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ABSTRACT Power consumption and task latency are two crucial issues in edge-cloud computing. This
paper mainly aims to promote the use of clean power in geo-distributed data centers (DCs) in a deregulated
electricity market where customers are allowed to buy power from multiple suppliers, combined with the
guarantee of task latency. To alleviate the conflict between frequent switches of servers and the uncertainty
of task arrivals in DCs, this paper proposes a two-timescale framework consisting of the long-term capacity
planning of geo-distributed DCs and the real-time task dispatching from edge gateways (EGs) to DCs. First,
DCs make long-term plans on the number of active servers aiming at the eco-friendly and delay-aware power
cost minimization, which is formulated as problemP . Specifically, we introduce a convex pollution indicator
function (PIF) to measure the pollution cost of the various types of powers sold by different suppliers, which
can encourage the use of cleaner power and improve power savings. Second, in each sub-slot, each EG
separately optimizes its individual mixed strategies of task dispatching to DCs with the knowledge of the
planned capacities and the real-time queue backlogs of DCs, where a Lyapunov optimization framework
is applied. Finally, we give the corresponding distributed algorithm design. Simulation results reveal that
our method can realize the trade-off between the power cost and the delay cost of requests, and improve the
clean power usage by up to 50%–60% of the total power usage in DCs. Additionally, comparisons with other
schemes show that our approach can provide more stable guarantees of task latency in different situations
of workload density, which benefits from the diverse-timescale optimizations of capacities of DCs and task
routing from EGs to DCs.

INDEX TERMS Distributed task scheduling, edge-cloud system, two-timescale framework, pollution
indicator function, eco-friendly and delay-aware, Lyapunov optimization.

I. INTRODUCTION
With the penetration of edge-cloud computing, the requests
from users are explosively growing and the power consump-
tions in DCs are becoming enormous. On one hand, given
the limitations of system’s computation capacity and users’
latency tolerance, it is of great significance to improve the
efficiency of task scheduling inside the edge-cloud system
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in a situation of increasingly growing requests. On the other
hand, the huge power consumptions of expanding DCs can
not only increase the power cost of service providers, but also
bring about massive carbon emissions along with severe air
pollutions of sulfide and dust. According to [1], the total num-
ber of servers in the geo-distributed data centers of Google,
Microsoft and Akamai were almost 1 million, 200,000 and
70,000 in 2010, respectively, and their corresponding power
costs were on the order of millions of dollars per year.
As reported in [2], the annual power consumption of DCs
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across China had reached up to 160 million MW.h, which
was almost equivalent to the annual generation of the Three
Gorges Dam. It is estimated that just a 1-MW data center
powered by thermal power can cause over 10,000 metric tons
of CO2 emissions annually [3].

We consider a deregulated electricity market throughout
this paper, which has been gradually popularized across the
worldwith the development of energy Internet in recent years,
e.g., in the south of China [4], the state of Texas in the
US [5], several Nordic countries [6], etc. In a deregulated
electricity market, local electricity companies (ECs) can buy
wholesale electricity from different plants and then sell it to
customers. At the same time, customers are allowed to freely
choose and buy power from one or more ECs according to the
price, cleanness and quality of the powers supplied by them.
In this situation, geo-distributed DCs can take advantage of
diversities of price and cleanness of electricity in different
regions to optimize their power uses.

This paper mainly focuses on promoting the use of clean
power in geo-distributed data centers (DCs) in a deregu-
lated electricity market, combined with guarantees on task
latency. A two-timescale framework is proposed, consisting
of long-term capacity planning of geo-distributed DCs and
real-time task dispatching from edge gateways (EGs) to DCs.
To the best of the authors’ knowledge, this is the first time that
the number of active servers and the task scheduling strate-
gies are optimized in diverse timescales, which can not only
alleviate the conflict between frequent switches of servers
and the uncertainty of task arrivals in DCs, but also provide
more stable task latency guarantees in different situations of
workload density, as shown by our simulation results.

A. RELATED WORK
First, we consider the literature about cost-aware task
scheduling in edge-cloud systems. Reference [7] studied
the minimization of power-cost via task scheduling among
geo-distributed DCs by exploiting the spatial diversity of
electricity price, where a boundary constraint of expected
sojourn time in DCs was considered. Reference [8] investi-
gated the temporal task scheduling with strict sojourn latency
restrictions in a DC aiming to reduce the electricity bill
by following the time-varying electricity price, where the
considered DC should make decisions on task admissions
and executions in each discrete time slot according to a
multi-step ahead power cost. Reference [9] considered the
spatial task scheduling among geo-distributed DCs on the
basis of [8]. However, the transmission delay from sources
to DCs was not considered in the literature mentioned above,
which generally depended on the propagation distance, link
bandwidth, traffic density, etc. Reference [10] modeled the
transmission delay as an implicit function of the total task
arrivals to a DC. The authors proposed an HBBF algorithm
to search for the optimal solution by iteratively feeding back
the value of transmission delay associated with the newly
updated task scheduling strategies. Additionally, [11] investi-
gated the offloading route selections and the task scheduling

among fog nodes, and [12] discussed the joint optimization
of link resources in a cloud radio access network (C-RAN),
computation resources in mobile edge cloud (MEC) and task
scheduling strategies between C-RAN and MEC, both of
which applied Lyapunov optimization techniques to design
online algorithms of power-delayed balanced online task
scheduling. All of the above made great contributions on the
cost-aware task scheduling in edge-cloud systems. However,
they only considered electricity price in the power cost
formulation, while clean power uses, power storage and
multi-source power supplies were not mentioned. As stated
in [13], the geo-distributed task scheduling in the case of
static electricity price or the one decoupled from clean power
generations was of nearly no social benefits. In addition,
different from the majority of works on geographical task
scheduling, [13] focused on the joint optimization of power
cost and task latency, instead of the power cost minimization
subject to task latency conditions.

Then, in the area of eco-friendly power usage, [14] pro-
posed a bid mechanism for the colocation of data centers
where equipment, space, and bandwidth were available for
rental, and operators could realize carbon-aware task schedul-
ing by using economic incentives to reshape the tenants’
demand. Reference [15] investigated the balance of power
demands and supplies with the aid of task scheduling among
geographically green DCs powered by fuel cells. References
[16]–[18] assumed that DCs could harvest power from their
private green micro-grids. They proposed online algorithms
to minimize the carbon emission and power cost by con-
trolling the number of active servers, and the amount of
power bought from power grids and collected from micro-
grids. Reference [19] studied the joint scheduling of tasks
and power storage over a time horizon to reduce the power
cost of a DC, considering the temporal diversity of electricity.
Reference [20] assumed that DCs could buy both clean
power and brown power, and optimized the task scheduling
among geo-distributed DCs besides the number of active
servers and the purchase amounts of clean power and brown
power, aiming to realize the trade-off among the request cost
and carbon-inclusive power cost. However, it only simply
modeled the cost of requesting servers as a linear function
of the number of active servers, while ignoring the task
latency experienced by users. Reference [21] studied the
match between DCs and power suppliers in the background
of the deregulated electricity market, which referred to the
optimization of task arrivals to DCs from the perspective of
demand response. All of the literature mentioned above only
roughly considered the total expected task arrivals to DCs in
the considered time slot, while ignoring the detailed process
of task routing from different EGs to DCs, which on the other
hand would be needed to characterize some crucial factors in
practice, such as transmission delay and real time task arrivals
to EGs.

To the best of the authors’ knowledge, only a small
number of papers in the previous literature jointly consid-
ered eco-friendly power usage and efficient task scheduling.
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TABLE 1. Relative comparisons of the proposed scheme with the current state-of-the-art.

Reference [22] focused on a carbon-aware power cost min-
imization problem with sojourn latency constraints of tasks
in geo-distributed DCs. Reference [23] pointed out that large
financial losses were inevitable once the failure of DCs
occurred. To address this issue, it proposed a fault-tolerant
task scheduling scheme from users to geo-distributed DCs,
accounting for the trade-off between carbon-inclusive power
costs and request costs. However, to avoid extreme complex-
ities resulting from the integration of task scheduling and
carbon-aware power usage, they ignored some crucial factors,
such as the transmission delay, power storage, etc.

Finally, it is worth noting that all the above literature
ignored the switch cost of servers in the sense that the
operation timescale of switching servers on or off is the
same with that of task scheduling. To address this issue,
we concentrate our attention on a two-timescale framework
design. Papers [24] and [25] were also interested in this.
They used an extended Lyapunov optimization framework
to investigate the trade-off between power costs and queue
backlogs of DCs, which consisted of operations on two dif-
ferent timescales. Specifically, the number of active servers
and the strategies for task routing were determined in large
time slots, while the CPU frequency was optimized in each
small time slot. However, neither transmission delay nor
clean power usages were covered in [24] and [25]. In this
paper, we determine the capacity provisioning of DCs in large
time slots by jointly optimizing the task latency and power
cost, as shown in problem P . Then, we apply a Lyapunov
optimization framework to optimize EG’s task dispatching
strategies in each small time slot in a distributed manner.
Different from references [24] and [25], we optimize the
number of active servers and the task scheduling strategies on
diverse timescales, and only use the Lyapunov optimization
framework in small time slots to conduct delay-aware task
routing in a distributed manner. In our proposed scheme,
the uses of clean power, power storage and transmission delay
are all considered.

B. OUR CONTRIBUTIONS
Our main objective is to ameliorate the situation of power
consumption and task scheduling in geo-distributed edge-
cloud systems. To this aim, we propose a two-timescale
scheme of eco-friendly powering and delay-aware task

scheduling for edge-cloud systems in a deregulated elec-
tricity market. Specifically, (1) in large time slots, DCs
optimize the number of active servers aiming to realize
the trade-off between task latency and power costs, using
a weighted sum of monetary cost and pollution cost. This
power-latency trade-off is formulated as problem P and
can be efficiently solved by our proposed Sequential Con-
vex Programming (SCP) algorithm. We also introduce a
convex pollution indicator function (PIF) to measure the
pollution of the powers supplied by different ECs, which
can encourage the uses of cleaner power and improve power
savings. (2) In small time slots, called sub-slots, EGs sep-
arately optimize their strategies of task dispatching with
the observation of capacities and queue backlogs of DCs.
A Lyapunov optimization framework is applied for the design
of a distributed task scheduling mechanism. To the best of the
authors’ knowledge, this is the first time the number of active
servers and the task scheduling strategies are optimized on
diverse timescales, which can efficiently alleviate the conflict
between frequent switches of servers and the uncertainty of
task arrivals in DCs. After that, we investigate the distributed
algorithm design for capacity planning of DCs and task
routing. It is worth noting that our scheme is a comprehensive
approach, as shown by the illustrative comparisons of the pro-
posed scheme with the current state-of-the-art summarized
in Table 1.

Our main contributions can be summarized as follows.
• We propose a two-timescale framework for the capac-
ity planning of geo-distributed DCs and task rout-
ing from edge-ends to cloud-ends. Benefiting from
the diverse-timescale optimization of DC capacities
and task routing, our scheme can provide stable and
energy-efficient task latency guarantees.

• We formulate the long-term eco-friendly and delay-
aware capacity planning problem of DCs in a dereg-
ulated electricity market as problem P , and propose
a low-complexity SCP algorithm to find the globally
optimal non-integer solution of problem P .

• We introduce a convex PIF to measure the pollution
cost of powers supplied by different ECs, by which
our proposed strategies can improve the usage of
clean power by up to 50%–60% of the total bought
power in DCs, as well as encourage power savings
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and multiple-source power buying in a deregulated
market.

The rest of this paper is organized as follows. First,
we introduce the system architecture and give a formula-
tion of the two-timescale framework in Section II. Second,
we discuss the solution and the distributed algorithm design
in Section III. Third, we give simulation results about the
performance of our model in Section IV. Finally, we conclude
the paper in SectionV. For clarity, abbreviations and notations
frequently used in this paper are listed in Table 2 and Table 3,
respectively.

TABLE 2. Abbreviations.

II. MODELING AND FORMULATION
A. OVERVIEW OF THE SYSTEM MODEL
We consider an edge-cloud system consisting of I geograph-
ically separate DCs and J EGs, as shown in Fig. 1, where
J � I . EGs are responsible for collecting requests from
users and then dispatching tasks to local edge servers or
distant DCs. Although the computation capacities of DCs
are enormous, the remote distances between cloud-end and
edge-end usually result in large transmission latency. Addi-
tionally, for the purpose of power conservation, we assume
that only some of the servers in DCs are activated according
to the instantaneous workload.

FIGURE 1. Architecture of geo-distributed edge-cloud system.

We regard this edge-cloud system as a time-discrete sys-
tem. To reduce the system power cost and task latency, wewill
develop a two-timescale framework, where DCs make deci-
sions on the number of active servers at the beginning of large
time slots, and then EGs can adjust their task dispatching

TABLE 3. Notations.

strategies in each sub-slots according to the planned available
capacities of DCs and the random request arrivals in real time.
In this paper, we only concentrate on task routing from EGs
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to DCs rather than on the inner scheduling of various tasks in
DCs (such as workflows [26], delay-sensitive tasks, etc.).

Let DCi, i ∈ I, represent the i-th DC, where I =
{1, . . . , I }. All DCs are assumed to be equipped with smart
energy controllers for the coordination of buying power from
the market, charging or discharging batteries, and supplying
power for loads. Specifically, we assume that DCi can buy
power from multiple ECs in a deregulated electricity market.
Let Ni represent the set of candidate ECs for DCi, and qi,n
denote the amount of power bought from the n-th candidate
EC by DCi, where qi,n ≥ 0, n ∈ Ni and |Ni| = Ni. Besides,
we let Qbati > 0 represent the amount of power consumed
to charge batteries, Qbati < 0 represent the power amount
discharged from the batteries, and Qbati = 0 represent that
no power is charged or discharged. Then, the total power that
DCi needs to buy can be calculated by

Qbuyi =

Ni∑
n=1

qi,n = Qconsi + Qbati − E{Qrewi } , (1)

where Qconsi is the power consumption of DCi and E{Qrewi }
is the expected amount of renewable power generated by the
green micro-grid of DCi. Given that the power consumption
of DCs is very large in general, while the discharged power
and generated renewable power are usually limited, we typi-
cally have Qbuyi ≥ 0.
Denote Mi and macti as the number of total servers and

active servers ofDCi in the considered time slot, respectively.
According to [27], the power consumption of DCi can be
approximately calculated as

Qconsi =T×(1+ϕi)(macti sαi +βi), macti ∈ {1, 2, . . . ,Mi},

(2)

where T is the length of one large slot, si and its index α are
parameters related to the CPU frequency,1 βi represents the
basic power consumption of servers, and ϕi > 0 is a constant
to indicate the fraction of cooling power to servers’ power in
DCi. Given that the price and unit pollution cost of electricity
usually vary in different ECs and in different regions, we need
to optimize the number of active servers in geo-distributed
DCs aiming at power cost savings in the whole system.

On the other hand, let EGj, j ∈ J represent the j-th EG,
J = {1, . . . , J}. Without loss of generality, we assume that
the request arrivals to different EGs are independent stochas-
tic progresses. Dividing the considered time slot into H sub-
slots, each of equal length T/H , let the random variable lhj
represent the request rate (per sub-slot) to EGj in sub-slot
h ∈ {1, · · · ,H}. We assume that EGj dispatches tasks to
DCi with probability φhji on sub-slot h, where

∑I
i=1 φ

h
ji =

1, j ∈ {1, · · · , J} and h ∈ {1, · · · ,H}. Denoting φhj =
(φ1ji, · · · , φ

H
ji ), we emphasize that EGs should make their

optimal decisions on φhj in each sub-slot according to the

1Although we ignore the differences among servers in the same DC, this
will not affect the generality of our model, which can be readily extended.

real-time information of task arrivals to EGs and queue back-
logs of DCs in order to minimize the related task latency.

B. LARGE-SLOT LAYER: CAPACITY PROVISIONING OF DCs
Although less active servers contribute to more power sav-
ings, this has the risk of increasing the task latency, so that
decisions on the number of active servers should take into
account the trade-off between power cost and task latency.

1) POWER COST
It is noted that the power cost considered in this paper
includes both pollution cost and monetary cost.

First, we use a pollution indicator function (PIF) f PI (·) to
measure the pollution cost of the powers supplied by different
ECs. In order to encourage eco-friendly power consumption,
the PIF is assumed to meet the following conditions: (i) the
more polluting the power, the larger the pollution cost, and
(ii) the more the power bought, the larger the total and unit
pollution cost. The simplest case of PIF is a quadratic function
as

f PIi,n (qi,n) = ai,nq2i,n, qi,n ≥ 0, ai,n > 0, i ∈ I, n ∈ Ni,

(3)

where ai,n
4
=

γi,n
TPmaxi

is a positive coefficient, γi,n is the pollution
factor of the power supplied by the n-th EC in the region of
DCi, and Pmaxi is the maximum power of DCi. We assume
that pollution factors for different types of powers are pro-
portional to their pollutant emissions. Then, the pollution
factor of an electricity company depends on the proportions
of different power types in its power structure. It is noted
that a more polluting power always leads to a larger γi,n.
Introducing the divisor TPmaxi makes the pollution cost ofDCi
penalized by the proportion of the purchased amount qi,n with
respect to its maximum power consumption TPmaxi .

Second, we will address the monetary cost. Let pi,n and ε̂i
denote the electricity price published by the n-th EC and
the estimated price of stored power in the region of DCi,
respectively. The reason for considering storage price is that
the stored power and bought power are homogeneous com-
modities. Present decisions on charging or discharging will
influence the future purchases of power [28], so that the
storage price is a kind of potential cost. Let 1i denote
the variation of the energy stored in the batteries during
the (dis)charging procedure. When 1i ≥ 0, batteries charge.
Otherwise, batteries discharge. Then, the monetary cost of
DCi can be given by

Ni∑
n=1

pi,nqi,n − ε̂i1i. (4)

When we consider the efficiency of charging and discharg-
ing, noted as ηi ∈ (0, 1), the relationships between1i and the
(dis)charged power amount Qbati can be expressed by

1i = ηiQbati , 1i ≥ 0

Qbati = ηi1i, 1i < 0 . (5)
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If we make η′i = ηi when 1i ≤ 0, while η′i =
1
ηi

when
1i > 0, then (5) is equal to

Qbati = η
′
i1i , (6)

where η′i > 0. Fig. 2a shows an example of ηi [29] and the
corresponding η′i, where δi =

1i
TCi

is the C rate of batteries’
charging or discharging and Ci is the battery capacity ofDCi.
We note that η′i is a non-linear function of δi.2

FIGURE 2. Example of ηi and η′

i .

Based on the above, the total power cost of DCi can be
formulated as the sum of pollution cost and monetary cost

FPCi (qi,1i) =
Ni∑
n=1

ai,nq2i,n + pi,nqi,n − ε̂i1i , (7)

where qi is the vector of qi,n, n = 1, · · · ,Ni. The required
constraints are

Ni∑
n=1

qi,n = Qconsi + η′i1i − E{Qrewi } (8a)

−ci ≤ 1i ≤ Ci − ci (8b)

1lb
i ≤ 1i ≤ 1

ub
i (8c)

qi,n ≥ 0, ∀n ∈ Ni , (8d)

where ci is the current battery state of DCi. (8a) is obtained
from (1) and (6). (8b) represents that batteries can discharge
no more than the stored power and can charge no more than
the remaining capacity. In addition, due to the fact that an
excessively high speed of charge and discharge will cause
severe damage to storage devices as well as exorbitant wastes
of energy [30], we set lower and upper bounds for 1i in (8c)
as 1lb

i = −TCi and 1
ub
i = 0.3TCi, respectively.

2Throughout this paper, we will interchangeably use η′i , η
′
i(δi) and η

′
i(1i)

where 1i is a linearly scaled version of δi, specified by 1i = TCiδi.

2) TASK LATENCY
Let λ̂i and µ̂i represent the planned receiving rate of tasks
and the estimated service rate per server in DCi in the con-
sidered large time slot. Denote l = 1

H

∑H
h=1

∑J
j=1 l

h
j as the

average task arrival rate of the whole system in the considered
large time-slot, and let Lσ represent the quantile satisfying
Pr(l < Lσ ) = σ , where σ is a predetermined probability
threshold. As a latency guarantee, we consider the constraint
of
∑I

i=1 λ̂i ≥ Lσ .
We assume that the request arrival process to a DC can

be modeled as a Poisson process, which is reasonable if the
request arrivals are independent and stationary, and then we
can use an M/M/n queuing model to estimate the queuing
delay in DCs. Although some researches show that the depen-
dency among request arrivals is likely to result in a deviation
from the Poisson distribution, it is still useful in the area of
queuing theory for its generality and tractability. In this part,
our main purpose is to optimize the number of active servers,
which can tolerate the estimation errors of queuing delay to
some degree, so that we use the assumption of Poisson distri-
bution here. In the sub-slot layer of task scheduling, a more
precise approach will be implemented. According to the
M/M/n queuing model [7], the task latency inDCi is given by

Di =
T
H
×

{
1

macti ûi − λ̂i
+

1
ûi

}
, (9)

where T/H is used for unit conversion.

3) JOINT OPTIMIZATION OF POWER COST AND TASK
LATENCY
Incorporating the power cost in Eq. (7) and the latency cost
in Eq. (9), the cost function of DCi, i ∈ I, can be formulated
as

8i = θ1,iDi + θ2,iFPCi , (10)

where θ1,i > 0 and θ2,i > 0 are weight parameters. Then,
the total cost function of the whole DC population can be
given by 8 =

∑I
i=18i. Besides, considering that 8i is a

monotonically increasing function of λ̂i, ∀i ∈ I, the inequal-
ity constraint

∑I
i=1 λ̂i ≥ Lδ is equivalent to

∑I
i=1 λ̂i = Lδ .

Based on all of the above, an eco-friendly and delay-aware
power cost minimization problem in the large-slot layer,
denoted as problem P , can be formulated as follows:

min
{macti ,λ̂i,1i,qi},∀i∈I

8

s. t.
I∑
i=1

λ̂i = Lσ (11a)

Ni∑
n=1

qi,n = Qconsi + η′i1i − E{Qrewi } (11b)

macti µ̂i − λ̂i > 0 (11c)

macti ∈ {1, 2, . . . ,Mi} (11d)

λ̂i ≥ 0 (11e)
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max{1lb
i ,−ci}≤1i≤min{Ci − ci,1ub

i } (11f)

qi,n ≥ 0, n ∈ Ni, i ∈ I , (11g)

where Qconsi = T × (1+ ϕi)(macti sαi + βi).

C. SUB-SLOT LAYER: DISTRIBUTED TASK DISPATCHING
We focus on a mixed strategy of task dispatching in
which EGj dispatches tasks to DCs3 with probability φhj in
sub-slot h. A distributed mechanism of the mixed strategy
generation based on the Lyapunov optimization framework is
proposed in this part. Specifically, the task latency considered
by EGsmainly includes the communication time from EGs to
DCs and the sojourn time in DCs. We use the queue backlogs
of DCs to measure the sojourn time in DCs and build the
Lyapunov function associated with the queue backlogs. Then,
we formulate the drift-plus-penalty function as the weighted
sum of Lyapunov drift and communication latency. Each EG
makes decisions on the mixed strategy of task dispatching
separately by minimizing the upper bound of their own drift-
plus-penalty function on each sub-slot.

1) COMMUNICATION LATENCY
The communication latencymainly results from the transmis-
sion latency and propagation time which can not be ignored
due to far distances between EGs and DCs in general. Let
W h
ji (in bits/s) and τji represent the effective bandwidth and

the one-way propagation time between EGj and DCi, respec-
tively. It is noted that W h

ji changes over slots in the sense
that the network congestion depends on the traffic state.
Then, the communication latency between EGj and DCi in
sub-slot h can be given by

3h
ji =

b̄hj
W h
ji

+ 2τji , (12)

where b̄hj is the average length (in bits) of tasks from EGj in
sub-slot h. Considering that the data coming back from DCs
is generally much less than that sent out by EGs, we ignore
the transmission delay of back-stream from DCs to EGs.

2) SOJOURN TIME IN DCs
All tasks to a DC should be first put in a queue waiting for
service with the principle of First Come First Served (FCFS)
if no idle server is available immediately, where the queue
backlog of a DC is proportional to the sojourn time in it.
Let Qhi represent the queue backlog of DCi in sub-slot h.
Suppose the service process of DCi in the considered time
slot is stationary with average rate µ̂i, which is independent
of the task arrivals and the queue backlog of DCi, then the
queue evolution over time can be modeled as

Qhi = max{Qh−1i − macti µ̂i, 0} + λhi , (13)

where λhi is the total arrival rate of tasks (per sub-slot) to DCi
in sub-slot h. Denoting κhi = min{Qh−1i ,macti µ̂i}, Eq.(13) can

3For clarity, the task dispatching to local edge servers is not incorporated,
but our model can be easily extended.

be rewritten by

Qhi = Qh−1i − κhi + λ
h
i . (14)

Our consideration of incorporating latency minimization
with queue stability leads us to a design approach based
on the Lyapunov optimization framework [31], which has
been widely used in the stability control of dynamic systems.
We define a Lyapunov function L(Qh) as the sum of the
squares of queue backlogs in DCs in sub-slot h

L(Qh)
4
=
1
2

∑I

i=1
(Qhi )

2 , (15)

where Qh is the vector of Qhi . L(Q
h) is a scalar measure of

network congestion in the sense that it is small if all queues
are small, and it is large if one or more queue is large. The
difference in Lyapunov function from one sub-slot to the next
and its upper bound can be given by

L(Qh)− L(Qh−1)

=
1
2

I∑
i=1

[
(Qhi )

2
− (Qh−1i )2

]
=

1
2

I∑
i=1

{[
max[Qh−1i − macti µ̂i, 0]+ λhi

]2
− [Qh−1i ]2

}
(a)
≤

1
2

I∑
i=1

{
(macti µ̂i)2 + (λhi )

2
+ 2Qh−1i (λhi − m

act
i µ̂i)

}
,

(16)

where
(a)
≤ is based on the fact that [max[a − b, 0] + c]2 ≤

a2+ b2+ c2+ 2a(c− b). Then, we define the Lyapunov drift
1(Qh−1) as the expected difference in Lyapunov function
over one sub-slot given the current queue backlog Qh−1:

1(Qh−1)
4
=E

{
L(Qh)− L(Qh−1)

∣∣Qh−1
}
. (17)

With the hypothesis that the service rate µ̂i is independent of
the queue backlog Qh−1i , the upper bound of1(Qh−1) can be
obtained by

1(Qh−1) ≤
1
2
E
{∑I

i=1
(λhi )

2∣∣Qh−1
}

+E
{∑I

i=1
Qh−1i λhi

∣∣Qh−1
}

+
1
2

I∑
i=1

(macti µ̂i)2 −
I∑
i=1

Qh−1i macti µ̂i. (18)

Taking into account themixed strategyφhj , tasks dispatched
from EGj to DCi can be expressed by λhji = lhj φ

h
ji. Let

λh
−ji =

∑
m6=j λ

h
mi represent tasks dispatched to DCi by EGs

other than EGj, and then there is λhi = λh
−ji + lhj φ

h
ji. From

the perspective of EGj, we record 1(Qh−1) as 1j(φhj |Q
h−1),

which depends on actions of other EGs. To decouple it in a
tractable manner, we estimate λh

−ji by historical data, e.g.,

λ̂h
−ji =

∑h−1
m=1 wm(λ

m
i − λ

m
ji ), where wm ≥ 0 is a weighted
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parameter constrained by
∑h−1

m=1 wm = 1. Besides, with the
assumption that the task arrival rate lhj to EGj is independent
of Qh−1, Eq.(18) can be rewritten as

1j(φhj |Q
h−1)

≤
1
2
E
{ I∑
i=1

(lhj φ
h
ji)

2∣∣Qh−1
}

+E
{ I∑
i=1

(λ̂h
−ji + Q

h−1
i )lhj φ

h
ji

∣∣Qh−1
}

+

I∑
i=1

{ (λ̂h
−ji)

2
+ (macti µ̂i)2

2
+ Qh−1i (λ̂h

−ji − m
act
i µ̂i)

}

=

I∑
i=1

{Ahj
2
(φhji)

2
+ (λ̂h

−ji + Q
h−1
i )Bhj φ

h
ji

}
+ Uh

j , (19)

where Ahj = E{(lhj )
2
}, Bhj = E{lhj } and Uh

j =∑I
i=1

{
[(λ̂h
−ji)

2
+ (macti µ̂i)2]/2+ Q

h−1
i (λ̂h

−ji − m
act
i µ̂i)

}
.

3) JOINT OPTIMIZATION OF COMMUNICATION LATENCY
AND SOJOURN TIME
We build a drift-plus-penalty function for EGj as
1j(φhj |Q

h−1) + wjE{
∑I

i=13
h
ji} by incorporating the com-

munication latency and Lyapunov drift, where wj > 0
is a weighted parameter, j ∈ J . The upper bound of
1j(φhj |Q

h−1)+ wjE{
∑I

i=13
h
ji} is given by

I∑
i=1

{
Ahj (φ

h
ji)

2

2
+[wj

I∑
i=1

3h
ji+(λ̂

h
−ji + Q

h−1
i )Bhj ]φ

h
ji

}
+ Uh

j .

(20)

Following the design principle of Lyapunov optimization
framework, we can set our objective to minimize the upper
bound of the drift-plus-penalty term shown in (20) in each
sub-slot. Ignoring the constantUh

j , the task dispatching prob-
lem of EGj, j ∈ J based on the Lyapunov optimization
framework can be formulated as problem Qj:

min
φhj

I∑
i=1

{
Ahj (φ

h
ji)

2

2
+ [wj

I∑
i=1

3h
ji + (λ̂h

−ji + Q
h−1
i )Bhj ]φ

h
ji

}

s. t.
I∑
i=1

φhji = 1

φhji ≥ 0 , i ∈ I . (21)

Apparently, problemQj is a quadratic programming problem,
which can be easily solved by some standard algorithms,
such as the interior-point method or the sequential quadratic
programming (SQP) method.

III. TWO-TIMESCALE FRAMEWORK OF CAPACITY
PLANNING AND TASK DISPATCHING
Problem P in (11) is non-convex, due to the non-linear
equality constraint (11b) and the integer restriction

for macti [32], while problem Qj in (21) is a typical quadratic
programming problem. Before giving the distributed algo-
rithm for the DC capacity planning and task routing from
EGs to DCs, we intend to study the solution of problem P .

A. SOLUTIONS OF PROBLEM P
In this part, we first apply continuity relaxation to problem P
and propose an SCP algorithm to find its optimal non-integer
solution. Without special statement, ’solution’ mentioned in
this subpart means non-integer solution. We find that the
nonlinearity of constraint (11b) results from the non-linear
function η′i with respect to 1i, which is tightly associated
with the part of power cost FPCi in 8. Therefore, we intend
to solve FPCi (·) and plug the solution into (11) to eliminate
variables qi,n, i ∈ I, n ∈ Ni. Then, the continuity-relaxed
problem P can be transformed into a sequence of convex
problems. This process is summarized in the proposed SCP
algorithm. It is shown that the mixed-integer solution derived
from the optimal continuous solution is quasi-optimal.

First, ignoring the inequality constraint qi � 0, the partial
Lagrange function of FPCi with respect to qi constrained
by (8a) can be established as

Li(qi, uLi ) =
Ni∑
n=1

{ai,nq2i,n + pi,nqi,n − ε̂i1i}

− uLi
{ Ni∑
n=1

qi,n − Qconsi − Qbati + E{Qrewi }
}
,

(22)

where uLi is the Lagrange factor. According to the Lagrange
Multiplier method [32], we set ∂Li

∂qi,n
= 0 and ∂Li

∂uLi
= 0 for

∀n ∈ Ni. Then, we can obtain the partial Lagrange dual
solution of FPCi as

q∗Li,n =
v∗Li − pi,n

2ai,n

=
2(Qconsi + Qbati − E{Qrewi })+ Yi − pi,nXi

2ai,nXi
, (23)

The corresponding function value can be given by

FPCi (q∗Li ) =
(Qconsi + Qbati − E{Qrewi })

2
+ Yi(Qconsi + Qbati )

Xi

+
Y 2
i − 4YiE{Qrewi }

4Xi
− Zi − ε̂i1i,

(24)

where

Xi =
Ni∑
n=1

1
ai,n

, Yi=
Ni∑
n=1

pi,n
ai,n

, Zi =
∑Ni

n=1

(pi,n)2

ai,n
. (25)

Then, the marginal power cost v∗Li of DCi when qi,n = q∗Li,n
for ∀n ∈ Ni is

v∗Li = uL∗i =
2(Qconsi + Qbati − E{Qrewi })+ Yi

Xi
, (26)
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which is independent of n. Note that Xi > 0, Yi > 0, Zi > 0
and v∗Li > 0 since ai,n > 0, pi,n > 0 and Qconsi + Qbati −

E{Qrewi } ≥ 0.
Second, substituting FPCi (q∗Li ) into 8i, we can rewrite 8i

as

8′i(λ̂i,m
act
i ,1i|q∗Li )

= θ1,i

{
1

macti µ̂i − λ̂i
+

1
µ̂i

}

+ θ2,i

{
(Qconsi + η′i1i − E{Qrewi })

2

Xi

+
Yi(Qconsi + η′i1i − E{Qrewi })+ 0.25Y 2

i − XiZi
Xi

−ε̂i1i
}
, (27)

where q∗Li is given. Then, we formulate a new problem

min
{λ̂i,macti ,1i},∀i∈I

I∑
i=1

8′i(λ̂i,m
act
i ,1i|q∗Li )

s. t.
I∑
i=1

λ̂i = Lσ

macti µ̂i > λ̂i

macti ∈ {1, 2, . . . ,Mi}

λ̂i ≥ 0

max{1lb
i ,−ci} ≤ 1i ≤ min{Ci − ci,1ub

i }, i ∈ I,
(28)

which is denoted as problem P1. The feasible region
of continuity-relaxed problem P1 is a convex set on
account of the elimination of the nonlinear equality con-
straint (11b). In addition, we prove in Appendix B that
the continuity-relaxed objective function of P1 is convex
when the fitted function of η′i meets the condition shown
in Proposition 1. We observe from experiments that some
cubic functions and exponential functions can both fit well
the curve of η′i shown in Fig. 2, under the convexity con-
dition described in Proposition 1. Fig. 3 gives the optimal
fitting curves of η′i by cubic function and exponential
function, respectively. In this sense, we can regard the
continuity-relaxed problem P1 as a convex programming
problem [32].

Third, we reconsider the inequality constraint qi,n ≥ 0. It is
easily inferred that if all q∗Li,n are non-negative, then they are
the exactly optimal solutions to 8 given 1i, i ∈ I, in which
case problems P and P1 are equivalent. For ∀n ∈ Ni,
∀i ∈ I, if q∗Li,n < 0, then the optimal non-negative solution
to the purchase amount of power qi,n is zero, which is proved
in Appendix A. Under this principle, we propose the SCP
algorithm to solve the global optimal solution of problem P .
As is shown in Algorithm 1, lines 6 to 13 are used to revise the
values of qi,n by updating the setN−i and making all qi,n = 0
for n ∈ N−i , where N−i = {qi,n | q

∗L
i,n < 0, n ∈ Ni} and

FIGURE 3. Optimal fitting curves of η′ by cubic function and exponential
function.

Ni = N−i ∪ Ñ−i . Line 3 is used to update the value of FPCi
according to the revised qi. Every timewe solve a new version
of qi, we plug the corresponding FPCi into (28) and obtain a
new version of problem P1, which can be solved by stan-
dard convex programming methods, such as the SQP method
shown in Line 4. In AppendixA, we givemathematical proofs
that our proposed SCP algorithm can always find the globally
optimal solution of problem P . Besides, the SCP algorithm
converges fast, as it can find the optimal solution of problem
P by solving problem P1 no more than 2×

∑I
i=1 Ni times.

Finally, we consider the integer restrictions of macti by
rounding all macti to the nearest integers. Simulation results
show that the gaps between the function values of 8 with
respect to the optimal non-integer solution and this derived
mixed-integer solution are on the order of 0.01%, which is
negligible.

B. DISTRIBUTED SOLUTIONS OF PROBLEM P
Although problem Qj can be solved by each EG separately,
problem P is associated with the whole DC population,
so that we should first study the decomposition of problemP .
We find that the coupling among DCs in problem P results
from the linear equality constraint (11a), which can be easily
decoupled by the method of partial Lagrange dual [32]. First,
denoting π as the Lagrange multiplier associated with con-
straint (11a), the partial Lagrange function of problem P is
given by

L(π, {macti , λ̂i,1i,qi}i∈I ) =
I∑
i=1

8i − π (
I∑
i=1

λ̂i − Lσ )

=

I∑
i=1

{
8i − π(λ̂i − Lσ )

}
(29)
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Algorithm 1 Sequential Convex Programming Algorithm
1: Initialize DC set I and other relevant parameters. Make

N−i = ∅ and Ñ
−

i = Ni, ∀i ∈ I.
2: Repeat
3: Calculate Xi, Yi and Zi on subset Ñ−i according to (25)

for ∀i ∈ I, and plug them into problem P1.
4: Solve problemP1with a convex programmingmethod,

such as SQP.
5: Calculate q∗Li,n and ν

∗L
i as in (23) and (25), respectively,

on subset Ñ−i , ∀i ∈ I.
6: For i = 1 : |I|
7: If there is any q∗Li,n < 0, n ∈ Ñ−i then
8: Move all indices n of q∗Li,n < 0 from Ñ−i to N−i
9: End If

10: If there is any pi,n < ν∗Li , n ∈ N−i then
11: Move all indices n of pi,n < ν∗Li back to Ñ−i
12: End If
13: End For
14: Until No n is newly moved into N−i or Ñ−i , ∀i ∈ I
15: Output the renewed λ̂i, macti , 1i, q∗i,n∈N−i

= 0 and

q∗
i,n∈Ñ−i

= qL∗i,n , ∀i ∈ I.

Then, the corresponding partial Lagrange dual function is

D(π ) = inf
{macti ,λ̂i,1i,qi}i∈I

L

=

I∑
i=1

Di(π )+ πLσ , (30)

where the subproblem Di(π ) represents

inf
macti ,λ̂i,1i,qi

{
8i(macti , λ̂i,1i,qi)− πλ̂i

}
(31)

It is noted thatDi(π ) is only related to the individual decision
variables of DCi, so that subproblem (31) can be separately
solved by DCi, i ∈ I in a parallel manner. Furthermore,
the partial dual problem of problem P can be formulated by

max
π

D(π )

s. t. (11b)− (11g) . (32)

From the perspective of the system operator, we can update
the value of π in an iterative manner according to the method
of gradient descent:

π(t + 1) = π (t)+ ls

(
∂D(π (t))
∂π (t)

)
= π (t)+ ls

(
I∑
i=1

λ̂i − Lσ

)
, (33)

where t = 1, 2, · · · is the count of iterations, ls > 0 is the
step length and π (t) represents the updated value of π in the
t−th iteration.
Next, to make our proposed SCP algorithm valid for

solving Di(π ) shown in (31), the subproblem of the dual

problem (32), we conduct the same operations described in
subsection 3.1 on Di(π ) to eliminate qi, so that

Di(π |q∗Li ) = inf
macti ,λ̂i,1i

{
8′i(m

act
i , λ̂i,1i|q∗Li )− πλ̂i

}
, i ∈ I

(34)

subject to the boundary restrictions (11d)–(11f). 8′i − πλ̂i is
convex given π , since the summation of a convex function
and a linear function is still convex [32]. Then, for a given π ,
we can solve Di(π ) by our proposed SCP algorithm as long
as the set I in the SCP algorithm is initialized as {i}. In each
iteration round of the SCP algorithm, an updated version
of problem (34) will be solved rather than problem P1.
We emphasize that although problem P1 is convex, the orig-
inal problem P is non-convex, so that the optimal solution to
the dual problem (32) can only provide a lower bound for the
original problem P . The gap between the optimal function
values of the dual problem (32) and the original problem P
is regarded as the cost of distributed algorithm design.

C. TWO-TIMESCALE FRAMEWORK DESIGN
Fig. 4 shows the two-timescale framework of the distributed
capacity planning and task dispatching algorithm. The proce-
dure is as follows.

FIGURE 4. Two-timescale framework of the distributed capacity planning
and task dispatching algorithm in an edge-cloud system.

(i) Large-slot layer. At the beginning of the considered
large slot, the cloud layer should optimize the strategies of
power purchasing andmake decisions on the number of active
servers by solving the partial dual problem (32) of problemP .
The distributed solution procedure of problem (32) is iterative
as follows.
• Initialize the iteration count t = 1, the operating factor
π (1) = 1, etc. Then, repeat the following three steps:
– DCi,∀i ∈ I receives the updated value of oper-

ating factor π (t), and then solves its individual
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problem (31) by the SCP algorithm. After that, each
DC sends its updated solution λ̂i to the coordinator.

– Based on the feedback λ̂i from each DC, the coor-
dinator updates π (t + 1) according to (33).

– The coordinator checks the termination condition.
If it holds, then this iteration procedure will be
finished. Otherwise, the coordinator will broadcast
the updated operating factor π (t+1) to all DCs and
make t = t + 1.

• Output the power purchasing strategy and planned num-
ber of active servers for each DC.

It is noted that this iterative procedure is run by the coordi-
nator. The termination condition referred to in the repeated
round is that either the maximum iteration count has been
reached or the descent distance of operation factor π is lower
than a predetermined threshold.

For clarity, we give some necessary illustrations of the
above procedure. Problem (32) is the partial dual prob-
lem of the original problem P , and can be solved in
a distributed manner by iteratively solving its two sub-
problems (31) and (33). When we solve sub-problem (31)
by our proposed SCP algorithm, an updated version of prob-
lem (34) will be involved in each iteration round of the SCP
algorithm. Actually, the original problem P could be directly
solved in a centralized manner, where a sequence of prob-
lems P1 will be involved in the SCP algorithm rather than
problem (34). However, the centralized mechanism requires
large amounts of individual information of the DCs to be
published, such as the storage capacity, computation capac-
ity, etc., which violates the principle of privacy protection,
especially when the involved DCs are affiliated with different
service providers.

(ii) Sub-slot layer. At first, EGj, j ∈ J obtains the number
of active servers macti of DCi, i ∈ I. Then, in each sub-
slot, the EG population conducts the following two steps in a
parallel manner.
• EGj, j ∈ J observes the processing speed µhi and queue
backlogQh−1i ofDCi, and estimates the task arrivals λ̂h

−ji
to DCi according to historical data, ∀i ∈ I.

• Accordingly, EGj, j ∈ J optimizes its dispatching strat-
egy φhj by solving problemQj, and then dispatches tasks
according to the optimized φhj .

We assume that DCs can dynamically control CPU frequen-
cies of servers according to real-time queue backlogs of
themselves, so that EGs should update the knowledge of the
processing speed µhi of DCi in each sub-slot, ∀i ∈ I. The
cooperation of the dynamical CPU-frequencymechanism and
the Lyapunov optimization technique can further improve the
stability of queues in DCs, which brings significant benefits
in terms of guarantees for the task latency. According to
reference [18], the optimal strategy of a DC in the situation
of dynamical CPU frequency is that all active servers have
identical CPU frequencies. Due to space limitations, we will
not elaborate on the dynamical CPU-frequency mechanism
of DCs, which is an issue independent of our main concerns.

So far, we have finished the discussion on two-timescale
framework design. It is observed that only little information
needs to be exchanged among agents in the above distributed
mechanism, including π (t), λ̂i(t), macti , µhi , λ

h−1
i and Qh−1i ,

which is beneficial for the protection of privacy and autonomy
of agents. Besides, it can reduce communication costs in
the control procedure and difficulties in the implementation.
Although iterative updates of the operation factorπ in the dis-
tributed scheme always consume extra communication costs
compared to the centralized scheme, this is acceptable when
the length of the large slot is large enough (e.g. one hour).

Finally, we briefly analyze the complexity of our proposed
scheme. We roughly classify the complexity into three lev-
els according to the adopted optimization technique and the
problem scale, i.e., low, medium and high complexity. Table 4
gives a complexity analysis of some related state-of-the-art
approaches. Specifically, the Lyapunov optimization tech-
nique is typically used in real-time system control, and the
related schemes are of low complexity only if their real-time
control problems are simple. The sub-slot scheme proposed
in our work and those in [23][24] only refer to small-scale
linear or quadratic programming problems, so that all of them
can be regarded as low-complexity approaches. Additionally,
in the large-slot layer, the properties and solution approach
(SCP algorithm) of problem P are similar to those in refer-
ence [17], while the problem scale is smaller. Thus, the large-
slot scheme proposed in our work has lower complexity than
that in [17]. Moreover, the problem scale of our proposed
sub-slot scheme and large-slot scheme depends linearly on
I × J and I , respectively, where I is the number of DCs and
J is the number of EGs.

TABLE 4. Complexity analysis of some related state-of-the-art
approaches.
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IV. NUMERICAL ANALYSIS
To verify our model, we use Matlab to solve problem P
by our proposed SCP algorithm and give the performance
analysis focusing on four aspects, including (i) the impact of
PIF, (ii) the behavior of storage scheduling, (iii) the analysis
of task dispatching, and (iv) the reduction of power cost
and the improvement of clean power usage. Table 5 gives
default settings of some parameters. Unless specified other-
wise, we configure the parameters of all of our experiments
according to Table 5. For example, the benchmarks of the
electricity price used in the following experiments correspond
to the default electricity price shown in Table 5. Specifically,
we assume that each DC can buy power from Ni = 3 ECs,
whose power for sale mainly originates from thermal power
(TP), solar power (SP) and wind power (WP), respectively.
The corresponding electricity prices4 always change at dif-
ferent hours and in different areas.

TABLE 5. Default parameter Settings.

A. EFFECT OF THE POLLUTION INDICATOR FUNCTION
First, we aim to verify the effect of PIF onmulti-source power
buying. Fig. 5a shows the unit power costs for a 1-MW data
center when buying power from TP, SP, WP alone and from
multiple ECs in one time slot, respectively. It is observed that
the unit cost increases with the growth of Qbuyi . This means
that the more the power we buy, the higher the unit cost we
will pay, which can lead to an increasingly fast growth of total
power costs and encourage power savings in order to reduce
costs. In addition, we can see that the unit costs in the cases
of buying power from TP, SP or WP alone are always higher
than those when buying multi-source power, which is caused
by the quadratic term in PIF. Therefore, our proposed PIF can
encourage users to buy power from multiple suppliers rather
than single suppliers.

Fig. 5b shows the ratio of clean power, including SP and
WP, to the total bought power Qbuyi . It can be observed that

4All electricity prices used in this paper are set according to those in China
[33], [34], and converted from U to $ at an exchange rate of 0.148.

FIGURE 5. Effects of PIF on the unit cost of power and the usage ratio of
clean power.

the fraction of clean power will increase with the growth of
Qbuyi when the electricity prices pi,n,∀n ∈ Ni are different,
which means that the more the power we buy, the higher the
fraction of clean power we will use, because the unit cost of
clean power increases more slowly than that of brown power
due to the smaller pollution factor γi,n, although the price
pi,n of clean power is higher in general. However, when pi,n,
∀n ∈ Ni are identical, the ratio of clean power is a constant
and is independent ofQbuyi . In this case, the numerators of q∗Li,n
∀n ∈ Ni in Eq. (23) are equal, thus the ratio q∗Li,1 : · · · : q

∗L
i,Ni

can be calculated as 1
ai,1
: · · · :

1
ai,Ni

, which is constant.

Furthermore, we can see that the fraction of clean power is
sensitive to the configuration of the electricity price and the
pollution factor γi,n. The fraction will be higher when the
differences among γi,n increase, or the differences among pi,n
decrease, ∀n ∈ Ni.
We can conclude from Fig. 5 that our proposed PIF

can encourage power savings, power buying from multiple
sources and usage of clean power. The more the power we
buy, the higher the usage ratio of clean power. If we set the
unit pollution cost to a constant as in the previous works,
then the total pollution cost will be a linear function rather
than a non-linear function as PIF. In the linear case, users will
always choose the EC with lowest unit cost, the sum of elec-
tricity price and unit pollution cost, and abandon the powers
from other ECs that are a littlemore expensive. Different from
the linear case, the PIF can motivate users to buy power from
multiple ECs and the ratio of clean power will increase with
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the growth of the total bought power. In addition, the fraction
of clean power is sensitive to several parameters, such as
electricity price and pollution factor γi,n.

B. ANALYSIS OF THE STORAGE SCHEDULING
We first fit the curve of η′i shown in Fig. 2b with many
different power and exponential functions. We find that the
cubic function 0.873δ3 + 1.830δ2 + 1.495δ + 1.038 where
δ ∈ [−1, 0.3] is the simplest one that meets the condition in
Proposition 1 to guarantee the convexity of problem P1 with
negligible fitting errors, so that we adopt the above cubic
function in this paper.

Second, we aim to verify the impact of potential cost on
storage scheduling and power cost. Fig. 6a shows the optimal
decisions on charge and discharge without considering poten-
tial cost, in which case batteries discharge much in the first
time slot and do not charge or discharge in the remaining slots
in order to obtain the maximum present interests while ignor-
ing the future interests. Fig. 6b shows the optimal decisions
on charge and discharge considering potential cost, where
batteries always tend to discharge in slots with higher unit
cost and charge in slots with lower unit cost, where h is the
index of a future slot. This reveals that the long-term storage
scheduling according to the varying unit-cost of storage can
only be optimized when the potential cost is taken into con-
sideration. Additionally, we note that the potential cost can
actually influence the storage scheduling in a duration longer
than hours. It is observed from our many experiments that
the storage scheduling controlled by potential cost generally

FIGURE 6. Impact of potential cost on storage scheduling and power cost.

exhibits a periodicity over days, following the corresponding
electricity price. To clearly show how the fluctuations of the
electricity price influence (dis)charging actions, we just show
the storage scheduling during a day.

Fig. 7a shows the daily monetary costs for a 1-MW DC
with different accuracy of ε̂i and that without ε̂i, where |ê|
represents the prediction errors for ε̂i measured as the differ-
ences between the actual values and the predicted values. The
referred benchmark corresponds to the realization of ε̂i where
|ê| = 0. It is observed that introducing potential cost can
improve the power savings, but a small prediction error ê for
ε̂i can cause a severe performance decline of storage schedul-
ing. This means that the performance of storage scheduling is
very sensitive to the parameter ε̂i, and an accurate prediction
method of the unit cost of storage in the future slots is needed,
which will be further studied in our future work.

FIGURE 7. Sensitivity analysis of parameters for storage scheduling.

Third, we aim to illustrate how the electricity price influ-
ences the power savings of storage scheduling, as shown
in Fig. 7b. We adopt the default electricity price as a bench-
mark, and change the average values ‘AVE’ and the variance
‘VAR’ of the electricity price, and the square sum of differ-
ences between prices in adjacent time slots ‘DIF2’, respec-
tively, where ‘+’ represents increase and ‘−’ represents
decrease. It is found that the ratios of monetary costs saved by
storage scheduling to the total monetary costs will increase
when ‘VAR’ or ‘DIF2’ grows. This means that the higher
the differences among electricity prices in different slots,
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the more the monetary costs saved by storage scheduling.
However, the ratio of cost savings decreases when ‘AVE’
increases, because when the electricity prices in different
slots are equally increased, the differences among them do
not change and the monetary costs with and without storage
scheduling increase equally.

C. BEHAVIOR OF TASK SCHEDULING
Fig. 8 shows the correlations among the average unit cost of
electricity v̄i = FPCi /Qconsi , the number of active serversmacti
and the average request rate to DCs λ̄i = 1

HT

∑H
h=1

∑J
j=1 λ

h
ji.

It can be seen that macti increases with the decrease of v̄i,
which means that more servers will be activated in areas with
lower electricity cost in order to reduce power costs. It is
observed that λ̄i is proportional tomacti . Given the selfishness
of players in distributed mechanisms, EGs always prefer
low-latency generating DCs, so that the average request rate
to DCs in a long duration can be balanced.

FIGURE 8. Diagram of daily v̄i , λ̄i , mact
i for each data center.

However, if we observe in real time, periodical fluctuations
and oscillations will be found, which is also caused by the
selfishness of EGs along with the lack of cooperation among
EGs. Benefiting from the form of squared costs in Lyapunov
optimization techniques, the Price of Anarchy (PoA) of our
proposed distributed task dispatching mechanism is main-
tained within a reasonable range, as shown in Fig. 9. PoA
is a widely used scalar measure of the system performance
degradation caused by the anarchy of players. In this paper,
we define PoA as the ratio of task latencies derived from
our proposed distributed mechanism and from the centralized

FIGURE 9. Price of Anarchy of the distributed task dispatching
mechanism based on the Lyapunov optimization framework.

mechanism. Besides, we can also see from Fig. 9 that the PoA
increases with the growth of the number of EGs.

Table 6 shows the monetary savings of the whole DC
system in one time slot achieved byworkload scheduling with
different configurations of electricity price pi,n, number of
DCs I and total request rate Lσ , where the default parameters
shown in Table 5 are used in the benchmark case and Lmax
is the maximum request rate that the system can deal with to
avoid overload. It is observed that the larger the geographical
differences in the electricity price, measured by the variances,
the more the monetary savings. However, when the prices
in different areas increase equally, in which case only the
means increase while the variances remain constant, mone-
tary savings will not increase. That is to say the geographical
difference in the electricity price is the main contributor to
the power savings gained by workload scheduling. In addi-
tion, monetary savings will also increase with the growth of
I and Lσ , which means that the effect of workload scheduling
on power cost savings will be improved when the number of
geographical DCs or the total request rate increases.

TABLE 6. Monetary costs saved by workload scheduling with different
parameters.

Table 7 shows the average request delay of the whole DC
system in the case of different numbers of DCs I and differ-
ent weight parameters θ1,i, where the upper-bound queuing
delay D is set in terms of the web requests as 2 s. It can
be observed that our formulation will never make the task
latency approach or exceed the upper bound that users can
tolerate, which is different from the approaches presented in
[10]–[25]. That is to say our proposed method can realize
the trade-off of power cost and delay cost by a flexible
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FIGURE 10. Average sojourn time for different workload densities.

FIGURE 11. Average power of DCs for different workload densities.

TABLE 7. The average value of request delay (θ2,i = 1).

weight parameter because the request delay is a subpart of
the objective function.

Fig. 10 and Fig. 11 show comparison experiments of our
proposed scheme to another two-timescale scheme investi-
gated by Yao [24], [25] and to a typical single-timescale
scheme investigated by Wang [18]. Specifically, we make
observations of the average sojourn time experienced by tasks
in DCs and average power of DCs in different situations
of workload density, measured by the fraction of the actual
request rate and by the system capacity. We can see that Yao’s
scheme has better latency performance than ours when the
workload density is low, but its latency performance exhibits
a rapid degradation with the increase of the workload density.
On the other hand, our scheme exhibits a slower growth
of task latency and is much better than Yao’s scheme in
situations of medium and high workload densities. This phe-
nomenon mainly benefits from our diverse-timescale deci-
sions on the number of active servers and on task routing,
which can better adapt to the uncertainty of task arrivals
than Yao’s scheme. Additionally, it is observed that the
latency performance ofWang’s scheme exhibits obvious fluc-
tuations. This is because the task routing strategy and the
CPU-cycle frequency can not be adjusted in time to adapt to
the time-varying workload density. We note that dynamical
CPU-frequency strategies are conducted in small timescales
in both Yao’s scheme and our scheme. Moreover, the power
consumption performance of our scheme is between those of
Yao’s and Wang’s.

TABLE 8. Monetary cost savings with workload scheduling and storage
scheduling.

D. EVALUATION OF THE POWER COST REDUCTION
Table 8 shows the monetary cost savings obtained by the
joint optimization of workload scheduling and power storage
scheduling in problem P . It is observed that the monetary
cost savings obtained by the joint optimization are larger than
those obtained by workload scheduling in Table 6 or power
storage scheduling in Fig. 7b alone, and will increase with
the growth of I , Lσ and the variance of the electricity price.
This means that (i) the joint scheduling of workload and
power storage can further improve the power cost savings,
and (ii) the amount of cost savings is directly proportional
to the number of DCs, the request rate, and the spatial and
temporal change rate of electricity price. Specifically, we find
that cost savings of up to 10%–30% of the total monetary
costs can be obtained by using workload and storage schedul-
ing. However, this kind of power cost reduction depends on
the consideration of spatial and temporal differences of unit
power cost, which has nearly no social benefits if the unit cost
is decoupled from clean power generation [13]. Therefore,
we will next check the efficiency of our proposed scheme
from the point of view of clean power usage.

Fig. 12 shows the monetary costs and the total power costs
in the case of different pollution factors γi,n and that with-
out γi,n, where ’1×’ and ’2×’ represent [γi,TP, γi,SP, γi,WP]
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FIGURE 12. The Power costs and monetary costs obtained by the joint
optimization.

TABLE 9. The fraction of clean power to the total power bought.

equal to [0.5, 0.4, 0.3] × 10−3 and [1, 0.8, 0.6] × 10−3,
respectively. The corresponding pollution costs can be
obtained by deducting the monetary costs from the total
power costs. On the other hand, Table 9 shows the corre-
sponding fractions of bought clean power. It is observed that
when introducing the pollution factors γi,n or increasing the
differences among the γi,n of different ECs, the monetary
costs grow, while the fraction of clean power is improved.
This means that our proposed method can realize a trade-off
between monetary costs and pollution costs, by which the
fraction of clean power can be improved to 50%–60% of the
total bought power.

V. CONCLUSION AND FUTURE WORK
In this paper, we focused on the eco-friendly and delay-aware
power cost minimization of geo-distributed DCs in a deregu-
lated electricity market. We formulated this problem as prob-
lem P and proposed the SCP algorithm to obtain the globally
optimal non-integer solution. Based on this, we obtained
the quasi-optimal mixed-integer solution of problem P .
Simulation results revealed that our method could effectively
cut down the total power cost and encourage an eco-friendly
use of power, as well as reduce the delay of requests,
achieving monetary cost savings of up to 10%–30%. More
importantly, our proposed PIF-based power cost model can
greatly improve the use of cleaner power and encourage
power saving. For example, for a 1-MW DC, the amount of
clean power it uses can reach 60% of the total power it buys.

Some interesting improvements toward the adjustment
strategies of the integer-constrained variables, not reported
here due to space constraints, can be found in [35]. As part of
our future work, we will explore better methods to predict the
future unit cost of power storage and distributed algorithms
to realize workload scheduling under transmission delay
considerations.

APPENDIX A
PROOFS ABOUT THE OPTIMALITY OF THE SCP
ALGORITHM
In Proposition 1, we prove that the optimal solution for those
qi,n with q∗Li,n < 0 in problem (7) is zero. Based on this,
we prove that our proposed SCP algorithm can obtain the
globally optimal solution of problemP ′ via Proposition 2 and
Proposition 3.
Proposition 1: Ignoring 1i, ∀qi,n in problem (7), if the

optimal Lagrange solution q∗Li,n obtained by Eq. (23) is less
than zero, then its optimal solution q∗i,n of problem (7) with
the constraint qi,n ≥ 0 is zero, where i ∈ I, n ∈ Ni.

Proof: First, we assume that there is only one element
of the optimal Lagrange solutions obtained by Eq. (23) that
is less than zero, whose index is denoted by (i,m), m ∈ Ni,

i ∈ I, i.e., qi,m is the only variable with q∗Li,m < 0. Then it is
true that FPCi (q∗Li ) < FPCi (qi,m,q∗Li (qi,m)), where q∗Li (qi,m)
is the optimal Lagrange solution, obtained by Eq. (23) after
removing m from Ni, with the constraint

∑
n∈Ni&n6=m qi,n =

Qconsi + Qbati − qi,m.
Secondly, we denote fn(qi,n) = ai,nq2i,n + pi,nqi,n, and

rewrite (7) as FPCi (qi) =
∑

n ai,nq
2
i,n+pi,nqi,n =

∑
n fn(qi,n).

Then (A-1) can be obtained as

FPCi (q∗Li ) < FPCi (qi,m,q∗Li (qi,m))

⇒ −

∑
n6=m

{
fn(q∗Li,n(qi,m))− fn(q

∗L
i,n)
}

qi,m − q∗Li,m

<
fm(qi,m)− fm(q∗Li,m)

qi,m − q∗Li,m

⇒

∑
n6=m

{
fn(q∗Li,n(qi,m))− fn(q

∗L
i,n)
}

αi,n

{
q∗Li,n(qi,m)− q

∗L
i,n

}
<

fm(qi,m)− fm(q∗Li,m)

qi,m − q∗Li,m

⇒

∑
n6=m

{
fn(q∗Li,n(0))− fn(q

∗L
i,n)
}

αi,n

{
q∗Li,n(0)− q

∗L
i,n

} <
fm(0)− fm(q∗Li,m)

0− q∗Li,m
.

(A-1)

Here, q∗Li,n(0) is the q
∗L
i,n obtained by Eq. (23) when qi,m = 0,

and αi,n is equal to ai,nXi,m according to (23), where Xi,m is
Xi after eliminating m from Ni.

Thirdly, because all fn(·) are strictly increasing and convex,
and q∗Li,m < 0 < q+i,m where q+i,m represents qi,m > 0, we can
obtain (A-2) as follows.

fm(q
+

i,m)− fm(0)

q+i,m − 0
>

dfm(x)
dx

∣∣∣∣
x=0

>
fm(0)− fm(q∗Li,m)

0− q∗Li,m
(A-2)

In addition, it can be proved by contradiction that
q∗Li,n(q

+

i,m) < q∗Li,n(0) < q∗Li,n . Thus we can obtain (A-3) as

VOLUME 8, 2020 96483



C. Sun et al.: Eco-Friendly Powering and Delay-Aware Task Scheduling in Geo-Distributed Edge-Cloud System

below.

fn(q∗Li,n(q
+

i,m))− fn(q
∗L
i,n(0))

q∗Li,n(q
+

i,m)− q
∗L
i,n(0)

<
dfn
dx

∣∣∣∣
x=q∗Li,n(0)

<
fn(q∗Li,n(0))− fn(q

∗L
i,n)

q∗Li,n(0)− q
∗L
i,n

(A-3)

Finally, based on(A-1), (A-2) and (A-3), we can
obtain (A-4) as

∑
n6=m

{
fn(q∗Li,n(q

+

i,m))− fn(q
∗L
i,n(0))

}
αi,n

{
q∗Li,n(q

+

i,m)− q
∗L
i,n(0)

} <
fm(q

+

i,m)− fm(0)

q+i,m − 0

⇒

∑
n6=m

{
fn(q∗Li,n(q

+

i,m))− fn(q
∗L
i,n(0))

}
< fm(q

+

i,m)− fm(0)

⇒ FPCi (0,q∗Li (0)) < FPCi (q+i,m,q
∗L
i (q+i,m)) . (A-4)

This means that the optimal solution for qi,m in (7) whose
q∗Li,m < 0 with the constraint qi,m ≥ 0 is zero. Based on
the above, the case that there is only one qL∗i,n < 0 has been
proved. Then we can similarly prove the case with two, three
or more qL∗i,n < 0. �

Proposition 2: The inner iteration procedure of the SCP
algorithm shown in lines 7-9 can obtain the optimal solution
of problem (7) for the ith data center.

Proof: First, in the t-th, t ∈ {1, · · · ,T } iteration
of Algorithm 1, where T is the total number of iterations,
the optimal solution of any qi,n which has qL∗i,n < 0 is equal to
zero according to Proposition 1.

Secondly, ∀qi,n, n ∈ Ni whose qL∗i,n ≥ 0, the constraint
qi,n ≥ 0 is a slack constraint [32], so that its optimal solution
in (7) is the qL∗i,n obtained by Eq. (23).

Thirdly, we need to prove that zero is the final optimal
solution of the qi,n set to zero in the t-th iteration, although it
is optimal in the t-th iteration. When t = T − 1, the optimal
solutions of the remaining qi,n can be obtained in the T th
iteration, all of which are no less than zero, and there are no
changes of the qi,n set to zero in the (T−1)-th iteration.When
1 ≤ t < T −1, there is at least one new n added toN−i in the
(t+1)-th iteration.We denote qi,n1 as the one set to zero in the
t-th iteration, and then denote q∗L,ti,n1

and ν∗L,ti as the optimal
Lagrange solution of qi,n1 and the corresponding marginal
cost obtained by (25) before setting qi,n1 to zero in the
t-th iteration. Considering q∗Li,n(q

+

i,m) < q∗Li,n(0) < q∗Li,n as
stated in the proof of Proposition 1, when we set qi,n1 = 0
in the t-th iteration, the optimal Lagrange solutions of the
remaining qi,n obtained in the (t + 1)-th iteration are all less
than those obtained in the t-th iteration. Thus ν∗L,ti > ν

∗L,t+1
i ,

which can be further extended to ν∗L,t1i > ν
∗L,t2
i , t1 < t2. The

marginal cost of q∗L,ti,n1
is ν∗L,ti . If qi,n1 = 0 is not the finally

optimal solution, then it would be recalculated as in (23) in
the (t +m)-th iteration, m = {2, · · · ,T − t − 1}, which must
be larger than zero, and the corresponding marginal cost is
ν
∗L,t+m
i . Then ν∗L,t+mi > ν

∗L,t
i , because q∗L,t+mi,n1

> 0 >

q∗L,ti,n1
, which is a contradiction. Therefore, we can conclude

that zero is the final optimal solution of the qi,n set to zero in
the t-th iteration.

Based on the above, the complete N−i can be obtained in
the (T − 1)-th iteration, in which the optimal solutions of all
qi,n are zero, and the optimal solutions of all qi,n ∈ Ñ−i can
be solved in the T -th iteration. In addition, it can be easily
proved that T ≤ max{N1, · · · ,NI } + 1, so that it is true that
the inner iteration procedure of the SCP algorithm shown in
lines 7-9 can obtain the optimal solution of problem (7) for
the ith data center with finite repeated rounds. �
Proposition 3: Algorithm 1 is guaranteed to obtain the

optimal non-integer solution of problem P shown in (11)
Proof: Denote the continuity-relaxed problem P and

problem P1 as problem P ′ and problem P1′, respectively.
Assume that problem P1′ is convex, which will be proved
in Appendix B. If the optimal values of all qi,n substituted
into problem P1′ satisfy the non-negativity constraints, then
problem P1′ is equal to problem P ′ and can be solved by the
standard SQP algorithm. Then we will prove that all optimal
qi,n ≥ 0 can be obtained by Algorithm 1 as follows.
Different from the individual power cost problem for a

single DC in problem (7), for problem P ′, the final optimal
solution of the qi,n set to zero in the t-th iteration may be
larger than zero. Thus we add lines 10–12 into Algorithm 1
to move the n whose qL∗,ti,n < 0 but q∗i,n > 0 back to Ñ−i . We
denote qi,m as the one whose qL∗,ti,n < 0 but q∗i,n > 0, denote
ε+ > 0 as an infinitesimal positive number, and denote
FPC,t+mi as the optimal power cost for the i-th data center
in the (t + m)-th iteration, where m = {1, · · · ,T − t}. The
marginal cost of qi,m = 0 is pi,m and those of all qi,n solved
by Lagrange method in the (t + m)-th iteration are ν∗L,t+mi .
When keeping the total amount of power

∑
n∈Ni&n6=m

qi,n +

qi,m unchanged, lim
ε+→0

FPC,t+mi (ε+) = FPC,t+mi (0) + pmi ·

ε+ − ν
∗L,t+m
i · ε+, where FPC,t+mi (∗) represents the opti-

mal FPC,t+mi when qi,m = ∗. If pi,m < ν
∗L,t+m
i , then

FPC,t+mi (0) > FPC,t+mi (ε+), which means qi,m = 0 is not the
optimum and m needs to be moved back to Ñ−i . Otherwise,
FPC,t+mi (0) < FPC,t+mi (ε+), which means qi,m = 0 is
still the optimum in the (t + m)-th iteration, and is the final
optimum when m = T − t .

In addition, it can be easily inferred that T ≤ 2 ∗ (
I∑
i=1

Ni).

There are two steps leading to the iterations in the SCP
algorithm, including (i) setting those qi,n = 0 whose optimal
Lagrange solution q∗Li,n < 0 temporarily, (ii) recalculating
their optimal values if zeros are not the optimal solutions.
In the worst case, all q∗Li,n are less than zero, which causes
I∑
i=1

Ni iterations. Meanwhile, those final optimal solutions are

all greater than zero instead of equal to zero, which causes

another
I∑
i=1

Ni iterations, so that the algorithm can converge

with no more than 2 ∗ (
I∑
i=1

Ni) iterations.
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In conclusion, Algorithm 1 is guaranteed to obtain the
optimal solutions of all qi,n limited by qi,n ≥ 0, so that
it is sure to obtain the optimal non-integer solution of
problem P ′. �

APPENDIX B
CONVEXITY CONDITION FOR PROBLEM P1
In this section, we will give proofs about the condition that
η′i(δi), or η

′
i for short, needs to meet to guarantee the convexity

of the continuity-relaxed problem P1 defined on the convex
set C. Here, C is a convex set composed of all constraints
in (28) except the integer restrictions for macti .
Proposition 4: For any function of η′i(δi) whose first

and second partial derivatives are all existent and continu-

ous, as long as the condition 2 ·
dη′i
d1i
+

d2η′i
d(1i)2

· 1i ≥ 0 is

met in the convex set C, where δi = 1i
THCi

and ∀i ∈ I, then
problem P1 is a convex programming problem.

Here, T and H are the length and the number of sub-slots,
respectively. Proof: [Proof] For any function of η′i(δi)
whose first and second partial derivatives are all existent and
continuous, ∀i ∈ I, we can obtain the first and second partial
derivatives of 8i. Based on this, the Hessian Matrix of 8i in
problemP1 can be easily obtained, and the Leading Principal
Minors 0i,1, 0i,2 and 0i,3 are given as follows.

0i,1 =
2θ1,i

(macti ûi − λ̂i)3

0i,2 =
4θ1,iθ2,i(sαi )

2

Xi(macti ûi − λ̂i)3

0i,3 =
8θ1,iθ22,i(s

α
i )

2(Qconsi + η′i1i + 0.5XiYi)

(Xi)2(macti ûi − λ̂i)3
·
d2(η′i1i)

d(1i)2

As we have stated that macti ûi − λ̂i > 0, Qconsi + η′i1i ≥ 0,
Xi > 0, Yi > 0, etc. above, it can be concluded that both
3i,1 > 0 and 3i,2 > 0 are true in the convex set C. 3i,3 ≥ 0

is also true in the case of
d2(η′i1i)
d(1i)2

= 2 ·
dη′i
d1i
+

d2η′i
d(1i)2

·1i ≥ 0.

Therefore, if 2 ·
dη′i
d1i
+

d2η′i
d(1i)2

·1i ≥ 0, the Hessian Matrix of
8i is positive semidefinite in the convex set C.
Furthermore, because a sum of convex functions is also a

convex function according to [32],8 is convex in the convex
set C and the continuity-relaxed problem P1 is a convex

programming problem when 2 ·
dη′i
d1i
+

d2η′i
d(1i)2

·1i ≥ 0 , ∀i ∈ I
for any η′i(δi) whose first and second partial derivatives are all
existent and continuous. �
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