these measures can be criticized to some extent,
as they compare the estimated model with the “true” model. Of course in practice a true
model does not exist and, most importantly, several models of different complexity may
explain the observed data, thus calling for methods that, as ours and Bayesian model
reduction, trade complexity with fit. We stress that one of the final goals of whole brain
modelling is to find an interconnection structure that can be interpreted and used for
clinical and translational purposes. Thus, we regard as a plus the ability to recover a
model which is close to some ground truth for “typical” sparse network topologies.

2.5. Empirical data: 66 regions

We applied our algorithm to the dataset used in [44] consisting of 48 BOLD time-
series measured in 24 right-handed healthy young volunteers (15 females, age range
20-31 years).4 Two scanning sessions of 10 minutes, sampling time TR = 2 sec, are
available for each subject. Participants were asked to relax and maintain fixation on a

4We report here the Ethics statement included in [44]: “This research was conducted in agreement
with the Code of Ethics of the World Medical Association (Declaration of Helsinki) and informed consent
was obtained from all subjects before performing the study, in accordance with institutional guidelines.
The study design was approved by the local Ethics Committee of Chieti University and the local Ethics
Committee of Lausanne.”
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red point of 0.3 visual degrees positioned in the center of a black screen during scanning.
Data were acquired on a 3T MR scanner (Achieva; Philips Medical Systems) using a
T2-weighted echo-planar-imaging (EPI) sequence (TR = 2000 ms, TE = 35 ms, 32 axial
slices, voxel size 3×3×3.5 mm3). Data pre-processing was performed using the SPM5
software package (Wellcome Department of Cognitive Neurology, London, UK) with the
following steps: (1) correction for slice-timing differences; (2) correction of head-motion;
(3) co-registration of the anatomical image and the mean functional image; (4) spatial
normalization of all images to the MNI space with a voxel size of 3×3×3 mm3; (5) spatial
Independent Component Analysis (ICA) of the BOLD time-series in MNI space for the
removal of artifacts due to blood pulsation, head movement and instrumental spikes.
Finally, for each recording session, the mean BOLD time-series were extracted from the
n = 66 brain regions of the Hagmann atlas [34]. Further details on the acquisition and
processing of these data can be found in Section “Methods” of [44], while the list of
ROIs and their abbreviations is reported in Table S11 of the Supplementary Material.

To validate the estimated models, we compared the PearsonCC between the empirical
FC matrix of a given data run and the model FC inferred using the same data (see
Eq. (17)). In addition, we also compared the latter model FC with the empirical FC
estimated from the second data run for the same subject. This was done to evaluate,
on the one hand, the dependence of the estimated DCM on the specific data run and,
on the other hand, to what extent the estimated effective connectivity is able to capture
subject-specific features.

Next, a one-sample t-test was performed to assess which effective connections are sta-
ble across subjects in the population. In addition, we exploited graph theory measures
to characterize the estimated effective connectivity networks. We used the Brain Con-
nectivity Toolbox (BCT, https://sites.google.com/site/bctnet/) [58] to compute
centrality measures such as strength, betweenness centrality, within-module degree z-score
and participation coefficient of the network nodes, or segregation measures such as the
clustering coefficient. The purpose of the latter analyses is to understand which brain
regions play a role in favouring network segregation (provincial hubs) and which instead
are crucial for network integration (connector hubs). Since these two properties have
been widely studied in undirected brain networks arising from structural or functional
connectivity [73, 5, 89], we conducted the same analysis on both effective and functional
graphs in order to assess the role of directionality in brain connectivity.

Finally, we investigated the impact of EM initialization on the estimated effective
connectivity A by comparing two initialization strategies for A.

3. Results

3.1. Synthetic data: 7 regions DCM

We start our experimental validation by suggesting a criterion for the thresholding
of the estimated effective connectivity matrix. The top plot in Fig. 1(a) reports the
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PearsonCC 5 between the empirical FC matrix directly computed from the BOLD time-
series and the estimated model FC (calculated as in Eq. (17)) as a function of the
threshold applied to the estimated effective connectivity matrix A. It is apparent that
increasing the threshold value leads to a deterioration of the agreement between the
two FC matrices. We suggest to fix the threshold to the largest value that leads to a
degradation of at most 3% in the correlation between the empirical and the estimated
FC. As a result the thresholds ranges between 0.025 and 0.075 in the 20 Monte-Carlo
runs. This choice of the threshold provides good generalization capabilities in terms of
predicting empirical FC on a new dataset (Fig. 1(a)-bottom). This choice also leads to
a good estimate of A. The RMSE is essentially not affected by the thresholding (Fig.
1(b)). Accuracy, precision and specificity (Figs. 1(c)-1(d)-1(f), respectively) improve
if a larger threshold is adopted. However, increasing the threshold leads to a worse
sensitivity (Fig. 1(e)), since the connectivity matrix becomes too sparse and many links
are not detected.

Adopting this threshold strategy, we compared the performance of our sparse DCM
with the other methods listed in Sec. 2.4. The results are reported in Fig. 2 for TR = 2s.
Our sparse DCM approach always appears within the two best-performing methods.
In particular, the performance in terms of RMSE are comparable with those achieved
by MVGC and are superior to those obtained by the algorithms included in the suite
Tetrad (see Fig. 2(a)). Concerning the reconstruction of the true effective connectivity
structure, we observe that sparse DCM provides very good results in terms of accuracy
and sensitivity. The performance related to sensitivity is superior if compared to the
algorithms of the suite Tetrad. The performance of spDCM in terms of sensitivity
is very poor. Indeed, it tends to overestimate the degree of sparsity in the effective
connectivity matrix. Tables S1-S5 show the comparison for different sampling times TR.
Notably, sometimes spDCM estimated completely disconnected networks, thus making it
impossible to compute precision (see Table S5). MVGC may incur in a similar behavior
if the significance level of the Geweke’s χ2-test is not properly set. This test is used by
MVGC to select the significant connections. We observed that a larger significance level
may prevent an excessive sparsity in the estimated connectivity matrix. We set it to 0.2
in the reported simulations.

Overall, we can conclude that our method outperforms the competitors in detecting
“true” effective connections (in terms of sensitivity); remarkably, this is achieved while
maintaining a good specificity.

Fig. 3 shows the performance of our approach as a function of sampling time and
data SNR. In this case, the synthetic BOLD time-series were generated with the fixed
connectivity matrix A in Eq. (28). The plots highlight how our approach significantly
benefits from larger SNRs. Somewhat surprisingly, performance moderately improves
when TR increases. This behavior may be explained by the fact that low TR data are
gathered in a shorter time-horizon (since all the designed datasets always contain 300

5The Pearson Correlation Coefficient is computed only between the upper diagonal parts of the two
FC matrices, due to their symmetry.
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(a) Top: Pearson correlation coefficient (Pear-
sonCC) between empirical FC and estimated FC.
Bottom: PearsonCC between empirical “test” FC
and estimated FC.

(b) RMSE (Root Mean Squared Error) of the
estimated effective connectivity matrix A.

(c) Accuracy (d) Precision

(e) Sensitivity (f) Specificity

Figure 1: Synthetic data with 7 brain regions (nodes) and randomly drawn connectivity matrix (SNR=3,
TR=2s). Performance metrics as function of the thresholding applied on the estimated ECs.
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(a) Root Mean Squared Error

(b) Accuracy

(c) Precision

(d) Sensitivity.

(e) Specificity

Figure 2: Synthetic data with 7 brain regions (nodes) and randomly drawn connectivity matrix (SNR=3,
TR=2s). Performance metrics over 20 MC runs (mean ± standard deviation) are shown for our sparse
DCM as well as for the compared methods.
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(a) Root Mean Squared Error (b) Accuracy (c) Precision

(d) Sensitivity (e) Specificity

Figure 3: Synthetic data with 7 brain regions and fixed connectivity matrix. Average performance
metrics over 20 MC runs achieved by the proposed algorithm as function of data SNR and sampling
time TR.
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samples), thus they might not be enough informative about the underlying dynamics.
Indeed, a similar behavior is observed for spDCM in Tables S6-S10, which compare
the performance of the tested algorithms on the same datasets. This trend is further
confirmed by the results achieved on the data generated with randomly sampled true
connectivity matrices: by inspecting Tables S1-S5 it can be noticed that not only our
approach but also the method relying on Granger causality (MVGC) and FGES achieve
better performance on data having higher sampling time.

As a final comparison, we report in Table 1 average execution times (in seconds)
for each method over the 20 MC runs. The value reported under Tetrad is the sum of
the execution times of all the algorithms included in the suite (i.e. PC, PCstab, FGES,
Lingam, CCDmax and FASK). Simulations were conducted with a Macbook Pro 2017
(2.5 GHz Intel Core i7 processor, 16 GB RAM). As expected, the computational effort
is low for the correlation based algorithms (Tetrad and MVGC), which simply compare
correlations between the variables included in the model. Inverse methods, such as our
sparse DCM and the spectral DCM, require the inversion of the specified model, thus
being more expensive from the computational point of view.

sparseDCM spDCM MVGC Tetrad

Avg execution time [s] 133 62 0.10 0.42

Table 1: Synthetic data with 7 brain regions (nodes) and randomly drawn connectivity matrix (SNR=3,
TR=2s). Average execution time per run (computed over 20 MC runs).

3.2. Synthetic data: whole-brain-scale network

We now analyse the performance of sparse DCM in a more realistic whole brain
setting (66 regions), still using synthetic data. The thresholding procedure was the
same used in Sec. 3.1, leading to selected thresholds in the range [0.01, 0.025].

We compared sparse DCM with the methods listed in Sec. 2.4 (see Fig. 4) but
excluding spDCM and Lingam due to their high computational load. Also CCDmax
had to be dropped because it did not converge on most of the Monte-Carlo datasets.
Overall, the results in Fig. 4 are in favor of sparse DCM, showing that its performance
scales well with network size. The perfect score achieved by MVGC in terms of specificity
is due to the fact that it provides, in most runs, a completely disconnected network. As a
result its performance in terms of sensitivity is very poor. Differently, the high specificity
performance obtained by our method is also accompanied by satisfying sensitivity and
precision scores. The latter are the highest among the compared approaches.

sparseDCM spDCM MVGC Tetrad

Avg execution time [s] 19840 – 85 130

Table 2: Synthetic data with 66 brain regions and randomly drawn connectivity matrix (SNR=3, TR=2s).
Average execution time per run (computed over 20 MC runs).
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Table 2 contains the average execution times per MC run of the compared algorithms.
The simulations were conducted with the same hardware described in Section 3.1. De-
spite sparse DCM is significantly more expensive than the correlation-based approaches,
it scales better than MVGC and Tetrad when the number of monitored brain regions
increases.

3.3. Empirical data: 66 regions

We now consider the empirical fMRI data described in Sec. 2.5. Subjects 12 and 18
of the dataset have been excluded from the analyses reported below due to convergence
problems in one of the two runs.

3.3.1. Effective and functional connectivity

We first consider the data of a single subject to illustrate the sparse DCM outputs.
Fig. 5(a) shows the estimated effective connectivity before thresholding. The matrix
is actually (almost) sparse, with many entries very close to zero, even if not exactly
zero. Fig. 5(b) illustrates the linear haemodynamic responses estimated for each of the
66 brain regions of the Hagmann atlas [34]. Their average is reported in black. It
is interesting to observe that our algorithm indeed captures a significant variability of
the haemodynamic responses for different brain areas. Finally, the agreement between
empirical FC and model FC reconstructed using the estimated DCM can be appreciated
by comparing Figs. 5(d) and 5(c).

The agreement between empirical and estimated FC is confirmed for the entire sample
of subjects in terms of Pearson correlation coefficient (see the blue dots in Fig. 6). Most
notably, Fig. 6 also reports the PearsonCC between the model FC coming from the
DCM estimated using data from Run 2 and the empirical FC computed from Run 1 (red
diamonds): this comparison can be viewed as a “model validation” stage, which aims at
assessing the generalization capabilities of the estimated models. For completeness, the
PearsonCCs between the empirical FCs from Run 1 and Run 2, which may be regarded
as ceiling level for the corresponding red diamonds, are also shown (black squares).

3.3.2. Effective Connectivity Thresholding

Similarly to the synthetic scenario, the threshold value was fixed to 0.01 following the
same selection approach we adopted with synthetic data. This threshold also guarantees
a large agreement between the model FC and the empirical one, when computed on a
different data run (Run 1 in this case), as shown by Fig. 7(b).

To further validate the threshold selection criterion, we exploited the availability of
two scanning runs for each subject. Since we expect (a priori) that the ECs estimated
from each of the two runs should be similar, we can evaluate if the chosen threshold
guarantees such an agreement. To this purpose, we computed the so-called Within
Subject Similarity (WSS), that is, the PearsonCC between the ECs inferred from the
two data runs of the same subject. This quantity is shown in Fig. 7(c) as function of
the thresholding. The results support our choice (i.e., 0.01), because larger values lead
to a reduced similarity between the ECs inferred for the same subject.
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(a) Root Mean Squared Error.

(b) Accuracy. (c) Precision.

(d) Sensitivity. (e) Specificity.

Figure 4: Synthetic data with 66 brain regions (nodes) and randomly drawn connectivity matrix (SNR=3,
TR=2s). Performance metrics over 20 MC runs (mean ± standard deviation) are shown for our sparse
DCM as well as for the compared methods.
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(a) Estimated EC. (b) Estimated Haemodynamic Response.
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(c) Estimated FC.
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(d) Empirical FC.

Figure 5: Single subject analysis (Subject 17, data from Run 2). (a) Estimated Effective Connectivity
(EC). (b) Estimated haemodynamic responses for each of the 66 BOLD time-series (i.e., brain regions)
and the corresponding mean (black solid line). (c) Functional Connectivity reconstructed from the
subject’s estimated EC shown in panel (a). (d) Empirical Functional Connectivity.
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Figure 6: Blue dots: Pearson correlation coefficient (PearsonCC) between empirical FCs of Run 2 data

(FC2) and the functional connectivity F̂C2 reconstructed from the ECs estimated using the same data
(see Eq. 17). Red diamonds: PearsonCC between empirical FCs of Run 1 data (FC1) and the functional

connectivity F̂C2 reconstructed from the ECs estimated using Run 2 data. Black squares: PearsonCC
between empirical FCs of Run 1 data (FC1) and empirical FCs of Run 2 data (FC2). Horizontal lines:
Corresponding average values across the entire sample of subjects.

3.3.3. Population Study: Effective Connectivity

Using the optimal threshold value identified in the previous section, we now proceed
to (i) assess the stability of the connections across the entire sample of subjects, and (ii)
briefly discuss the structure of the resulting population-level EC matrix.

We performed a one-sample t-test with FDR (= 0.05) correction on the ECs of the
22 subjects. The results for the two data runs are reported respectively in Figs. 8(a)
and 8(b). Black and red entries denote those links for which the null hypothesis (corre-
sponding to the absence of the link) was rejected at a significance level α = 0.05. Brain
regions are ordered according to a left-right subdivision: black and red squares respec-
tively denote intra- and inter-hemispherical connections. The same results are reported
in Fig. S7 where brain regions are grouped according to a functional atlas.

Inspection of the EC matrices suggests good agreement between runs, which is
confirmed by a correlation of 0.82. Note that, intra-hemispherical connections (black
squares in Fig. 8(a)) are much more frequent than inter-hemispherical ones (red squares
in Fig. 8(a)). Most of the latter are actually connecting the same region in the two
hemispheres (notice the red diagonals appearing in the upper right and lower left sides
of Figs. 8(a)-8(b)). Most notably, the EC results reveal some directed connections that
are stable either in the two hemispheres and in the two data runs. Among them, there
are the links from the paracentral lobule (PARC) to the postcentral gyrus (PSTC)
and to the precentral gyrus (PREC), i.e. between regions of the somatosensory-motor
network, as well as to the posterior cingulate cortex (PC), suggesting a link between
somatosensory-motor and default-mode networks. Moreover, we should also note the
links between the auditory and the integration regions [44], i.e. those from the supe-
rior temporal cortex (ST) to the supramarginal gyrus (SMAR) and from the superior
parietal cortex (SP) to SMAR. There seems also to be a strong relationship among the
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(a) Pearson correlation coefficient between the FC
reconstructed from the EC estimated from Run 2
data (F̂C2) and the empirical FC of Run 2 data
(FC2).

(b) Pearson correlation coefficient between the FC
reconstructed from the EC estimated from Run 2
data (F̂C2) and the empirical FC of Run 1 data
(FC1).

(c) Within Subject Similarity (WSS), measured in
terms of Pearson correlation coefficient between
ECs estimated from Run 1 data and Run 2 data.

Figure 7: Impact of EC thresholding on the quality of FC reconstruction and on the stability of EC
estimates across fMRI runs for the entire sample of subjects (N=22). All metrics are shown as a function
of EC threshold value.

.
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(a) t-test on ECs - Run 1.
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(b) t-test on ECs - Run 2.

Figure 8: Population Analysis. One-sample t-test (p-value< 0.05 FDR corrected) over ECs estimated
using data from Run 1 (panel (a)) or Run 2 (panel (b)). The null hypothesis is rejected for colored
entries (black and red squares respectively denote intra-emispheric and inter-hemispheric connections).

pars orbitalis (PORB), the pars opercularis (POPE), the pars triangularis (PTRI) and
the rostral anterior cingulate cortex (RMF): PTRI is influenced by POPE, PORB and
RMF. Analogously, RMF is conditioned by POPE, PTRI and PORB. Finally, PTRI
affects POPE and PORB. A more in-depth network analysis is provided in the next
Section.

3.3.4. Population Study: Network Analysis

We conducted a graph theoretical analysis of the effective connectivity networks
estimated using the dataset described in Sec. 2.5. Some of the most popular network
measures [58, 5] were computed for each subject. These are summarized in Appendix
D. For each network measure, nodes were sorted in decreasing order with respect to the
chosen metric. We then determined the number of subjects in which a certain node was
in the top 20% of the corresponding ranking. The same analysis was performed on the
functional connectivity data. The aim of this set of analyses was threefold: first, to assess
which brain regions play a relevant role within the effective connectivity graph; second,
to evaluate the consistency between the measures computed for the graphs estimated
from the two data runs; and third, to compare effective and functional connectivity
networks.

Considering EC networks, we notice that the superior frontal cortex (SF) shows a
high in-strength value (see Fig. 9(a)), suggesting that executive functions play a key
role in the resting-state network. In particular, this suggests that SF is prone to be
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(b) EC Out-Strength.
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(c) EC Clustering Coefficient.
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Figure 9: Number of subjects in which the weighted strength (or clustering coefficient) of a certain
node is in the top 20%. (a)-(c) refer to the effective connectivity graph; (d)-(e) refer to the functional
connectivity graph.
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controllable by other regions, but has a weaker ability to control other areas. This is
confirmed by Fig. S9(a), which refers to centrality and, to a minor extent, by Fig. 9(b),
which instead considers out-strength. Moreover, the in- and out-strength of the SF node
seem to be asymmetric in the two hemispheres, with the right one typically having a
larger strength. This asymmetry is also evident when looking at the EC betweenness
centrality. Finally, the asymmetry of the SF node can be detected in the FC strength
(Fig. S8(a) and 9(d)). Other cases of asymmetry between the two hemispheres involve the
precuneus (PCUN) and the pars opercularis (POPE), which appear to be more influential
in the right hemisphere, according to Fig. 9(a), and the lateral occipital cortex (LOCC).
The latter behaves differently in terms of both in-strength and betweenness centrality.
Other significant nodes in terms of in-strength (Fig. 9(a)) and out-strength (Fig. 9(b))
are the superior parietal cortex (SP) and the lingual gyrus (LING). Not surprisingly,
Figs. 9(a)-9(b) and Fig. 9(d) show a significant agreement between the nodes strengths
of the effective and functional graphs.

Next, segregation is analyzed using the weighted clustering coefficient, displayed in
Fig. 9(c). The cuneus (CUN) and the pericalcarine cortex (PCAL) seem relevant in
segregation. A low out-degree participation coefficient and a high within-module z-score
in a consistent portion of the population confirm this role. A similar conclusion can
be drawn for the rostral anterior cingulate cortex (RAC). At a glance, the 3D brain
plots in Figs. 9(c) and 9(e) show a clear difference between the effective and functional
networks in terms of clustering coefficient: while in the functional graph the posterior
brain regions are typically part of small clusters, in the effective graph this property seems
to characterize only the pericalcarine cortex (PCAL) and the cuneus (CUN). Moreover,
comparing Figs. 9(c) and S8(b), we can notice that the supramarginal gyrus (SMAR),
the superior temporal, parietal and frontal cortex (ST,SP,SF) often tend to have small
clustering coefficient. Accordingly, they seem to be associated with low local efficiency
of information transfer for specialized processing (functional segregation). An opposite
situation is observed for the pericalcarine cortex (PCAL) and the cuneus (CUN), which
belong to the visual network.

The weighted participation coefficient and the weighted within-module z-score (Figs.
S10(a), S11(b)) show that the posterior cingulate cortex (PC), the superior parietal cor-
tex (SP) and the left middle temporal cortex (MT) are characterized by a high par-
ticipation coefficient and a low within-module z-score in a significant fraction of the
population, thereby facilitating integration in the effective connectivity network. Analo-
gous properties are observed for the parahippocampal cortex (PARH) in the functional
graph (compare Figs. S10(c), S11(c)).

We conclude our network analysis studying the directionality of EC graphs. In
particular, sources and sinks are revealed computing the difference between the absolute
in- and out-strength. Boxplots of the latter quantities are reported in Fig. 10. Several
regions can be classified as sources in both hemispheres, such as the posterior cingulate
cortex (PC), the pars orbitalis (PORB), the parahippocampal cortex (PARH), the caudal
anterior cingulate cortex (CAC) and the bank of the superior temporal sulcus (BSTS).
On the other hand, only the superior frontal cortex (SF) seems to play a relevant sink
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Figure 10: Asymmetry in the effective connectivity network. Each boxplot shows the difference between
the absolute in- and out-strength for a specific brain region.

role. Some regions also show a different behavior in the two hemispheres: for instance,
the left supramarginalgyrus (SMAR) mainly shows to be a source, while in the right
hemisphere its function appears more variable.

3.3.5. Population Study: Algorithm Initialization

The impact of different initializations of our algorithm (see Sec. 2.3 and Appendix
B) is now empirically evaluated. In particular two possible initializations of effective
connectivity matrix A are considered. When no a priori information is available, a
simple choice would be A(0) = −In6. On the other hand, if some prior knowledge on
the effective connectivity is available, this could be exploited, e.g. setting A(0) to some
“average” network.

These two initialization strategies for Algorithm 1 were compared using the empirical
dataset illustrated in Sec. 2.5. The results of this study are reported in Fig. 11, where
the two strategies are respectively denoted with “-I” and “Avg”. To implement the
latter we followed a “leave-one-out strategy”: for each subject we set A(0) equal to the
average of the ECs estimated from the remaining subjects in the dataset. The top row in
Fig. 11 evaluates the impact of the two initializations directly on EC, while the bottom
row focuses on the resulting model FC (see Eq. (17)). Specifically, Fig. 11(a) shows
the PearsonCCs between the ECs returned by the two strategies over the population,
while Fig. 11(d) contains the same comparison performed on the model FCs. Despite
a moderate agreement between the estimated ECs, there is a very high consistency

6The results illustrated in the previous sections were achieved by means of this initialization.
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(a) (b) (c)

(d) (e) (f)

Figure 11: Impact of Effective Connectivity initialization on the estimation algorithm: comparison
between initializing with the identity matrix (-I) and with the average of the ECs estimated from other
subjects (Avg). (a) Pearson correlation coefficient (PearsonCC) between ECs estimated from the two
initializations. (b) Within Subject Similarity. (c) Between Subject Similarity. (d) PearsonCC between
the FCs reconstructed from the ECs estimated from the two initializations. (e) PearsonCC between
empirical FCs and the FCs reconstructed from the ECs estimated using the same data run. (f) PearsonCC
between empirical FCs and the FCs reconstructed from the ECs estimated using the other data run.
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between the FCs. This finding is confirmed by the PearsonCC between the model FCs
and the empirical ones, respectively computed on the estimation BOLD time-series and
on a new data run (Figs. 11(e)-11(f)). It is therefore apparent that the initialization of
A does not affect the performance in terms of functional connectivity. Nonetheless, the
initialization strategy does affect the estimated effective connectivity itself: depending
on the starting point, the EM algorithm could converge to different local minima, giving
rise to the discrepancies that can be observed in Fig. 11(a). Not surprisingly, exploiting
the a-priori information to initialize the algorithm (“Avg”) favours similarity among the
inferred ECs. This behaviour is shown in Figs. 11(b)-11(c) which respectively report the
within-subject and between-subject similarity, measured in terms of Pearson correlation
coefficient between the inferred ECs.

We conducted the same analysis reported in Sec. 3.3.4 on the effective connectivity
networks returned using the initialization denoted with “Avg”. The results are reported
in Fig. S12. There is a significant agreement on the in-strength, out-strength and cluster-
ing coefficient. The increased between-subject similarity observed in Fig. 11(c) achieved
using “Avg” is also revealed in the bar plots in Fig. S12(a): compared to Fig. 9(a), fewer
nodes have a large strength value across subjects, thus reflecting a reduced variability
within the population. This trend is less apparent in Figs. S12(b) and S12(c). Finally,
the results returned by the two initialization strategies significantly agree in terms of
clustering coefficient (compare Figs. 9(c) and S12(c)), while some discrepancies can be
observed when evaluating the nodes out-strength (compare Figs. 9(b) and S12(b)).

Concerning the remaining parameters in θ (see Eq. (16)), as well as the hyper-
parameters γ (see the discussion in Sec. 2.3), it is fair to say that the choice of initial-
ization has only a marginal (if any) effect. The only exception regards the initialization
of the standard deviation σ of endogenous fluctuation process v(t). To this purpose
we have developed a tailored procedure, which we experimentally verified to be rather
robust (see the description in Appendix B).

4. Discussion

In this work we introduced sparse DCM, a novel method to estimate effective con-
nectivity from resting-state fMRI data. Our method stands out against state-of-the-art
contributions thanks to its ability to infer whole-brain graphs comprising tens of regions
(66 in the experiments reported here). This was made possible by the use of a linearized
model for haemodynamics and of a sparsity inducing mechanism, which automatically
prunes irrelevant connections. In this way, contrary to most existing techniques, there is
no need to perform a selection of candidate network structures that typically also relies
on the information about structural connectivity.

Key steps underlying our approach are the discretization and statistical linearisa-
tion of the haemodynamic model [6, 28, 76]. The latter have allowed to transform the
non-linear continuous time DCM into a discrete-time linear state space model. The
linearized haemodynamic response accounts for empirical priors available in the litera-
ture for physiological parameters which define the nonlinear model in Eqs. (4)-(8). We
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then developed an EM-like algorithm to estimate this linear generative model and in
particular the effective connectivity matrix.

We demonstrated the face validity of the novel method by means of numerical ex-
periments performed on two synthetic scenarios, consisting of 7 and 66 regions (nodes),
respectively. Sparse DCM was compared to several state-of-the-art methods, including
spectral DCM [26, 53, 54], Multivariate Granger Causality (MVGC) [2], Fast Greedy
Equivalence Search (FGES) [49, 47], Lingam [64], Fast Adjacency Skewness algorithm
(FASK) [61], an optimized version of the CCD routine [56] and the “Peter and Clark”
method [69, 9]. When considering the simpler scenario comprising 7 regions, our method
proved to be superior to the competitors in terms of accuracy and sensitivity, while it
was among the two best-performing approaches when looking at specificity, precision
and RMSE. Among the other methods, MVGC yielded a competitive performance when
considering specificity and precision, but this result turned out to be due to its tendency
to overestimate the sparsity degree of the networks. In extreme cases, which were often
detected in the larger-scale scenario consisting of 66 regions, MVGC returned a com-
pletely disconnected network. This feature makes MVCG unreliable to our purpose. In
the “large” (66 regions) synthetic scenario our method outperformed all the compared
approaches especially in terms of RMSE, accuracy and sensitivity.

Using the 7 regions synthetic scenario we also evaluated the sensitivity of our ap-
proach with respect to the data SNR and to the sampling frequency. As expected,
sensitivity and, to a minor extent, accuracy and precision improve as SNR increases. On
the other hand, the data sampling time seemed to have minor impact on the performance
of sparse DCM. We envisage that future advances in the technology of fMRI scanners
would, on the one hand, increase the SNR levels in the measured BOLD time-series and,
on the other hand, increase the image acquisition frequency. Some developments in this
sense have already been achieved by exploiting high magnetic field strengths [16], ultra-
fast imaging [77, 86] or by considering the confounds due to magnetic field fluctuations
[4]. According to our study in the synthetic 7 regions setup, we believe that our effective
connectivity estimation method will strongly benefit from these technological advances.

The proposed algorithm was also applied on empirical BOLD time-series measured in
22 healthy adults [44] to infer whole-brain effective connections. Two resting-state fMRI
runs were available for each subject, thereby allowing us to estimate distinct effective
connectivity matrices for each run. These two matrices showed good agreement across
individuals, as measured by the Pearson correlation coefficient. The consistency of the
effective connectivity estimated across runs was also confirmed when looking at the
connections that are found to be stable (i.e., statistically reliable) across individuals.

We also performed a graph-theoretical analysis on the whole-brain effective connec-
tivity graphs estimated from the empirical data. The same study was also conducted on
the undirected FC graphs thus highlighting analogies and discrepancies between effective
and functional networks. We believe that this preliminary investigation might serve as
a possible pipeline for future studies focusing on the brain’s functional organization and
on the pattern of directed interactions. However, we warn the reader that the graph
measures computed in this paper should be taken with great caution.
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We anticipate that the availability of an inference algorithm for whole-brain effective
connectivity will serve as seed for stimulating further applications of graph theory to
directed brain networks, which represents a largely unexplored area of computational
neuroscience.

We emphasize that effective connectivity models, differently from functional and
structural networks, also encode directionality in the connection. Our results suggest
that directed connections play a key role in the evaluation of the small-word properties
of the brain. Different values of the clustering coefficient can change the importance of
the regions when functional segregation processes are considered, while different path
length measures could indicate a different vision of the functional integration properties
of the regions in rapidly combining specialized information. Thus, knowledge about
the directionality of the links between brain regions could give an additional value to
the interpretation of how brain networks are organized and how they generate complex
dynamics. Moreover, the recent introduction of control theory methods into neuroscience
is perfectly suited to the case of directed networks [40] but it remains highly controversial
for undirected networks such as connectomes generated from diffusion imaging data (see
[79] for a lively debate).

The empirical dataset was also exploited to investigate the impact of different ini-
tialization strategies for the sparse DCM algorithm. In particular, we discussed how
previously estimated effective connectivity profiles could be used to initialize the esti-
mation procedure. The exploitation of this prior information can, on the one hand,
significantly reduce the computational effort required by the estimation routine and,
on the other hand, increase both the within- and between-subject similarity of the in-
ferred effective connectivity matrices. These findings appear particularly valuable in
prospective clinical applications when, for instance, a new patient has to be screened
and effective connectivity patterns from other patients (with a similar clinical profile)
are already available.

Concerning the related literature, our work can be considered part of a restricted
number of contributions dealing with the inference of whole-brain effective connectivity
from resting-state fMRI data. These include the spectral DCM approach proposed by
[54], where principal components of the functional connectivity were exploited to define
the prior covariance assigned to the effective connectivity matrix, and in turn to constrain
the number of DCM parameters to be estimated. This allowed to invert DCMs consist-
ing of 36 regions. However, the required computational effort remained significant, thus
making the application to larger DCMs still questionable. The DCM framework was
also recently developed in order to deal with whole-brain effective connectivity estima-
tion from task-based fMRI data [18]. The procedure, called regression-DCM, was applied
to a network comprising up to 104 nodes. It also exploited a sparsity inducing prior on
effective connections tuned by free energy minimization. However, differently from our
approach, the haemodynamic response was held fixed, thus not accounting for region-
and subject-specific variations of the mapping between neural activity and BOLD signal
[35, 1]. We regard this as a major limitation of regression-DCM, making it possibly very
sensitive in applications on atypical brains (e.g. post stroke) where the haemodynamic
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response may be severely altered in lesioned areas. Finally, though regression-DCM
could potentially deal with resting-state data, it does not explicitly account for the en-
dogenous fluctuations that are assumed to drive neural activity at rest, thus making it
not directly applicable to the estimation of resting-state effective connectivity. Nonethe-
less, a comparison between regression-DCM and our inference procedure based on a
linear DCM would help in assessing the impact of both haemodynamic variability and
of endogenous fluctuations modelling. Outside the DCM framework, models that at-
tempt to establish Granger-type causality directly on observed BOLD signals have been
developed. For instance, [32] encoded effective connectivity in an Ornstein-Uhlenbeck
model and estimated effective connections by fitting the model stationary covariances to
the empirical ones computed from resting-state fMRI observations. Despite being very
computationally efficient, this procedure does not include an haemodynamic model and
has to be provided with a prior structure for the effective connectivity network (e.g.,
using a structural connectivity matrix). Nevertheless, this approach has been successful
in retrieving signatures for subject identification [42] and in task recognition [31]. We
believe that a comparison between this technique and our inversion scheme would reveal
whether haemodynamic modelling is relevant in the context of effective connectivity or
might be neglected. Whole-brain estimates can also be obtained by resorting to a class
of model-free methods, typically referred to as “Bayesian Nets” [3]. These approaches
include the “Peter and Clark” algorithm, the Cyclic Causal Discovery procedure (CCD),
Greedy Equivalence Search (GES) and fast GES (FGES). Even if these methods are very
fast, they typically return only an equivalence class of graphs, whose members can be
distinguished only using further assumptions. Nonetheless, FGES was recently applied
to all the cortical voxels in a resting-state fMRI scan (around 51000 voxels) [47]. [15]
used FGES as a preliminary step to infer the set of candidate structures and exploited
it to subsequently derive subject-specific networks. In this case, a comprehensive com-
parison between these model-free techniques and our approach would provide insights
on the importance of modeling when dealing with brain directed interactions. We plan
to conduct this and the aforementioned comparisons in a future contribution.

In addition to the detailed comparisons with other state-of-the-art techniques, future
developments of sparse DCM include a study about the modelling of brain endogenous
fluctuations that are supposed to drive the neural activity at rest. Despite these are
typically assumed to be scale-free processes [20, 72, 65], our model considered them as
Gaussian white noise. A preliminary investigation on the plausibility of this assump-
tion was already conducted in a recent work [46], where also first-order autoregressive
models for endogenous fluctuations were considered. However, we believe that a more
in-depth analysis should be conducted, considering larger datasets and more complex
autoregressive models.

The ultimate goal of this work would regard clinical applications and, in particular,
the possibility to detect individual differences in the effective connectivity profiles of
patients that are predictive of the clinical outcomes. In future contributions we plan
to further analyze the plausibility of the linear model and, subsequently, to apply our
estimation procedure to fMRI data measured in neurological subjects in order to char-
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acterize the discrepancies between healthy and damaged brains.

Acknowledgments

Part of this work has been supported by the University of Padova through the Project
BIRD162411/16 “Statistical learning methods for estimating the effective connectivity
of human brain networks”.

We would like to acknowledge the work [18] which was for us a source of inspira-
tion. The authors would also like to thank the anonymous reviewers for many insightful
comments and suggestions which have helped us to improve the paper.

Appendix A: Statistical Linearisation of the haemodynamic response

To derive the linear model of the haemodynamic response, we first compute a popu-
lation of typical responses generated by the non-linear model (4)-(8). Then, we define gi
as a linear combination of their empirical mean and of the first p principal components
of their sample covariance matrix, that is hi = Hαi, i = 1, ..., n. While the coefficients
αi ∈ Rp+1 have to be estimated from the given fMRI data, the matrix H is constructed
through the following steps:

1. Sample θ
(j)
h , j = 1, ..., Ns from the empirical Gaussian distributions given in Table

1 of the seminal work [25].

2. For each θ
(j)
h compute, with some abuse of terminology, the impulse response of

the non-linear model (4)-(8), i.e. the output (say b(k)) when the input x(k) = δ(k)
and δ(k) is the Kronecker delta function. Let b(j) be the corresponding output
sampled at rate 1/TR and truncated at length s.

3. Compute the empirical mean b̄ = 1
Ns

∑Ns
j=1 b

(j).

4. Compute the empirical covariance matrix Σ̄b ∈ Rs×s:

Σ̄b =
1

Ns

Ns∑
j=1

(b(j) − b̄)(b(j) − b̄)>. (A.30)

5. Compute the eigenvalue decomposition of Σ̄b, Σ̄b = USU> , where S := diag(s1, ..., ss)
and U := [u1 · · · us].

6. Define H as H := [b̄ u1 u2 · · · up] where p << s.

7. Model b as hi = Hαi.

Exploiting the fact that the empirical covariance Σ̄b is close to be low rank, with only
a small number (p) of significant singular values {sj}pj=1, the coefficient vectors αi are
assigned the Gaussian prior

p(αi) ∼ N (µα,Σα) µα := [1 0 · · · 0]> Σα := diag(ε, s1, ..., sp) i = 1, ..., n

so that the hi’s match the empirical statistics b̄ and Σ̄b; ε is a small positive con-
stant to guarantee the invertibility of Σα. Clearly, the final prior for hi will be hi ∼
N (b̄, HΣαH

>).
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Appendix B: EM algorithm

The model parameters in (12) are estimated using the EM algorithm detailed in
Algorithm 1 below. The inputs to this algorithm are the fMRI data {y(k)}Nk=1 and
the prior for the haemodynamic impulse responses hi, that is H, µα and Σα (see the
discussion in Appendix A). An initial guess for the parameters θ has also to be provided.
The latter aspect has been thoroughly discussed in Section 3.3.5.

More specifically, we initialize the connectivity matrix A as A(0) = −In and set

h
(0)
i = b̄, i = 1, ..., n (the empirical mean from the prior). An initial value for the

variance σ2 of the endogenous fluctuations v(t) is chosen as follows:

1. deconvolve the fMRI time-series {y(k)}Nk=1 with b̄ in order to have a first estimate
of the neural time-series {x(k)}Nk=1;

2. model each {xi(k)}Nk=1, i = 1, ..., n as an AR(3) model;

3. set σ2 as the sample mean of the estimated noise variance of the n AR models
estimated at step 2.

Finally, the variances λ2
i , i = 1, .., n, of the measurement noise e(k) are initialized at one

tenth of the empirical variance of the corresponding BOLD time-series {yi(k)}Nk=1.

The hyper-parameters {γ(0)
i }n

2

i=1 are also assigned a starting value, according to any a-
priori knowledge available on the effective connectivity network. For instance, structural
connectivity can be exploited at this stage, by setting to non-zero the γi’s corresponding
to structural links and to a small quantity (e.g. ε ≈ 10−6) all the others. If no a-priori

knowledge is available, the same value can be assigned to all {γ(0)
i }n

2

i=1.
After the initialization, each iteration of Algorithm 1 consists in the application of the
RTS smoother (whose routine is reported in Algorithm 2) to compute the function
Q(θ, θ(l)), which is then maximized to update the parameter estimate θ(l+1) (Step 4
of Algorithm 1). The objective function also includes the priors for A and {αi}ni=1

(which shape the haemodynamic responses {hi}ni=1). Note that the shorthand notation
a := vec(A>) is used. The new estimates σ(l+1) and A(l+1) are then used at Step 5

to update the covariance matrix Q(l+1) and in turn the hyper-parameters {γ(l+1)
i }n2

i=1

at Step 6. The details about the derivation of the update equation are provided in
Appendix C .

Appendix C: Iterative Reweighted Procedure for Hyperparameters Update

Step 6 of Algorithm 1 updates the hyper-parameters {γi}n2

i=1 of the prior for the con-
nectivity matrix A, i.e. a ∼ N (0, diag(γ1, ..., γn2)), adapting the reweighted procedure
proposed by [85] for linear regression models of the form

x = Φa+ w

where a is to be estimated from the noisy observations x, while Φ is the regressors matrix
and w is the noise vector.
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Algorithm 1 Estimation of parameters θ through EM

Inputs: {y(k)}Nk=1, H, µα, Σα

Initialization: Initialize θ(0) and {γ(0)
i }n

2

i=1, set l = 0
1: repeat
2: Apply Algorithm 2 to get x̂s(k), Ps(k), G(k), k = 1, ..., N
3: Compute Q(θ, θ(l)) using Eq. (27)
4: θ(l+1) = arg maxθ∈Ω Q(θ, θ(l))

5: Q(l+1) = σ(l+1)2
∫ TR

0 eA
(l+1)τeA

(l+1)>τdτ

6: γ
(l+1)
i = −(γ

(l)
i )2 φ>i (ΦΓ(l)Φ>+Q(l+1)⊗ IN )−1φi + (a

(l+1)
i )2 +γ

(l)
i , i = 1, ..., n2

7: l = l + 1
8: until ‖A(l) −A(l−1)‖F /‖A(l)‖F is sufficiently small

Outputs: θ(l)

Algorithm 2 RTS Smoother

Inputs: {y(k)}Nk=1; A,H in Eq. (13), Q and R in Eqs. (14), (15).
Forward Recursion

1: Initialize: x̂(0) = 0, P(0) = Ins
2: for k = 1, ..., N do
3: x̂−(k) = Ax̂(k − 1)
4: P−(k) = AP(k − 1)A> + Q
5: S(k) = HP−(k)H> +R
6: K(k) = P−(k)H>S−1(k)
7: x̂(k) = x̂−(k) +K(k)[y(k)−Hx̂−(k)]
8: P(k) = P−(k)−K(k)S(k)K>(k)

Backward recursion
9: Initialize: x̂s(N) = x̂(N), Ps(N) = P(N)

10: for k = N − 1, ..., 0 do
11: x̂−(k + 1) = Ax̂(k)
12: P−(k + 1) = AP(k)A> + Q
13: G(k) = P(k)A>[P−(k + 1)]−1

14: x̂s(k) = x̂(k) + G(k)[x̂s(k + 1)− x̂−(k + 1)]
15: Ps(k) = P(k) + G(k)[Ps(k + 1)−P−(k + 1)]G>(k)

Outputs: x̂s(k), Ps(k), G(k), k = 1, ..., N
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In our setup this model is obtained after linearizing the original state update Eq. (9)
which is non-linear as a function of a = vec(A>). Namely, define the matrices

X+ :=

 x>(2)
...

x>(N)

 , X :=

 x>(1)
...

x>(N − 1)

 , W :=

 w>(1)
...

w>(N − 1)

 . (C.31)

Eq. (9) can be rewritten in the non-linear regression form

X+ = XeA
>TR +W. (C.32)

Then, using the approximation eA
>TR ' I +A>TR, we obtain:

∆X = XA>TR +W (C.33)

where ∆X = X+−X. Using the vectorization operator, we can rewrite (C.33) in linear
regression form,

x = Φa+ w (C.34)

where x := vec(∆X), Φ = [φ1 · · · φn2 ] := (I ⊗ X)TR, a := vec(A>), w := vec(W ).
Therefore, we can update the hyper-parameters {γi}n2

i=1 as suggested in [85], see Step 6
of Algorithm 1.

Appendix D: Network Measures of Brain Connectivity

The estimated effective connectivity A can be interpreted as the weighted adjacency
matrix of a directed graph between different brain regions, where each link corresponds
to a directed influence of one area on another one. Specifically, the set of vertexes (or
nodes) V coincides with the set of monitored brain areas (|V| = n), while we say that
region i is influenced by region j if the (i, j)-th entry of matrix A, say Aij , is non-zero.
To the purpose of computing network indexes we define the matrix E := A − diag(A),
i.e. E coincides with A on the off-diagonal entries and has zeros on the main diagonal.
We also define the binary adjacency matrix Ē, obtained from E by setting to 1 its
non-zero entries. We evaluate the estimated graph in terms of three types of metrics,
which quantify the degree of centrality of each node within the network (measures of
centrality), as well as the presence of clusters (measures of segregation) and the ease
with which brain regions communicate (measures of integration).
The most common centrality measure is the so-called node weighted degree: since we
deal with a directed graph, we can distinguish between the weighted in-degree dini and
the weighted out-degree douti which sum the weights of the links coming in and out from
a certain node, respectively:

dini =
∑
j∈V
|Eij |, douti =

∑
j∈V
|Eji|. (D.35)
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These quantities are also known as in-strength (dini ) and out-strength (douti ). As a second
centrality measure we consider the weighted betweenness centrality, i.e. the fraction of
shortest paths in the network which pass through a given node. Namely, for vertex i it
is defined as

bi =
1

(n− 1)(n− 2)

∑
h,j∈V

h6=j,h6=i,j 6=i

ρhj(i)

ρhj
(D.36)

where ρhj is the number of shortest paths between nodes h and j, while ρhj(i) is the
number of shortest paths between h and j which pass through i. The shortest path
length between vertexes i and j is defined as

lij =
∑

Euv∈Pi→j

Ẽuv, Ẽuv =
1

Euv
(D.37)

where Pi→j denotes the directed shortest path from i to j. According to Eq. (D.37),
stronger connections are interpreted as shorter distances.
Other centrality metrics are the within-module degree z-score and the participation co-
efficient, which are based on a preceding partition of the network into a set of non-
overlapping modules (or clusters) M . The weighted within-module in-degree z-score of
node i is defined as

zini =
dini (mi)− µdin(mi)

σdin(mi)
(D.38)

where mi is the module containing node i and dini (mi) is the weighted within-module
in-degree of node i, i.e. the weighted sum of links entering i from vertexes in mod-
ule mi. µdin(mi) and σdin(mi) are respectively the mean and the standard devia-
tion of the within-module mi weighted in-degree distribution. The weighted within-
module out-degree z-score is analogously defined, replacing dini (mi), µdin(mi), σdin(mi)
with douti (mi), µdout(mi), σdout(mi).
The weighted in-degree participation coefficient is given by

pcini = 1−
∑
m∈M

(
dini (m)

dini

)2

(D.39)

where dini (m) is the weighted sum of the links entering node i from all vertexes in module
m. The definition of the out-degree participation coefficient follows the same principle.
Combined together, the within-module degree z -score and the participation coefficient
provide information about the role of a certain node in facilitating network segregation
or integration. Specifically, a node with high within-module degree z -score and low
participation coefficient is a so-called provincial hub, that is, it favors segregation. On
the other hand, a vertex with low within-module degree z -score and high participation
coefficient is a connector hub, meaning that it encourages integration. In addition to the
combined evaluation of these two metrics, we consider a further measure of segregation,
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known as weighted clustering coefficient, i.e. the weighted fraction of triangles around a
node. Specifically, it is defined as

cci =

[(
E[ 1

3
] + (E>)[ 1

3
]
)3
]
ii

2
[
d̄toti (d̄toti − 1)− 2

(
Ēii
)2] (D.40)

where the notation E[α] denotes the element wise exponentiation of matrix E, i.e.[
E[α]

]
ij

= Eαij , and d̄toti = d̄ini + d̄outi and d̄ini =
∑

j∈V Ēij , d̄
out
i =

∑
j∈V Ēji.
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[89] C. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag, and J. Kurths. Hierarchical or-
ganization unveiled by functional connectivity in complex brain networks. Physical
review letters, 97(23):238103, 2006.

[90] M. Zorzi and R. Sepulchre. AR identification of latent-variable graphical models.
IEEE Transactions on Automatic Control, 61(9):2327–2340, 2016.

47


