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Abstract— A simulation study aimed at investigating the main
features in dc and small-signal operating conditions of the hot-
electron graphene base transistor (GBT) for analog terahertz
operation is presented. Intrinsic silicon is used as reference
material. The numerical model is based on a self-consistent
Schrödinger–Poisson solution, using a 1-D transport approxi-
mation and accounting for multiple-valley and nonparabolicity
band effects. Some limitations in the extension of the saturation
region and in the output conductance related to the finite
quantum capacitance of graphene and to space charge effects
are discussed. A small-signal model is developed that catches
the essential physics behind the voltage gain and the cutoff
frequency, which shows that the graphene quantum capacitance
severely limits the former but not the latter. According to simu-
lations carried out within the ballistic transport approximation,
a 20-nm-long GBT can achieve at the same time a voltage gain
larger than 10 and a cutoff frequency largely above 1 THz within
a reasonably wide bias range.

Index Terms— Graphene, graphene base transistor (GBT),
hot-electron transistor (HET), terahertz operation.

I. INTRODUCTION

IN THE last decade, graphene has gained the scientific
community’s attention as a potential candidate for impro-

ving the performance of electronic devices operating at RF
frequencies. Its 2-D nature [1] with high-speed massless-
like carriers, group velocity around 108 cm/s [2]–[4], and
long enough carrier mean-free path at room temperature to
ensure quasi-ballistic transport at sizes compatible with CMOS
devices, are indeed quite attractive. In particular, after the first
demonstration of graphene field effect transistors (GFETs) [4],
remarkable RF performance has been achieved in terms of cut-
off frequency (in the range of hundreds of gigahertz [5], [6]),
and various RF applications have been investigated [7], [8].
The absence of a bandgap is, however, responsible for GFETs
suffering from the lack of drain current saturation, ultimately
limiting their potential use in RF circuits.

Recently, a novel approach to exploit the properties of
graphene in RF devices was proposed in [9], leading to
the graphene base transistor (GBT) concept. In this new
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perspective, graphene is not used as a semiconductor channel
material with current flowing on its plane, but rather as a
highly-conductive monolayer semimetallic film forming the
transistor base, almost transparent to the current flowing in the
normal direction. In [9], the GBT is reported to be capable
of addressing the issues left unsolved by the GFET, i.e.,
high on–off current ratio, drain-current saturation, and power
amplification.

In this paper, we investigate the behavior of the GBT by
means of numerical simulations based on a full-quantum trans-
port model coupled with Poisson’s equation, going beyond
the analysis carried out in [9] for several aspects. Namely,
space charge effects due to traveling electrons as well as band
structure effects in the semiconducting layers, such as multiple
ellipsoidal valleys including nonparabolicity corrections, are
fully accounted for. Some peculiar features of the device char-
acteristics are highlighted and explained. Moreover, a small-
signal model is presented, which catches the essential device
physics in the active region and clarifies the dependence of the
cutoff frequency fT and of the intrinsic voltage gain Av0 on
the device parameters. From the above analysis, optimization
guidelines for terahertz operation are suggested.

This paper is organized as follows. In Section II, details on
the device structure and on the model used in the simulations
are provided. In Section III, the device I–V characteris-
tics are presented and the peculiar features are illustrated.
In Section IV, the small-signal model including capacitive
effects, valid in the saturation region, is discussed. Finally,
conclusions are drawn in Section V.

II. DEVICE STRUCTURE AND NUMERICAL MODEL

A 1-D cross-section of the intrinsic part of the GBT is
shown in Fig. 1 along with a qualitative band diagram in the
active operating region. The device is obtained by stacking a
metallic region (emitter), a semiconducting or insulating layer
[emitter–base insulator (EBI)], a graphene monolayer (base),
another semiconducting or insulating layer [base-collector
insulator (BCI)], and a second metallic region (collector).
The graphene layer is supposed to be contacted as well.
The device behavior is similar to a conventional n-p-n bipolar
junction transistor: in the active operating region, electrons
are injected into the device from the emitter, a fraction
of them reaches the collector, while a—hopefully much
smaller—fraction is captured by the base or backscattered. The
EBI and BCI regions act as potential barriers for the elec-
trons: current flows by Fowler–Nordheim tunneling through
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Fig. 1. 1-D cross-section of the GBT and its conduction band diagram EC (z)
in the active operating region: μE/B/C is the emitter/base/collector Fermi level
and ED is the graphene Dirac energy. The other parameters are defined in
Section II.

the EBI barrier, the shape of which is modulated by the
VBE voltage, resulting in the transistor effect. As for the
EBI and BCI material, a semiconductor typically provides a
lower energy barrier �EBI (Fig. 1) and consequently larger
operating currents. Besides, it allows for a more efficient
carrier transport, because of its crystalline nature and higher
mobility.

An approximate 1-D device model is adopted: uniformity
is assumed in the x and y directions, so that the transverse
wave vector �kt ≡ (kx , ky) is conserved, while transport occurs
in the z direction. Transport through the valence band of
the semiconducting layers is ignored. This approximation is
appropriate when: 1) the largest applied voltages do not or
only slightly exceed the bandgap voltage EG /q , such that
electron-hole pair generation by band-to-band tunneling and
impact ionization are unimportant and 2) the value of �EBI is
smaller than EG /2, so that emission of electrons is favored
over emission of holes.

Electron transport is solved within the ballistic nonequi-
librium Green’s function (NEGF) formalism [10] using an
effective mass (EM) Hamiltonian. The neglect of any type
of scattering mechanism certainly leads to an overestima-
tion of the device performance, but can be roughly jus-
tified for the nearly deca-nanometer devices considered in
this paper, providing moreover a sort of performance upper
limit.

To correctly estimate the group velocity of high energy
electrons, in particular of those in the BCI region near the
collector, nonparabolic corrections to the EM model are intro-
duced, adopting the following energy-dispersion relation [11]
for a conduction-band valley having the principal axes aligned
with the reference axes as follows:

ε(1 + αε) = h̄2
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where ε = E − EC is the electron kinetic energy, EC is the
conduction band edge, E is the total electron energy, α is the
nonparabolicity factor, and h̄ is the reduced Planck constant.
Having defined the normalized transverse wavevector
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the following expression for the 1-D energy-dispersion relation
for a given �ζt (subband) is obtained
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z
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(3)

where εz is the longitudinal kinetic energy, i.e., εz = ε − εt ,
εt ≡ εt (ζt ) is the energy of the sub-band minimum measured
from EC given by the following:
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ζt =||�ζt ||, and

αζt = α
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, mζt = mz (1 + 2αεt ) . (5)

Equation (3) can be used to define an energy-dependent EM
m̃ζt ≡ m̃ζt (εz)

m̃ζt (εz) = mζt (1 + αζt εz) (6)

such that

εz = h̄2k2
z

2m̃ζt

. (7)

The expression (6) is used for εz > 0. To avoid an unrealistic
description of the dispersion relation inside the energy gap,
the parabolic expression m̃ζt = mζt is used for εz < 0. From
the above considerations, the nonparabolic 1-D Hamiltonian
for electrons in the EBI and BCI regions at a given �ζt in the
considered valley is

Ĥ�ζt
= EC + εt (ζt ) − qϕ(z) − h̄2

2
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∂
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)
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where q is the electron charge, ϕ(z) is the electrostatic
potential, and the EM m̃ζt is dependent through εz on both
the longitudinal position z and the total energy E .

In this paper, silicon is assumed as the material for the
EBI and BCI regions, with the z-axis oriented along the
〈100〉 direction. Such orientation gives rise to two families
of sub-bands (ladders) with different EMs and degeneracy
factors gv : the unprimed ladder with mx = mz = mt , my = ml

or my = mz = mt , mx = ml , and gv = 4; the primed ladder
with mx = my = mt , mz = ml , and gv = 2. The longitudinal
and transverse masses are ml = 0.92 m0 and mt = 0.19 m0,
respectively, with m0 the free electron mass. Moreover,
α = 0.5 eV−1 [12].

The Hamiltonian (8) is inserted into the NEGF formalism
in order to calculate the charge and the current (the latter
through the Landauer formula) for the sub-band corresponding
to the given �ζt and ladder. The total charge and current are
computed by means of numerical integrations in �ζt , eventually
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adding the results for the two ladders and accounting for
the degeneracy factors. Exploiting the cylindrical symmetry
of the Hamiltonian (8) with respect to �ζt , the integrals are
conveniently calculated in polar coordinates using a Gaussian
quadrature scheme in ζt with typically 20 grid points.

It could be objected that, due to the current injection
being controlled by the electron dynamics within an extremely
thin layer next to the emitter-EBI interface, an atomistic
Hamiltonian should be more appropriate. However, consis-
tently with the scope of this paper, aiming at investigating
the main device features, the simpler and faster EM model
(with nonparabolic corrections) is preferred here, which is
anyhow known to provide good results even when dealing
with phenomena occurring within extremely thin material
regions [13]–[15].

The simulation domain is composed of EBI, base, and
BCI regions. Open-boundary conditions are imposed at the
emitter and collector contacts by defining appropriate self-
energies. In particular, we assume that the emitter/collector
contact can be described by a Hamiltonian similar to (8)
with flat ϕ(z) and with EC replaced with μE/C − ξE/C , where
μE and μC = μE − qVCE are the emitter and collector Fermi
levels, respectively, and ξE/C is a parameter that describes
the degeneracy of the emitter/collector region (Fig. 1). Val-
ues ξE = 0.8 eV and ξC = 0.06 eV are used (Section III).
In addition, for simplicity, the emitter/collector Hamiltonian
is assumed strictly parabolic, with constant EMs equal to the
values of bulk silicon for the two ladders. The closed-form
expression of the self-energy in [10, Ch. 8], valid for a semi-
infinite lead, is used.

Regarding the appropriate treatment of the graphene layer,
the issue is far from being straightforward. The in-plane
transport properties of graphene have been intensively inves-
tigated both theoretically and experimentally. However, the
investigation of transport for electrons impinging onto the
graphene layer in the normal direction is still in an early
stage: studies can be found stating that graphene acts like a
barrier [9], together with other studies where it is assimilated
to a potential well [16]. In this paper, graphene is treated in
the following manner. As far as transport is concerned, merely
an imaginary retarded self-energy 	R

B = − j
B δ(z − zB )
independent of E is added to the semiconductor Hamil-
tonian (8) at the single grid point z = zB corresponding to
the location of the graphene sheet, with δ(z) the Dirac delta.
Such self-energy phenomenologically mimics the presence
of a base contact region, through which electrons can flow
in and out, thus allowing for a nonzero base current. The
base contact is assumed at thermodynamic equilibrium with
Fermi level μB =μE − qVBE . The value of 
B , which rep-
resents the coupling constant between the contact and the
rest of the device, is considered as a fitting parameter, to
be adjusted on the basis of future detailed transport stud-
ies of electrons across the graphene layer, or more simply
on measured base currents. It should be noticed that set-
ting 
B equal to zero is equivalent to ignoring the base
current. In this paper, the value 
B = 10−13 eV ·cm has
been used, which provides βF = IC /IB � 105 in the active
region.

In addition, the effect of graphene on the device electro-
statics is fully considered. The net electron density within the
device is calculated as follows:

n(z) = nSC(z) + δ(z − zB )nGR (9)

where nSC(z) is the contribution arising from the semiconduc-
tor and calculated with the NEGF formalism in the standard
way, while nGR is the net electron sheet density on the
graphene layer. The latter is computed from the graphene
Dirac band model, assuming an equilibrium distribution with
Fermi level μB =μE − qVBE, as follows:

nGR = 2(kB T )2

π(h̄vF )2

[
F1(η) − F1(−η)

]
(10)

where kB is Boltzmann’s constant, T = 300 K is the tempe-
rature, vF = 108 cm/s is the graphene Fermi velocity, F1 is
the Fermi–Dirac integral of order one, and η = [μB − ED +
qϕ(zB )]/(kB T ) the normalized difference between Fermi level
and Dirac energy, ED = EC − �B being the Dirac energy for
ϕ(zB ) = 0 and �B a constant, which depends on the EBI/BCI
semiconductor (Fig. 1). For silicon �B = 0.5 eV, calculated
as the difference between the graphene workfunction and the
silicon electron affinity. It should be noticed that nGR is positive
when η > 0, corresponding to an effective electron density in
the graphene sheet, nGR is negative when η < 0, corresponding
to an effective hole density.

The NEGF equations together with (10) are self-consistently
solved with the 1-D Poisson equation, which provides the
electrostatic potential ϕ(z). Dirichlet boundary conditions for
the potential are imposed at the emitter and collector contacts,
corresponding to the barrier heights �EBI and �BCI (Fig. 1).
Schottky barrier lowering due to image forces is neglected.

III. DEVICE DC OPERATION

In this section, making use of the model described above,
the fundamental aspects of the device behavior in dc are inves-
tigated. Two reference devices have been simulated as case
studies, both having the EBI/BCI regions made of undoped
silicon with tEBI = 3 nm: in the first one, hereafter called
GBT1, tBCI = 20 nm, in the second, called GBT2, tBCI = 10 nm.
The maximum total device length (23 nm for GBT1) should
roughly ensure the validity of the ballistic transport assump-
tion. For both devices, �EBI = �BCI = 0.2 eV. The choice of the
barrier height and of tEBI has been driven by the consideration
that a relatively low �EBI and a thin EBI layer are key
factors to increase the current injection and hence the device
speed [9], [17]. As far as the barrier height is concerned, the
search for materials providing a low Schottky barrier with
silicon has led to the exploration of a wide range of solutions:
titanium is one of the metals with the lowest Schottky barrier
for electrons on n-type silicon (0.5 eV) [18], while rare-
earth silicides allow for barriers lower than 0.4 eV [19], [20].
Considering that barrier lowering is not explicitly considered
in our model, the choice made here of �EBI = 0.2 eV appears
to be reasonable. Concerning the EBI layer thickness, the
chosen value tEBI = 3 nm is low but still within reach of the
present fabrication capabilities.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON ELECTRON DEVICES

0 0.2 0.4 0.6 0.8 1 1.2
VBE [V]

10
2

10
3

10
4

10
5

10
6

10
7

10
8

I C
 [

A
/c

m
2 ]

10
3

10
4

10
5

10
6

10
7

10
8

g
m

 [
S

/c
m

2 ]

VCE = 0.25V
VCE = 0.50V
VCE = 0.75V
VCE = 1.00V
VCE = 1.25V

Fig. 2. Turn-on characteristics (left axis) and transconductance (right axis) of
the device GBT1 defined in the text for different VCE voltages (color online).
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Fig. 3. Output current characteristics of the device GBT1 defined in the text
with tBCI = 20 nm calculated with both ladders (solid black lines) and with the
unprimed ladder only (dashed black lines) for VBE ranging from 0 to 1.3 V
in steps of 0.1 V. Red lines: output characteristics of the device GBT2 with
tBCI = 10 nm calculated with both ladders for VBE = 1.1, 1.2, and 1.3 V. The
negative differential resistance in the unsaturated region (low VCE ) is most
likely related to quantum resonance effects in the potential well (Fig. 5). The
phenomenon is still under investigation (color online).

The simulated turn-on and output characteristics of the
GBT1 device are reported in Figs. 2 and 3, respectively.
The maximum applied voltages are VBE,max = 1.3 V and
VCE,max = 1.5 V, corresponding approximately to the limits
within which impact ionization and valence band transport
can be neglected, as discussed in Section II. It should be noted
that such limitations on the operating voltages make the device
inadequate for use as a power amplifier: the design aimed at
here is oriented to analog high-frequency rather than high-
power operation.

From the two figures, distinct operating regions emerge. For
approximately VBE < 0.8 V, the current behaves roughly expo-
nentially with respect to both VBE and VCE (Fig. 2). To gain
physical insight, Fig. 4 shows the conduction-band diagram
at VCE = 1 V for different VBE values. The EBI tunneling
barrier gets thinner and thinner with VBE increasing above 0 V.
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Fig. 4. Conduction-band diagram of the device GBT1 at VCE = 1 V and
different VBE values. The graphene layer is located at z = zB = 3 nm. The
emitter/collector degeneracy parameters ξE and ξC are also shown (color
online).

Fig. 5. Conduction-band diagrams (white lines) and electron density
spectra in eV−1cm−3 (colored plots) of the device GBT1 for the two bias
points marked as A (left part: VBE = 1.2 V, VCE = 1 V) and B (right part:
VBE = 1.2 V, VCE = 1.05 V) in Fig. 3. The arrow points at the lowest quasi-
bound state within the potential well. The high density near z = 0 is due to
the fast-decaying electron states injected from the emitter into the silicon gap
(color online).

The discontinuity of the conduction-band slope occurring at
z = zB = 3 nm for VBE = 0 V (Fig. 4, black line) is due to
the graphene sheet charge, which turns out to be negative
(i.e., nGR > 0) with μB > ED − qϕ(zB ). At VBE = 0.33 V
(Fig. 4, red line), the discontinuity disappears, corresponding
to nGR = 0. At this bias point, μB = ED − qϕ(zB ) and the
graphene quantum capacitance reaches its minimum: a change
in VBE leads to only a small change of ϕ(zB ), and this in
turn leads to an inflection point in the turn-on curve, which is
clearly visible around VBE = 0.3 V. Accordingly, the device
transconductance (also reported in Fig. 2) is subject to a
small drop around this bias point. For VBE > 0.3 V, the
graphene charge becomes positive and the transconductance
starts increasing again.
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For approximately VBE > 0.8 V, two different behaviors
can be distinguished from Figs. 2 and 3 for any given VBE

value: an unsaturated region at low VCE , and a saturation
region at higher VCE , where the current is almost independent
of VCE . Besides, for a given VCE , the current first increases
with VBE and then decreases. The transition between unsatu-
rated and saturated behavior is shown better in Fig. 5, which
shows the conduction-band diagrams and the electron spectral
densities relative to the two bias points highlighted with the
marks A and B in Fig. 3. At VCE = 1 V (left plot) the device is
still in the unsaturated condition. This regime is characterized
by the presence of a potential well near z = zB , due to the
large positive charge present on the graphene layer, where
the Fermi level μB = − 1.2 eV is far below the Dirac point
energy ED − qϕ(zB ). The current is limited also by the
potential barrier, which is formed within the BCI layer close
to the graphene and is sustained by the negative space charge
due to the traveling electrons. The height of such barrier is
controlled by both the base and the collector voltages, thus
explaining the VCE dependence of the current. Within the
potential well, quasi-bound electron states are formed, which
in Fig. 5-left are clearly identified by the red density peaks
corresponding to the contributions given by the simulated
sub-bands (ζt values) and used for the integration process in
the transverse momentum space. Such quasi-bound electron
charge induces a large positive charge on the graphene layer.
Fig. 5-left corresponds almost to the edge of the unsaturated
region: a small increase of VCE (Fig. 5-right) reduces the
BCI barrier height and suppresses the quasi-bound states in
the well. As a consequence, the positive graphene charge
decreases, the Dirac point energy decreases as well, and
the barrier height is further lowered. At VCE = 1.05 V the
device is already in the saturated regime: the current is almost
independent of VCE , since the large majority of the electrons
are injected through the EBI tunneling barrier at energies
above the BCI barrier, as can be seen from the electron density
in Fig. 5-right.

The already mentioned nonmonotonic current behavior
with VBE for a given VCE (Fig. 2) can be explained in a similar
way, through the presence of a BCI barrier. Fig. 4 reports the
band diagrams for VBE = 1.15 V (blue curve) and VBE = 1.25 V
(green curve) for the same VCE = 1 V. It is seen that in this
operating condition the increase of VBE does not cause a
decrease of the Dirac energy, but rather a significant increment
of the positive graphene charge, which in turn develops the
BCI barrier, which eventually leads to a current decrease.

The considerations above explain the limited extension of
the saturation region. An additional concern is the origin of the
slope of the saturation current with VCE (output conductance).
This can be explained observing that, even if in saturation
the BCI barrier is low or absent, the collector voltage still
indirectly affects the current through the electrostatic influence
on the graphene charge and, hence, the Dirac potential, due
to the limited quantum capacitance of graphene. For com-
parison, Fig. 3 shows the output characteristics also of the
GBT2 device (tBCI = 10 nm). The effect of the smaller BCI
layer thickness is twofold. First, a significant improvement is
observed concerning the extension of the saturation region:

e.g., at VBE = 1.2 V, a VCE slightly above 0.5 V is sufficient
to suppress the BCI barrier (onset of saturation), as opposed
to the VCE � 1 V of the GBT1 device. On the other hand,
the output conductance is clearly degraded, representing a
possible limitation for the maximum achievable voltage gain.
This problem will be further investigated in the next section.

To understand the relative importance of the two sub-band
ladders on the total current, the complete GBT1 characteristics
(both ladders) are compared with those computed with only the
unprimed ladder in Fig. 3. Understandably, the primed ladder
only slightly modifies the current, since it is characterized
by the transport EM equal to the large longitudinal EM,
which considerably limits the tunneling current. However, it
is interesting to observe that its effect is to decrease, rather
than to increase, the current. This can be explained with the
electrostatic feedback: the slowly moving primed electrons
give a contribution to the total electron charge, which acts
in the sense of slightly increasing the EBI tunneling barrier,
thus reducing the injected unprimed current.

A final remark concerning the choice of the parameters ξE

and ξC . As can be seen from Fig. 4, the value of ξE = 0.8 eV
guarantees a sufficiently large energy range for carrier injec-
tion, including the energies in the potential well near z = zB ,
and it is therefore appropriate to mimic a metal contact. On the
other hand, injection from the collector is negligible, therefore
the chosen value ξC = 0.06 eV has little impact on the results
and allows to save energy grid points.

IV. SMALL-SIGNAL MODEL

In this section, a small-signal model is developed, which
is valid in the saturation regime and includes capacitive
effects. The following notation will be used to identify the
charges per unit area in the device: QGR indicates the charge
on the graphene layer, given by QGR = − qnGR , with nGR

defined in (10); QN is the total transport electron charge,
which results from the integration of the electron density in
the EBI and BCI semiconductor layers given by the NEGF
procedure; QE and QC are the sheet charges at the emitter and
collector metal contacts, respectively, obtained by applying
Gauss theorem at the contact interfaces and assuming zero
electric field within the external contact regions.

Instead of considering the terminal currents and charges
as functions of the applied voltages VBE and VCE , it is
convenient to work with the voltages VDE = VDB + VBE and
VDC = VDB + VBC , where VDB = η kB T/q , η being defined
in (10), is related to the energy difference between the Dirac
point and the Fermi level in the graphene layer. From (10)
it follows that QGR ≡ QGR (VDB) ≡ QGR (VDE − VBE ). Besides,
according to the analysis of the previous section and con-
sidering that the electron injection in saturation regime is
controlled essentially by the potential within the EBI layer, it is
reasonable to assume that IC ≡ IC (VDE) and IB ≡ IB (VDE). The
collector voltage affects the currents through its influence on
VDE . This is confirmed by Fig. 6, where IC and IB are drawn
versus VDE for two different values of the collector voltage
within the saturation region. It is seen that the approximation
works well in particular for large currents. The picture is
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more complex for the charges QN , QE , and QC , which are
also shown in Fig. 6. While QE ≡ QE (VDE ) is very well
satisfied, a small dependence on VCE is clearly visible for
QN and QC , for the former mainly at high voltages. This
can be simply explained considering a more intuitive semi-
classical (and again ballistic) transport picture within the BCI
layer, as follows. Since, as stated above, the electron current
density is controlled by the graphene Dirac potential [i.e.,
IC ≡ IC (VDE)], a variation of VCE does not affect the product of
the concentration and the mean velocity of those high kinetic
energy electrons, which are traveling within the BCI next to
the collector contact and have been injected from the emitter.
The variation of VCE , however, does affect their mean velocity
and concentration separately, due to the shift of the conduction
band edge and hence of their kinetic energy. This means that
QN must somehow depend on VCE . The VCE dependence is
more evident for QC , since it represents the sheet charge on
the collector contact, which is electrostatically dependent on
the traveling electron charge close to the collector. There-
fore, to maintain the discussion general, no simplification
is assumed for QN and QC , i.e., QN ≡ QN (VDE , VDC) and
QC ≡ QC (VDE , VDC). In addition, the displacement terminal
currents ĨE , ĨC , and ĨB are assumed to be related to the charges
by ĨE = Q̇E + Q̇N , ĨC = Q̇C , and ĨB = Q̇GR , where the dots
indicate time derivatives, as usual.

With the above assumptions, the standard linearization
procedure around the bias point leads to the small-signal
equivalent circuit shown in Fig. 7, where the differential
parameters are defined as follows:

ĝBE = d IB

dVDE

, ĝm = d IC

dVDE

(11)

CQ = dQGR

dVBD

, CDE = − ∂(QE + QN )

∂VDE

(12)

CDC = − ∂ QC

∂VDC

, Cm = ∂ QC

∂VDE

, Cn = ∂ QN

∂VDC

(13)

where all derivatives are computed at the bias point. For
reference, the differential capacitances are plotted versus VBE

Fig. 7. Small-signal equivalent circuit in saturation regime. The differential
parameters are defined in (11)–(13).
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Fig. 8. Differential capacitances defined in (12)–(13) versus VBE at
VCE = 1.5 V for the GBT1 device. Notice that for convenience −Cn is
reported (color online).

in Fig. 8 at VCE = 1.5 V for the device GBT1. From the small-
signal circuit, the following expression can be derived for the
variation of the Dirac potential

vDE = vBE CQ + vCE (CDC − Cn)

CQ + CDE + CDC − Cm − Cn
(14)

from which the device transconductance gm and output con-
ductance gCE are calculated as follows:

gm ≡
(

iC

vBE

)
vCE = 0

= ĝmCQ

CQ + CDE + CDC − Cm − Cn
(15)

gCE ≡
(

iC

vCE

)
vBE = 0

= ĝm(CDC − Cn)

CQ + CDE + CDC − Cm − Cn
. (16)

It is seen that the model implicitly includes the effect of the
nonzero output conductance, which is given by the variation
of the Dirac potential with the collector voltage, which in
turn modulates the current. It should be noticed that since
the graphene quantum capacitance CQ is not infinite, as
opposed to the case of an ideal metal, the variation of vDE

does not coincide with the variation of the base voltage vBE .
In particular, when CQ is near its minimum, which occurs
around VBE � 0.3 ÷ 0.4 V according to Fig. 8, vBE has a
reduced capability of controlling vDE , from which the already
observed drop of gm originates (Fig. 2). From (15) and (16)
the intrinsic voltage gain is written as follows:

Av0 = gm

gce
= CQ

CDC − Cn
. (17)
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At not too large VBE (low injection) the dependence of QN

on the collector voltage can be neglected. Hence, Cn can
be neglected and CDC tends to the capacitance per unit area
of the BCI layer, i.e., CDC − Cn � εSi/tBCI = 0.52 μF/cm2,
as confirmed by Fig. 8. For large VBE the situation is more
complicated, however the figure shows that CDC − Cn remains
comparable with εSi/tBCI . This indicates that tBCI plays a
major role in determining the output conductance and the
voltage gain: the small-tBCI device GBT2 has a larger output
conductance in saturation than GBT1 (Fig. 3) and a lower gain,
as shown in Fig. 9. Indeed, from Fig. 9 it appears that the
maximum Av0, which occurs at the largest VBE , drops from
nearly 15 to nearly 7 just by halving tBCI , consistently with
the previous considerations. Obviously, the limited quantum
capacitance of graphene is ultimately responsible for the
relative low Av0 values. This represents a serious issue for
the scalability of the device length.

From the small-signal equivalent circuit of Fig. 7 the cutoff
frequency fT is derived by setting the short-circuit current gain
equal to one. It results

fT = 1

2π

ĝm

CDE + CDC − Cm − Cn
≡ 1

2π

d IC

dQGR

(18)

where the last identity descends from the definitions (11)–(13)
and from the property that the sum of all charge contributions
amounts to zero. Interestingly, the cutoff frequency does
not suffer from the limitations introduced by the graphene
quantum capacitance. Its behavior versus VBE is shown in
Fig. 9 for the two devices and it is seen to exceed the 1 THz
threshold for a large bias range. The shorter device exhibits a
higher fT , as expected.

To gain a better insight of what ultimately limits fT , Fig. 9
also shows (dashed lines) for the two devices the cutoff
frequencies calculated using again (18), but accounting only
for the −∂ QN /∂VDE term in the denominator, which is part
of CDE , and neglecting the other capacitances. This represents
a sort of upper limit for fT , since it amounts to considering
only the capacitive effects due to the mobile electrons. It is

seen that the GBT1 device is not far from the upper limit
at high VBE , while the additive capacitances play a more
important role for GBT2. Any further improvement of fT for
GBT1 should therefore go through the use of materials with
lower EM and higher electron velocities. Even with silicon,
however, the device remains quite promising, since from Fig. 9
a margin seems to exist for achieving at the same time a
voltage gain larger than 10 and a cutoff frequency larger
than 1 THz.

V. CONCLUSION

The DC characteristics of silicon-based GBT devices
have been investigated by means of simulations based on
a full-quantum mechanical transport model accounting for
nonparabolicity and multiple-valley band effects in ballistic
conditions. The analysis has highlighted some peculiarities in
the device behavior, mainly related to the space charge effects
in the BCI layer, which are responsible for the formation of
an internal potential barrier and ultimately limit the extension
of the saturation region. The problem can be alleviated by
engineering the BCI layer (making it shorter), but a tradeoff
exists with the voltage gain, due to the limited quantum
capacitance of graphene.

A small-signal model has been developed, which catches
the essential physics behind the voltage gain and the cutoff
frequency in the saturation regime. It has been shown that,
in case a voltage gain of at least 10 is desired, the device
length cannot be scaled below 15–20 nm. Nonetheless, the
simulations show that a bias window exists within which it
is possible to achieve at the same time both a voltage gain
better than 10 and a cutoff frequency larger than 1 THz, up to
at least 3 THz. Even considering that electron scattering has
been totally neglected, this represents a quite promising result,
which stimulates new research on this type of devices.

We believe that the presented investigation represents a solid
and useful starting point which can guide future optimization
studies, devoted to explore systematically the parameter space
and the material choice.
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