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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

A multivariable empirical model, based on an artificial neural network (ANN), was developed to predict flow curves of ZAM100 magnesium 
alloy sheets as a function of process parameters in hot forming conditions. Tensile tests were performed in a wide range of temperature and strain 
rate to collect the dataset used in the training and testing stages of the network. The generalization ability of the model was tested using both the 
leave-one-out cross-validation method and flow curves not belonging to the training set. The excellent fitting between experimental and predicted 
curves was proven the very good predictive capability of the model. 
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1. Introduction 

The current legislation on emissions into the atmosphere 
forces the transport industry, such as automotive and aerospace, 
to adopt solutions aimed at reducing the vehicle weight. Such 
aim can be pursued using lightweight materials. To this 
purpose, magnesium alloys have shown high potential for 
lightweight structural parts owing to their high specific strength 
[1, 2]. Unfortunately, such alloys cannot be cold formed due to 
their hexagonal close-packed crystal structure. The attitude of 
magnesium alloys to be subjected plastic deformation strongly 
increases with temperature owing to the activation of additional 
slip planes, such as prismatic and pyramidal. In previous works 
[3-6], the authors investigated AZ31 Mg alloy and showed that 
the attitude to be formed without failure increases and flow 
stress decreases with rising deformation temperature. Recently, 
similar studies in hot forming condition concerned the 
innovative ZAM100 magnesium alloy [7]. It was observed that, 

 
for a given temperature and strain rate, ZAM100 exhibits flow 
stress values lower than those of AZ31 alloy. Such different 
behavior, attributed to the lower content of alloying elements of 
ZAM100 with respect to AZ31, is very attractive because 
allows to perform hot forming processes with reduced working 
loads. 

In designing hot forming processes, the knowledge of the 
relationship among flow stress and strain, strain rate, 
temperature and microstructure is very useful, even though the 
large number of experiments required can be very expensive 
and time consuming [8]. For such reasons, a model able to 
predict the flow curve as a function of the process parameters 
is required. Among the different approaches used, the analytical 
one can be very accurate even if modelling of the complex 
relationships taking place between the input and output 
parameters can be difficult [9]. An approach that allows to 
overcome such difficulty is based on the empirical non-
analytical models. To this purpose, the artificial neural 
networks (ANN), since are able to solve a problem by learning 
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rather than by a specific programming based on well defined 
rules, can be very useful [10-13]. The ANNs were widely 
applied in several fields of manufacturing processes [14-21]. 
Many researchers also applied ANN to predict the flow curves 
both in a single step [10, 11, 16, 22, 23] and in multistep 
deformation [22, 23] on several materials; however, no work on 
ZAM100 magnesium alloys can be found in the available 
literature. 

In this framework, the present paper aims at modelling the 
equivalent stress - equivalent strain curves of ZAM100 
magnesium alloy sheets, obtained by tensile tests performed at 
different temperatures and strain rates. In particular, an artificial 
neural network-based model was built in order to predict the 
flow stress as a function of strain, strain rate and temperature. 
The model was validated by comparing the experimental and 
predicted flow curves. 

2. Material, experiments and neural network modelling 

2.1 Material 

The material investigated was ZAM100 magnesium alloy, 
supplied in form of 3.1 mm thick sheet, produced by hot 
extrusion. It is an advanced alloy, with low content of alloying 
elements (0.86 Zn, 0.84 Mn, 0.62 Al, 0.1 Ca, 0.07 Sr), 
characterized by higher hot formability as compared to the 
traditional magnesium alloys. 

The extruded sheets were hot rolled at 320°C, using a two-
high mill stand, in order to obtain the desired thickness equal 
to 2.1 mm. Two passes, each of them carried out with a height 
reduction equal to 0.4 mm, were followed by the final one 
performed with a height reduction of 0.2 mm. The sheets were 
water quenched after hot rolling. [7] 

2.2 Experimental procedures 

The equivalent stress (σ) – equivalent strain () curves were 
obtained by means of uniaxial tensile tests carried out in 
extended ranges of temperature and strain rate (Table 1). Such 
tests allowed to collect the dataset used in training the artificial 
neural network and in testing the generalization capability of 
the trained ANN. Samples were obtained by water jet 
machining with the tensile axis parallel to the hot rolling 
direction. The gauge width and length of samples were equal 
to 12 and 23 mm, respectively. A servo-hydraulic testing 
machine, equipped with a resistance furnace, was used to 
tension samples until failure. For each temperature and strain 
rate condition, at least three samples were tension tested. 

2.3 The ANN-based model 

A model based on an artificial neural network was 
developed in order to predict the flow curves as a function of 
the process parameters. To this purpose, a multi-layer feed 
forward ANN was built,  trained  and validated by means of the 
MATLAB® software. The back-propagation training 
algorithm was applied to adjust the weights of connections to 
minimize the error between the predicted and desired output 
[10]. 

Table 1. Experimental conditions of tensile tests carried out on ZAM100 Mg 
alloy 

  𝜺̇𝜺 [s-1] 
  110-3 510-3 110-2 510-2 110-1 

T [°C] 

300 X  X  X 

325    O  

350 X  X  X 

375  O    

400 X  X  X 

X: used in training the ANN 
O: used in testing the ANN 
 
 
 
 
On the basis of previous studies [7], the flow curves of 

ZAM100 were modelled using a six-input network. The input 
parameters were: i) equivalent strain (), ii) equivalent strain 
rate ( 𝜀𝜀̇ ), iii) instantaneous value of temperature (T), iv) 
equivalent strain as logarithmic function (ln), v) equivalent 
strain rate as logarithmic function (ln𝜀𝜀̇) and vi) temperature as 
inverse function (1/T). The network output was the equivalent 
stress (σ). Fig. 1 shows the network architecture consisting of 
an input layer, two hidden layers, with six hidden neurons each, 
and an output layer. The training parameters, defined using a 
trial-and-error procedure with the experimental dataset 
reported in Table 1, are summarized in Table 2. 

The ANN was tested at various stages of training on a 
validation dataset using the early stopping method [24] in order 
to avoid the overfitting. Although such method leads to an 
increase in the computational requirements of the learning 
process, it provides higher levels of generalization. 

 
 
 
 
 

 

Fig. 1 Architecture of the proposed ANN-based model 
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Table 2 Training parameters of the ANN developed to predict the flow curves 
of ZAM100 magnesium alloy 

Network parameter Content 

Network type Feed-forward back propagation 

Training function Levenberg - Marquardt 

Adaption learning 
function 

Gradient descent with momentum 
weight and bias learning function 

Transfer functions for 
hidden layers 

Tangential sigmoid 

Transfer functions for 
output layer 

Linear 

Performance function MSE 

Training epoch  300 

Goal 0.0001 

 
 
 
The generalization capability of the ANN-based model in 

predicting the flow curves was tested using a two-step 
procedure: in the former, the leave-one-out cross-validation 
(LOO-CV) method was applied [25], using the dataset marked 
with the “X” symbol in Table 1, whilst in the latter, the σ- 
curves not included in the training set, obtained under the 
process conditions marked with the “O” symbol, were 
predicted. 

The predictive capability was quantified by means of the 
absolute relative error (ARE) and average the absolute relative 
error (AARE) defined according to the following equations: 

 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 =  
|𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖− 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖|

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖
 ∙ 100             (1) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ 𝐴𝐴𝑅𝑅𝑅𝑅𝑖𝑖

𝑁𝑁
𝑖𝑖=1               (2) 

 
 
where σexp and σpred are the experimental and predicted 
equivalent stresses, respectively, and N is the total number of 
data of each flow curve. 

The correlation coefficient (R) was also taken into account 
in order to evaluate the ANN response in a form of linear 
regression analysis between the ANN output (predictions) and 
the corresponding targets (experimental data).  

3. Results 

3.1 Experimental flow curves 

Typical equivalent stress vs. equivalent strain curves of 
ZAM100 magnesium alloy sheets, obtained by means of 
tension tests carried out at different temperatures and strain 
rates, are shown in Fig.s 2 and 3. The σ value increases with  
until reaching a peak value; then, the flow stress decreases with 

increasing strain until sample failure. The strain effect on flow 
stress is strongest at the lowest temperature and highest strain 
rate investigated (300°C – 0.1 s-1). It becomes ever less marked 
as temperature increases and strain rate decreases; the weakest 
effect is obtained at the highest temperature and lowest strain 
rate (400°C – 0.001 s-1). Finally, the flow stress at 400°C is 
almost independent of strain due to the restoration mechanisms 
operating during deformation [7]. 

 
 
 

 

Fig. 2. Effect of temperature on the equivalent stress-equivalent strain 
curves (𝜀𝜀̇ = 0.1 𝑠𝑠−1) 

 
 
 

 

Fig. 3. Effect of strain rate on the equivalent stress-equivalent strain 
curves (T=350°C) 
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3.2 Predictive capability of the ANN-based model 

The flow curves of ZAM100 were predicted by means of the 
ANN-based model developed according to the architecture 
shown in Fig. 1 and training parameters reported in Table 2. In 
the first step of the procedure used for testing the generalization 
capability of the network, the leave-one-out cross-validation 
methodology was used. To this purpose, Fig. 4 shows the 
comparison between typical experimental and predicted flow 
curves. It appears that, for a given strain rate and temperature, 
the ANN-based model is able to predict both curve shape and 
stress values with absolute relative errors very low; more in 
detail, the model captures both the strain hardening effect 
occurring at the highest strain rate and lowest temperature and 
the softening one taking place at the lowest strain rate and 
highest temperature investigated. It is worth noting that such 
result was obtained without a priori knowledge of the complex 
microstructural mechanisms occurring during hot deformation 
of ZAM100 Mg alloy. The average absolute relative errors 
obtained in the different process conditions using the LOO-CV 
methodology, summarized in Table 3, are indicative of the 
excellent predictive capability of the ANN in modelling flow 
curves. 

 
 
 
 

 

Fig. 4. Comparison between typical experimental and predicted flow 
curves, at different temperatures and strain rates, using the LOO-CV 

methodology, and absolute relative error 

 
 
 
 
 

In the second step of the procedure, the ability of ANN-
based model in capturing the effect of deformation parameters 
on flow curves was evaluated by comparing the experimental 
curves obtained under process conditions not investigated in 
the training data set (Table 1) with the predicted ones (Fig. 5). 
The very low values of the ARE and AARE prove the ability 
of the neural network to capture the influence of strain, strain 
rate and temperature on equivalent stress. Furthermore, by 
plotting the experimental values of the equivalent stress vs. the 
predicted ones (Fig. 6), it can be seen that the correlation 
coefficients (R) are equal to 0.994 as T = 325°C and ε̇ = 0.05 s-

1, and 0.996, as T = 375°C and ε̇ = 0.005 s-1. These results 
confirm the excellent generalization capability of the ANN-
based model. 

The influence of strain rate and temperature is also shown in 
Fig. 7, in which the experimental and predicted peak stress 
values (σp) are compared. Consistently with the previous 
results, the σp values predicted by ANN are almost coincident 
with the experimental ones. Furthermore, the peak stress values 
predicted at 325°C – 0.05 s-1 and 375°C – 0.005 s-1 are in 
excellent agreement with the trend resulting by the analysis of 
the experimental data. 
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Fig. 7. Temperature dependence of the peak stress at different strain rates 
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where n is the stress exponent, Q is the activation energy for 
high-temperature deformation, R is the gas constant, T is the 
absolute temperature, A and α are material parameters. It 
appears that the experimental data provided by the tension tests 
carried out under the strain rate and temperature conditions 
used in the training stage of ANN and marked with the “X” 
symbol in Table 1 quite closely align on a straight line; 
furthermore, the predicted σp values, according to the process 
conditions used in testing the ANN and marked with the “” 
symbol in Table 1, follow the same trend. 

4. Conclusions 

The flow curves of ZAM100 magnesium alloy sheets, under 
hot forming condition, were predicted by means of an artificial 
neural network. The input variables were instantaneous value 
of temperature, equivalent strain, equivalent strain rate, 
temperature as inverse function, equivalent strain as 
logarithmic function and equivalent strain rate as logarithmic 
function, while the network output was the equivalent stress.  
The capability of the ANN-based models in predicting the flow 
curves was evaluated using a two-step procedure based on both 
the leave-one-out cross-validation methodology on the 
utilization of process conditions not included in the training set. 
The absolute relative error, average absolute relative error and 
the correlation coefficient were measured to evaluate the 
generalization capability of the model. The main results can be 
summarized as follows: 

 
 the ANN captures the influence of strain, strain rate and 

temperature on both flow curve shape and stress values, 
without a priori knowledge of the complex microstructural 
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3.2 Predictive capability of the ANN-based model 

The flow curves of ZAM100 were predicted by means of the 
ANN-based model developed according to the architecture 
shown in Fig. 1 and training parameters reported in Table 2. In 
the first step of the procedure used for testing the generalization 
capability of the network, the leave-one-out cross-validation 
methodology was used. To this purpose, Fig. 4 shows the 
comparison between typical experimental and predicted flow 
curves. It appears that, for a given strain rate and temperature, 
the ANN-based model is able to predict both curve shape and 
stress values with absolute relative errors very low; more in 
detail, the model captures both the strain hardening effect 
occurring at the highest strain rate and lowest temperature and 
the softening one taking place at the lowest strain rate and 
highest temperature investigated. It is worth noting that such 
result was obtained without a priori knowledge of the complex 
microstructural mechanisms occurring during hot deformation 
of ZAM100 Mg alloy. The average absolute relative errors 
obtained in the different process conditions using the LOO-CV 
methodology, summarized in Table 3, are indicative of the 
excellent predictive capability of the ANN in modelling flow 
curves. 
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methodology, and absolute relative error 
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function, while the network output was the equivalent stress.  
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mechanisms occurring during hot deformation of ZAM100 
Mg alloy; 

 the low values of the absolute relative error and average 
absolute relative error, and the high correlation coefficients 
have confirmed the excellent generalisation capability of 
the artificial neural network; 

 the predicted peak flow stress values follow the Garofalo’s 
equation obtained by analyzing the experimental ones; 

 the robustness of the ANN allows its effective utilization as 
a prediction tool to study the non-linear phenomena taking 
place during hot deformation. 
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