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Abstract: Assessing forest stand conditions in urban and peri-urban areas is essential to support
ecosystem service planning and management, as most of the ecosystem services provided are a
consequence of forest stand characteristics. However, collecting data for assessing forest stand
conditions is time consuming and labor intensive. A plausible approach for addressing this issue
is to establish a relationship between in situ measurements of stand characteristics and data from
airborne laser scanning (LiDAR). In this study we assessed forest stand volume and above-ground
biomass (AGB) in a broadleaved urban forest, using a combination of LiDAR-derived metrics, which
takes the form of a forest allometric model. We tested various methods for extracting proxies of basal
area (BA) and mean stand height (H) from the LiDAR point-cloud distribution and evaluated the
performance of different models in estimating forest stand volume and AGB. The best predictors
for both models were the scale parameters of the Weibull distribution of all returns (except the first)
(proxy of BA) and the 95th percentile of the distribution of all first returns (proxy of H). The R2 were
0.81 (p < 0.01) for the stand volume model and 0.77 (p < 0.01) for the AGB model with a RMSE of
23.66 m3¨ha´1 (23.3%) and 19.59 Mg¨ha´1 (23.9%), respectively. We found that a combination of two
LiDAR-derived variables (i.e., proxy of BA and proxy of H), which take the form of a forest allometric
model, can be used to estimate stand volume and above-ground biomass in broadleaved urban forest
areas. Our results can be compared to other studies conducted using LiDAR in broadleaved forests
with similar methods.

Keywords: urban forest; Remote sensing; LiDAR; Stand volume; above-ground biomass; forest
allometric model

1. Introduction

In recent decades, considerable amounts of afforestation and reforestation projects have been
undertaken to address the increasing environmental issues related to climate change effects, urban
sprawl, soil reclamation, soil sealing and degradation, biodiversity loss, water and air purification, etc.,
in most cities [1–3]. These “new” forests, namely urban forest plantations, are normally established
over abandoned lands (e.g., former industrial sites) to enhance ecosystem services (ESS) for local
communities [4,5]. These forests are established by cities to achieve their regulatory requirements
for clean air, soil quality, and water management [6] while revitalizing livelihoods and human
well-being [7,8].

ESS provided by urban forest plantations are assessed on the bases of forest stand characteristics,
such as canopy height, stand density, stand volume, and biomass [9–11]. For example, Sandström et al.
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(2006) [12] reported a positive relationship between bird species richness, abundance and stand density
in urban and peri-urban landscapes. However, such an assessment is often time consuming and
expensive in terms of labor and costs for collecting field measurements of forest stands (e.g., tree
diameter and height) [13]. An alternative approach would be to collect the necessary data using remote
sensing technology through establishing empirical relationships between field measurements and
spectral data. With the rapid development of computing and remote sensing technology, active sensors,
such as Light Detection and Ranging (LiDAR), have emerged as promising tools [14–16]. LiDAR-based
applications have expanded rapidly in the past two decades to model leaf distribution [17], 3-D canopy
structure [18], spatial distributions of trees and canopies in complex topography [19,20], as well as
species diversity [21–24]. For example, Omasa et al. (2008) used airborne and portable laser scanners
to estimate the height of individual trees in Tokyo, Japan [25]. Shrestha et al. (2012) estimated the
above-ground biomass of an urban forest in Oklahoma, USA, using the 95th percentile of the LiDAR
point-cloud distribution [26] (see also Huang et al. 2013 [27]). Regardless of the growing body of
literature on LiDAR applications in urban landscapes, the effective predictors (i.e., LiDAR-derived
variables) of forest stand characteristics remain challenging because the large variations among forests
and landscapes. Substantially more effort is needed to establish LiDAR-based models that are both
cost-effective and suitable for sound estimations of tree allometry in different urban forest plantations.

In this study we assessed forest stand volume (VOL) and above-ground biomass (AGB) in an
urban forest area located in Northern Italy. We selected two variables derived from the LiDAR
point cloud distribution and combined them into a general forest allometric model, which takes the
following form:

Y “ β0pBAproxyq
β1pHproxyq

β2 (1)

where, Y represents a given forest stand characteristic, such as stand volume or above-ground biomass;
BAproxy and Hproxy are the LiDAR-derived variables representing, respectively, forest stand basal area
(BA) and mean tree height (H).

We tested various methods for extracting proxies of BA and H from the LiDAR point-cloud
distribution and assessed the performance of different models estimating forest stand characteristics.
The best models were validated using a Leave-One-Out Cross-Validation (LOOCV) method. If
successful, our investigation will be an essential step for assessing the ESS provided by urban forest
plantations (e.g., carbon storage).

2. Materials and Methods

2.1. Study Area and Stand Delineation

We based our study in an urban forest plantation located in the metropolitan area of Milan,
Northern Italy: Parco Nord Milano (PNM) (45˝53’71”N, 9˝20’7”E). The entire area covers ~600 ha,
with 100 ha as forest plantation and the remaining area as green space (e.g., tree rows, agricultural
areas) and other recreational facilities or artificial areas (e.g., sports fields). PNM was established in the
early 1980s as the result of a large afforestation plan supported by local authorities. Almost all of the
trees are broadleaved. The vegetation, microclimate, and soil characteristics of the study area have
been well documented by Sanesi et al. (2007) [28] and Marziliano et al. (2013) [10].

We collected quantitative measurements of the forest in PNM at 10 sample plots of 13 m radius
(~500 m2) in September 2012 (Figure 1). The field plots were selected to represent the variety of
species that were used in PNM upon its establishment (1983), e.g., Acer spp., Carpinus betulus, Fraxinus
spp., Prunus avium, Quercus cerris, Quercus robur, Tilia spp., and Ulmus spp. (for more details see
Marziliano et al. 2013; [10]). Moreover, plots were selected to represent three stages of forest stand
development (i.e., stand age class): (1) <17 year; (2) 18–25 years; and (3) >25 years. Within each plot, all
trees with a diameter equal or greater than 10 cm were identified by species and measured for their
diameter at breast height (DBH), height, crown width at four cardinal directions, and crown depth
(Figure S1). Field survey was undertaken using a Trimble GeoXT 6000 GPS. The GPS receiver had an
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estimated sub-meter accuracy after differential correction. From these measurements, we calculated
the plot-level BA, mean DBH, and mean H. Stand VOL and AGB were calculated using the allometric
equations of the Italian National Forest Inventory system [29]. For each tree, the following allometric
equation was used:

Yi “ β0 `β1DBHi
2H `β2DBHi (2)

were Yi is the forest stand characteristic for a tree (AGB or VOL), DBHi and Hi are, respectively, the
height and the diameter at breast height of the given tree. For each plot, total VOL and AGB were
calculated by summing the values of all the trees belonging to the plot.
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Figure 1. Location of the study area (Parco Nord Milano, PNM) in the Lombardy region, Northern
Italy. The 10 sample plots from which the ground-field data were obtained are shown as red dots.

2.2. LiDAR Data

Airborne LiDAR data were acquired on September 2012, using an LMS-Q680i scanner (RIEGL).
Extraction of the discrete points was conducted by the provider with the standard Riegl processing
procedures. The average point density was 10 points/m2, with a maximum of seven returns per
impulse. This results in a relative position accuracy of ˘10 cm and a relative height accuracy of
˘7 cm (see Table 1). All the points with a scan angle greater than 10 degrees were excluded from the
processing (Figure 2). After excluding the points, the average point density was 6 points/m2.
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and 3D View of Plot 23B, 17 years old.

Table 1. Characteristics of the Airborne LiDAR scanner and flight specification of the acquisition survey
conducted for this study.

Characteristic Specifications

Laser scanner Riegl LMS-Q680i
Point density ˘10/m2

Laser pulse rate 290 kHz
Wavelength Near infrared

Position accuracy ˘10 cm
Height accuracy ˘7 cm

Field of View 60˝

Number of returns ď7
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LiDAR point-cloud data were classified into ground and non-ground following Axelsson (2000)
using Terrascan (Terrasolid Ltd., Helsinki, Finland). Our data processing was carried out with ERDAS
Imagine 2014 (Hexagon Geospatial). From the non-ground point cloud, we extracted those points
located only in the forest areas using a detailed land-cover map derived from aerial photographs
(resolution = 0.30 m). For ground surface, we generated a Digital Terrain Model (DTM), at 1 ˆ 1 m
resolution, using an Inverse Distance Weighting interpolation. We scrutinized the quality of the DTM
using 16 ground control points from our previous topographic survey. The mean error was 0.11 m, with
a standard deviation of 0.15 m. Given the relatively flat topography of the study area, we considered
the DTM sufficiently accurate. The DTM was used to calculate the relative height above-ground of
the point cloud by subtracting the corresponding DTM height from each point. For each field-plot, a
circular buffer with a radius of 12.7 m was created. The total number of LiDAR points for each plot
were extracted and converted to ASCII files using the LAS tools (Rapidlasso, GmbH). The ASCII files
were analyzed in R 3.1.3 (R development Core Team) [30]. Points with a height value less than 2 m
were excluded from the dataset in order to reduce the effect of stones, shrubs and low vegetation
which were not included in the present study [31].

2.3. LiDAR-Derived Basal Area (BA)

We assumed that BA is related to the tree height distribution of all LiDAR points except the first
returns. By excluding the first returns (i.e., canopy layer), we omit the canopy layer from our analysis.
For each field plot, we analyzed the frequency distribution (Figure 3) of the point cloud by testing two
different methods: (1) Weibull probability density function and (2) area of the frequency histogram in
different percentile intervals.
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Several studies demonstrated that Weibull distribution is a reliable function for modeling
the diameter’s distribution in various even-aged forest stands of coniferous and/or broadleaved
species [32–34]. In this context, the “scale” parameter of the Weibull distribution appears to be related
to the median diameter of the forest stand, while the “shape” parameter represents the skewness
of the distribution [35]. For each plot, we fitted a two-parameter Weibull distribution function
using the Broyden–Fletcher–Goldfarb–Shanno optimization algorithm available within the R package
“MASS” [36]. The goodness of fit was evaluated with the mean square error (MSE):

MSE “
1
n

n
ÿ

i“i

`

Ŷi ´Yi
˘2 (3)
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where, Ŷi and Yi are, respectively, the theoretical and observed values of the probability density
estimated at 0.5 m intervals. The normalized mean square error (MSEn) was calculated after
normalizing the MSE by the means of the fitted and empirical distributions.

We also calculated the area of the frequency histogram of the point-cloud distribution within
a range of intervals: from the minimum height (i.e., 2 meters) to the 10th (Anofirst0_10), 20th
(Anofirst0_20), 30th (Anofirst0_30), 40th (Anofirst0_40), 50th (Anofirst0_50), 60th (Anofirst0_60) and 70th
percentile (Anofirst0_70).

2.4. LiDAR-Derived Mean Stand Height

The first returns of LiDAR represent the top of the canopy layer. Consequently, we analyzed the
distribution of these points to extract a proxy of the mean stand height (Figure 3). This was done by
using two different methods: (1) percentile of the distribution, i.e., 90th (Percfirst90), 95th (Percfirst95)
and 99th (Percfirst99) percentiles; and (2) area of the frequency histogram, i.e., from the 80th to the
90th percentile (Afirst80_90), from the 80th to the 99th percentile (Afirst80_99), from the 90th to the 95th
percentile (Afirst90_95), from the 90th to the 99th percentile (Afirst90_99), and from the 95th to the 99th
percentile (Afirst95_99).

2.5. Model Development

We developed our empirical models starting from the general equation (Equation (1)) and
selected the best-supported models estimating VOL and AGB. In each model, we considered two
LiDAR-derived variables as proxies of basal area and mean stand height. We also tested the influence
on the model performance of the interaction term (BA ˆ H). Model parameters were calculated using
the logarithmic form [14,37,38]:

lnVOL “ β0 `β1lnpBAproxyq `β2lnpHproxyq (4)

lnAGB “ β0 `β1lnpBAproxyq `β2lnpHproxyq (5)

where, BAproxy is one of the LiDAR-derived variables for basal area (e.g., Weibull scale) and Hproxy is
one of the LiDAR-derived variables for mean stand height (e.g., Percfirst90). The back-conversion to
the multiplicative form introduces a bias that was corrected by adding half of the residual variance to
the intercept before conversion [39]. The best-supported models were selected on the basis of the AIC
(Akaike’s information criterion) value.

Each of the selected models was validated using the LOOCV procedure due to the limited number
of sample plots. This procedure involves several iterative steps; for each step one of the observations
was excluded from the model development. The resulting equation is then used to predict the response
variable(s) for the excluded observation. A root mean square error of cross-validation (RMSEcv) was
calculated at the end of the procedure and compared to the standard error of the regression (i.e., RMSE).
The LOOCV procedure was performed using the DAAG R package [40].

3. Results

3.1. Basal Area (BA)

The scale parameter of the Weibull distributions for all LiDAR points, except the first
returns (wbnofirst), varied from 5.47 to 11.77, with a mean value of 8.36 and standard deviation
(SD) of 2.08 (Figure 4). We tested the relationship between wbnofirst and ground measurements
with correlation analysis. The wbnofirst values were highly related to field measurements of BA
(Pearson = 0.78) and DBH (Pearson = 0.81) (Table 2). The MSEn of each Weibull distribution ranged
from 6% to 32%, with the lowest MSEn found in the youngest plot, which were aged 12 years since
plantation. The highest MSEn was found in one of the oldest plots (1A; 29 years old). Overall, the
MSEn was lower in the five plots that were <25 years old (6.94%, 13.18%, 13.41%, 15.27%, and 15.82%)
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than the five plots of ě25 years old (20.92%, 27.18%, 25.27%, 32.71%, and 23.7%). This is likely due to
the characteristics of the height distributions that appeared to be bimodal as forests age increased.
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Table 2. Pearson correlation coefficient between LiDAR derived variables and ground measurements.
BA is basal area; DBH is mean diameter at breast height; H is Height mean; Anofirst0_10, Anofirst0_20,
Anofirst0_30, Anofirst0_40, Anofirst0_50, Anofirst0_60 and Anofirst0_70 are the areas calculated from
the height distribution of the LiDAR points of all returns except the first between 0 and the 10th
percentile, 0 and the 20th percentile, 0 and the 30th percentile, 0 and the 40th percentile, 0 and the 50th
percentile, 0 and the 60th percentile and 0 and the 70th percentile, respectively; Afirst80_90, Afirst80_99,
Afirst90_95, Afirst90_99, Afirst95_99 are the areas calculated from the height distribution of the LiDAR
points belonging to the first return between the 80th and the 90th percentile; the 80th and the 99th
percentile, the 90th and the 95th percentile, the 90th and the 99th percentile and the 95th and the 99th
percentile, respectively.

LiDAR Derived Variables Forest Stand Measurements

BA DBH
wbnofirst 0.78 0.81

Anofirst0_10 0.23 ´0.08
Anofirst0_20 0.39 0.13
Anofirst0_30 0.38 0.08
Anofirst0_40 0.36 0.08
Anofirst0_50 0.33 0.05
Anofirst0_60 0.33 0.05
Anofirst0_70 0.36 0.09

H
Afirst80_90 ´0.36
Afirst80_95 ´0.47
Afirst80_99 ´0.51
Afirst90_95 ´0.57
Afirst90_99 ´0.68
Afirst95_99 ´0.62
Percfirst90 0.92
Percfirst95 0.91
Percfirst99 0.89
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We also analyzed the relationship between the area of the frequency histogram of the point-cloud
distribution and ground measurements of BA (range: Anofirst0_10, Pearson = 0.23; Anofirst0_20,
Pearson = 0.39) and DBH (range: Anofirst0_50, Pearson = 0.05; Anofirst0_60, Pearson = 0.13) (Table 2).
In this case, correlation coefficients were significantly lower compared to the ones derived from the
Weibull distribution.

3.2. Mean Stand Height

We tested the relationship between the LiDAR-derived variables collected from the top of
the canopy layer (i.e., height distribution of the first returns) and ground measurements of the
mean stand height (H): Percfirst90, Percfirst95 and Percfirst99 were highly correlated with the mean
stand height (Pearson > 0.89) (Table 2). As for the relationship between the area of the frequency
histogram of the point-cloud distribution (i.e., the first returns) and H, the Pearson coefficients ranged
from ´0.36 (Afirst80_90) to ´0.68 (Afirst90_99). Considering that the purpose of the study was to select
a LiDAR-based variable as a proxy of mean stand height, which is positively correlated with VOL and
AGB, we did not include the variables associated with the area of the frequency histogram for mean
stand height in our final models.

3.3. Model Selection and Validation

We selected the best-supported models explaining VOL and AGB from the 48 models (8 proxies
of BA ˆ 3 proxies of H ˆ 2 presence/absence interaction term) generated from all combinations
of the LiDAR-derived variables (Figure 5). The R2 ranged from 0.72 to 0.84 (Table 3). In general,
models estimating VOL performed better than those estimating AGB. The lower performance of the
AGB model is probably due to the presence of different tree species and consequently different wood
densities, which are not delectable from LiDAR. The inclusion of the interaction term slightly increased
the R2 and AIC. Given the low degrees of freedom available for the analysis (n = 10), we selected the
best models using the AIC to reduce overfitting effects. Therefore, models with the interaction term
were not included in the final selection.
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Table 3. R2, Akaike information criterion (AIC), Root mean square error (RMSE) and Root mean square
error from cross validation (RMSEcv) of the best models for selected models. RMSE is expressed
in m3¨ha´1 for forest stand volume (VOL) and in (Mg¨ha´1) for above-ground biomass (AGB).
(i) Indicates the presence of an interaction term and bold characters indicates the best models.

Response Variable Model R2 AIC RMSE RMSEcv

ln VOL (m3¨ ha´1)

ln wbnofirst + ln Percfirst95 0.81 4.59 23.66 (23.3%) 32.86 (32.3%)
ln Anofirst0_10 + ln Percfirst90 0.76 6.81 26.19 (25.7%) 35.64 (35%)
ln wbnofirst + ln Percfirst95 (i) 0.81 6.58 23.67 (23.3%) 34.1 (33.5%)

ln Anofirst0_20 + ln Percfirst95 (i) 0.84 4.71 20.18 (19.8%) 33.9 (33.3%)

ln AGB (Mg¨ ha´1)

ln wbnofirst + ln Percfirst95 0.77 4.8 19.59 (23.9%) 26.89 (32.9%)
ln Anofirst0_10 + ln Percfirst90 0.72 6.81 21.52 (26.3%) 28.76 (35.1%)
ln wbnofirst + ln Percfirst95 (i) 0.77 6.79 19.63 (24%) 27.81 (34%)

ln Anofirst0_20 + ln Percfirst95 (i) 0.80 5.31 17.97 (22%) 31.11 (38%)

The selected model forms are (Table 4):

lnVOL “ β0 `β1ln
´

wbno f irst

¯

`β2ln
´

Perc f irst95
¯

(6)

lnAGB “ β0 `β1ln
´

wbno f irst

¯

`β2ln
´

Perc f irst95
¯

(7)

where, wbnofirst is the “scale” parameter of the Weibull distribution fitted on all LiDAR points except
the first returns; Percfirst95 is the 95th percentile of the height distribution of LiDAR first returns. Both
models were back-converted into their multiplicative form by adding half of the residual variance to
the intercept (0.0297 and 0.030, respectively):

VOL “ 1.50 ˚wb1.49
no f irst ˚ Perc f irst950.37 (8)

AGB “ 2.52 ˚wb1.44
no f irst ˚ Perc f irst950.19 (9)

the R2 was 0.81 (p = 0.001383) for the VOL model and 0.77 (p = 0.001988) for the AGB model; the AIC was
4.59 and 4.8, respectively (Figure 6). The two models were then validated using the LOOCV procedure.
The RMSE of the VOL model was 23.66 m3¨ha´1 (23.3%) and the RMSEcv was 32.86 m3¨ha´1 (32.3%).
The RMSE of the AGB model was 19.59 Mg¨ha´1 (23.9%) and the RMSEcv was 26.89 Mg¨ha´1 (32.9%).
For both VOL and AGB models, the close match between RMSEcv and RMSE suggested that the
regressions had good predictive powers and that the models were not overfitting [41,42].Remote Sens. 2016, 8, 339 10 of 14 
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Table 4. Selected models with estimated coefficients for predicting stand volume (VOL) and
above-ground biomass (AGB).

Response Variable Model β0 β1 β2

lnVOL β0 `β1ln pwbnofirstq `β2ln pPercfirst95q 0.38 1.49 0.37
lnAGB β0 `β1ln pwbnofirstq `β2ln pPercfirst95q 0.78 1.44 0.19

With these models, VOL increased by approx. 1.5% when wbnofirst increased by 1% and VOL
increased by approx. 0.4% when Percfirst95 increased by 1%. Similarly, in the AGB model, AGB
increased by approx. 1.4% when wbnofirst increased by 1% and AGB increased by approx. 0.3% when
Percfirst95 increased by 1%. Similar ratios between coefficients can be found in forest allometric models
based on field data measurements [43–45].

4. Discussion

Modeling VOL and AGB using LiDAR-derived variables as proxies of forest measurements
owes a large potential for future applications in forestry science, especially in urban forestry. For
example, LiDAR-based applications can be used in connection with urban forest inventories, to derive
information about the amount of carbon stored in the above-ground biomass (i.e., ecosystem service).
Here, we provided a method for extracting LiDAR-derived variables from the point-cloud distribution
and developed two models that take the form of a general forest allometric model to estimate stand
volume and above-ground biomass of an urban forest.

In selecting the best model, a generalization was preferred toward model accuracy as this allows
for broader application. Our findings are comparable with the outcomes of the other studies using
LiDAR in broadleaved forests. For example, Lefsky et al. (1999) estimated AGB of a deciduous forest
in Eastern Maryland (USA) using measurements of forest vertical structures derived from a full-wave
LiDAR sensor with a coefficient of determination of 0.81 and an RMSE of 45.8 Mg¨ha´1 (19.2% of
the mean) [46]. Popescu et al. (2004) used a tree-based approach to estimate stand volume and AGB
in a deciduous forest in Virginia (USA), obtaining an R2 of 0.39 (RMSE 52.84 Mg¨ha´1) and 0.32
(RMSE 44 m3¨ha´1) for stand volume and AGB, respectively [47]. More recently, Ioki et al. (2010) used
an area based approach to estimate stand volume in an urban forest with an R2 of 0.75 and an RMSE of
41.90 m3¨ha´1 (16.4% of the mean) [48].

Limitations of this study include the biases in the Weibull distribution fitting for the calculation
of the LiDAR-derived proxy of BA. Although a two-parameter Weibull appears appropriate for the
majority of the plot in the present study, a bias may emerge when the forest stand has a two-layered
structure (e.g., Figure 4g,h). In accordance with Coops et al. (2007), who obtained comparable results in
estimating BA of a Douglas-fir forest stand using Weibull distributions on LiDAR data [49], we suggest
the fitting of a Weibull distribution for each layer separately. Furthermore, in the methods tested
for extracting LiDAR-derived variables, the area of the frequency histogram in different percentile
intervals was found inadequate to be a proxy of either BA or H. The Pearson coefficients were low for
BA and negative for H. The negative correlation was probably due to the higher point density in the
upper part of the canopy in the younger plots with lower biomass.

Another limitation of this study was the accuracy of the allometric equations used to estimate
VOL and AGB in the field. Allometric equations can have a variable degree of error depending on
numerous factors, such as plot size and species composition [50]. Accuracy of allometric equations
were historically evaluated using destructive sampling; although more recently, Calders et al. (2015)
investigated the possibility of conducting such an assessment with nondestructive approaches using
Terrestrial Laser Scanner [51]. Therefore, this source of uncertainty in the developed models should be
considered as we are currently limited by the unavailability of such data.
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5. Conclusions

Assessing forest stand conditions in urban and peri-urban areas is essential to support ecosystem
service planning and management, as most of the ecosystem services provided are a consequence of
forest stand characteristics. LiDAR data has been largely proven to be the most accurate remote sensing
technique in estimating forest stand characteristics, but this application could lead to site-specific
results owing to the lack of model generalization [48,52–54]. This is particularly true in urban forest
areas where species composition, tree growth or stand dynamics are often very different from natural
forests. In this study we assessed forest stand volume and above-ground biomass in temperate
broadleaved urban forest, using a combination of LiDAR-derived metrics, which takes the form of
a forest allometric model. We tested various methods for extracting proxies of basal area and mean
stand height from the LiDAR point-cloud distribution and evaluated the performance of different
models in estimating forest stand volume and above ground biomass. Our results can be compared
to other studies conducted using LiDAR in broadleaves forests with similar methods. However, we
recognize that further work is required to test the approach used in this study in other urban forest
stand conditions and compositions.

Finally, the cost-effectiveness of using LiDAR techniques in urban areas needs to be stressed. As
explained above, collecting field data in urban environments requires considerable investment in terms
of labor and time due to the elevated fragmentation of forest stands, human presence/disturbance and
the presence of artificial elements and infrastructures. For the same reasons, establishing long term
sampling plots to monitor urban forests is also challenging and somewhat economically inconvenient.
In combination with a few sample plots, LiDAR allows researchers to overcome these issues and
estimate forest stand characteristics over large urban areas at considerably lower costs.

Supplementary Materials: The following are available online at www.mdpi.com/ 2072-4292/8/4/339, Figure
S1: Distributions of DBH (I) and H (II) measured in the field for each plot: (a) plot 28C (12 years); (b) 25A (16);
(c) 23b (17); (d) 18C (20); (e) 14A (21); (f) 9A (25); (g) 2A (28); (h) 2AND (28); (i) 1A (29); (j) 1D (29).
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Abbreviations

The following abbreviations are used in this manuscript:

AGB Above-ground biomass
AIC Akaike information criterion
BA Basal area
DBH Diameter at breast height
DTM Digital Terrain Model
ESS Ecosystem services
H Mean stand height
LiDAR Light detection and ranging
LOOCV Leave-One-Out Cross-Validation
MSE Mean square error
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MSEn Normalized mean square error
PNM Parco Nord Milano
RMSE Root mean square error
RMSEcv Root mean square error from cross validation
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