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The paper proposes a simple feedback model capable of explaining the evolution of various civilizations as determined
by historians and scientists. The forward path of this feedback model consists of a first-order system, accounting for an
accumulation process, in series with a pure time delay, and its feedback path consists of a constant possibly preceded by a
filter. To account for an eventual decline, a smoothed derivative term can also be added. It is shown how the evolution pattern
depends on few model parameters susceptible to interesting interpretations, thus providing a powerful “tool for thought”.
The relation of the suggested model with the Phillips model of a closed economy is also pointed out.
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1. Introduction
Since the seminal monumental work of A.J. Toynbee “A
Study of History”, published in 12 volumes between 1934
and 1961, of which an excellent abridged version by D.C.
Somervell is available (Toynbee, 1970), the analysis of the
evolution of civilizations has attracted a continual interest
(Blaha, 2004; Braudel, 1995; Napolitani, 2001; Targowski,
2004). The present authors, too, have been involved in
this kind of studies with the intent of using concepts and
ideas of dynamic system and control theory to describe
the behaviour of social entities (Lepschy & Viaro, 2003),
following a path that had been initiated by Lepschy and
Milo (1976). The main result of the mentioned papers has
been a mathematical description of the considered phenom-
ena in terms of linear ordinary differential equations whose
dependent variable is a suitable function of time. A similar
approach has been taken by Blaha (2002).

This paper tries to provide some additional insight into
the “mechanism” that generates the civilization evolution
along the lines of Lepschy and Viaro (2004). Therefore, the
accent is on qualitative behaviour, i.e. the evolution pat-
terns, rather than on quantitative data fitting, also because
measuring the level of a civilization or determining the
value of a suitable comprehensive societal indicator is not
an easy task and would require a prior agreement among
researches.

Instead, quantitative models have long been employed
in the study of the general aspects of a national or regional
economy because, in this case, commonly accepted indices
have been defined and large time series data of economic
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variables can easily be found. This fact, among others,
justifies the great success of macroeconomic models such
as those proposed by A.W. Phillips and his successors
(Phillips, 1954, 1957; Turnovsky, 2011). It is apparent that
these models refer to phenomena that are related to the level
of civilization. This connection suggests the use of sim-
ilar models to account for the dynamics of civilizations,
too. Another reason in favour of this choice is the almost
cyclic character of many macroeconomic phenomena, a pat-
tern that has been observed in a number of civilizations as
well, even if with very different time scales (Blaha, 2002;
Napolitani, 2001). By way of example, Figure 1 shows the
evolution of the Nile River civilization according to Blaha
(2004).

Toynbee (1970) did not represent graphically this kind
of oscillatory behaviour, but spoke of sequences of alter-
nating “routs” and “rallies”, the most typical pattern being
formed by a first period of rather rapid growth fol-
lowed by a breakdown (an event marking the end of
growth) and then by four routs separated by three ral-
lies (in their own words, “the normal rhythm seems to
be rout–rally–rout–rally–rout–rally–rout: three and a half
beats”).

It is thus reasonable to model the above-mentioned
behaviour by means of a damped harmonic oscillator
(Blaha, 2002, 2004) or, more generally, by a second-
order system, perhaps in cascade with a smoothed deriva-
tive action (Lepschy & Viaro, 2003) to account also for
overdamped responses with terminal decay, which is the
case in the abortive civilizations (Toynbee, 1970). This
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Figure 1. Evolution of the Nile River civilization according to
Blaha (2004). The ordinate represents a suitably defined “societal
level”; the abscissa spans 1000 years starting from the beginning
of the fourth millennium B.C. (one time unit corresponds to 40
years). For example, the second minimum precedes the unification
of upper and lower Egypt, and the third minimum precedes King
Qáa’s upheaval.

Figure 2. Phillips model of a closed economy (no import and
export).

purely descriptive approach, however, does not convey
insight into the way the processes operate.

The system dynamics approach to the modelling
and simulation of complex aggregates (Forrester, 1968;
Meadows, 2008) has revealed the crucial role of accu-
mulation and delay phenomena inside feedback loops
(often intrinsic), a feature that is typical of compartmen-
tal systems, too (Cobelli, Lepschy, Romanin Jacur, &
Viaro, 1986). Also the celebrated macroeconomic Phillips
model (see Figure 2), which draws on the fundamen-
tal works by Samuelson (1939) and Hicks (1950), has
such a structure, with an additional extrinsic feedback to
control the system output (production). Observe that the
feedback connection can generate a variety of overall sys-
tem behaviours, both oscillatory and aperiodic, from even
the simplest component parts, such as gains, integrators,
pure time delays or first-order lags. To obtain the desired
response, it is enough to change one or two model parame-
ters like the marginal propensity to consume in Samuelson’s
multiplier–accelerator model or the proportional gain of a
standard controller in a classic control system. Precisely

for this reason, the behaviour of social systems has been
qualified as “counterintuitive” by Forrester (1971).

This paper suggests the use of a feedback model to
explain the behaviour of various civilizations. In its sim-
plest version, the forward path contains a first-order system
(e.g. an integrator) followed by a pure time delay, and the
feedback path consists of a constant. As is known, this con-
figuration is typically adopted to approximate the behaviour
of complex distributed systems (Lepschy, Mian, & Viaro,
1987; Taiwo, 1997; Taiwo, Effanga, & Odusanya, 1999) or
to design robust controllers (Krajewski, Lepschy, Miani, &
Viaro, 2005). Section 2 presents the feedback model in
detail and depicts its possible responses. Section 3 shows
that the model can simulate both oscillatory behaviours,
such as the one in Figure 1, and non-oscillatory behaviours,
such as those characterizing the fossilized, arrested and
abortive civilizations, to use the words of Toynbee. Some
concluding remarks are drawn in Section 4.

2. Feedback model
As already said, the purpose of the suggested models is to
account in a simple way for the mechanism that generates a
given response. Therefore, no exact fit of observed or esti-
mated data is expected from them, since this would require
a much greater model complexity at the expense of insight
and understanding. On the other hand, it would not make
much sense to fit exactly the degree of a civilization whose
definition is still debated (a notable attempt in this direction,
which entails unwieldy historic and anthropologic analyses,
has been made by Blaha (2002) who proposes a measure of
“societal level” based on several physical, social, cultural
and psychological factors).

Based on the considerations of Section 1, the models
are structured as closed-loop systems with an intrinsic feed-
back, possibly followed by a smoothed differentiator (see
Figure 3). By regarding A(s) e−td s as the transfer function
of a plant to be controlled, B(s) as that of a sensor, k and
h as design parameters, and F(s) as a suitable filter, this is
also the reference structure for the design of a two-degrees-
of-freedom control system (where, however, F(s) is placed
before the feedback loop and is therefore called “prefilter”).

Often, in this case, it is assumed that the controlled
process in the forward path is approximated by a first-
order-lag-plus-time-delay (or, in short, FOLTD) model.
This choice is motivated by the fact that such a model

Figure 3. General feedback model of a civilization: A(s)
accounts for an accumulation process and e−td s for a time delay
of duration td ; B(s) represents a filter and F(s) a differentiator; k
and h are constant gains.
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accounts well for the dynamics of high-order processes
with many real left half-plane poles and a large pole-zero
excess, and allows the designer to evaluate easily the control
system robustness strictly related to the stability margins
(Krajewski et al., 2005).

It is reasonable to adopt a similar approximation in the
study of civilizations which are the result of many intercon-
nected processes. To this end, the transfer function of the
(unit-gain) undelayed part of the FOLTD model (the block
denoted by A(s) preceded by a static gain k in Figure 3) can
be taken as either

A(s) = 1
1 + Tas

, (1)

where the time constant Ta is obviously much longer than
that arising in control system design, or just as

A(s) = 1
s

, (2)

which is the transfer function of a pure integrator.
The adopted system structure lends itself to a natural

interpretation. In fact, the level of a civilization clearly
depends on the accumulated knowledge and experience
(output of the block A(s)). But this accumulated stock gives
rise only with a certain delay td (corresponding to the block
denoted by the transfer function e−td s in Figure 3) to the
exploitation of resources capable of increasing the quality
of life.

In turn, the augmented consumption deprives the system
of resources and, thus, reduces the original thrust injected
to the system (represented by input u(t)). Such a depriving
action accounts for the negative feedback channel along
which a block of constant positive gain h (suitably small to
guarantee sustainability) is placed.

If the subtraction of resources is not immediately effec-
tive, the feedback path may also contain an additional filter
whose transfer function B(s) could be

B(s) = 1
1 + Tbs

. (3)

For simplicity, in the following, B(s) = 1, which, in tech-
nological systems, corresponds to neglecting the sensor
dynamics, usually much faster than the process dynamics
(Tb � Ta). In the present context, this means that all of the
loop delays are incorporated into the forward path.

The transfer function of the overall system, when the
transfer function F(s) of the additional block in cascade
with the closed loop is set equal to 1, turns out to be

W (s) = k e−td s

1 + Tas + kh e−td s (4)

for A(s) given by Equation (3) (and B(s) = 1), and

W (s) = k e−td s

s + kh e−td s (5)

for A(s) given by Equation (2) (and again B(s) = 1).

With reference to Equation (4), according to the Nyquist
criterion stability is ensured if, and only if, the polar plot
of the loop function L(jω) = kh e−j tdω/(1 + Tajω), whose
magnitude decreases monotonically with ω, does not encir-
cle the critical point −1 + j0. Clearly, encirclements may
occur only if the loop gain kh > 1, so that the system is nec-
essarily stable when kh < 1. Since the form of the Nyquist
diagram depends only on the ratio td/Ta, it is not difficult
to determine the values of kh that ensure stability for each
value of td/Ta. This has been done, e.g. in Lepschy et al.
(1987) where the loop gains corresponding to oscillatory
and non-oscillatory responses have also been determined.

The steady-state or asymptotic value wss in the response
y(t) to a unit step input u(t) is different from zero for both
Equations (4) and (5). Precisely, it is equal to

wss = 1
1 + kh

(6)

for Equation (4), and

wss = 1
h

(7)

for Equation (5). Figures 4 and 5 show a number of step
responses obtainable from the transfer functions (4) and
(5), respectively.

Oscillations are present only when hk exceeds a certain
value. For instance, in the case of system (4) and Figure 4 in
which td/Ta = 0.4, oscillations occur for hk > 0.7 (and the
system is unstable for kh > 4.59), and, in the case of system
(5) and Figure 5 in which td = 0.4, oscillations occur for
hk > 0.98 (and the system is unstable for kh > 3.93).

The overshoot is a function of both kh and td/Ta or td ,
respectively. All (stable) transfer functions (4) character-
ized by the same values of loop gain kh and ratio td/Ta
exhibit the same overshoot. Instead, given the value of the
loop gain, the rise and settling times become longer as

Figure 4. Step responses of the system described by the trans-
fer function (4) for k = 1, Ta = 1, td = 0.4 and h = 0.5, 1, 2, 3
(normalized to steady state). The overshoot increases with kh.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
h 

D
ak

ot
a]

 a
t 1

7:
11

 1
4 

M
ar

ch
 2

01
5 



288 E. Borgatti and U. Viaro

Figure 5. Step responses of the system described by the transfer
function (5) for k = 1, td = 0.4 and h = 0.5, 1, 2, 3 (normalized
to steady state). The overshoot increases with kh.

Figure 6. Step responses of the system described by the transfer
function (4) for h = k = 1 and td = Ta = 0.5 and for h = k = 1
and td = Ta = 1. The rise and settling times are longer for
Ta = td = 1.

td and Ta increase. For instance, the system with kh = 1
and td = Ta = 1 is slower than the system with kh = 1 and
td = Ta = 0.5, even if the two systems are characterized by
the same overshoot, as shown in Figure 6.

To simulate situations in which the response tends
asymptotically to zero because of a progressive depletion or
deterioration of resources (Toynbee, 1970, speaks of “dis-
integration”) caused, e.g. by epidemics or war, the block
in cascade with the closed-loop system can be assigned the
transfer function

F(s) = kf s
1 + Tf s

, (8)

which exerts a (smoothed) derivative action on the output of
the preceding closed loop. In this way, the system response
eventually decreases at a rate dependent on the positive
time constant Tf , which is usually much longer than the

other time constants. Evolutions of this kind are considered
in the next section.

In this paper, the evolution is assumed to be “caused”
by an input u(t) accounting for a particular event, e.g. an
important discovery or invention, occurring at a particu-
lar moment. This evolution is, therefore, thought of as a
forced response in system theory terms. Choosing a step
function for the input, as in Figures 4 and 5, seems rea-
sonable, provided the original stimulus does not regress.
Different choices may be more appropriate in some cases.
A valid candidate is the impulse signal, a sort of big bang
whose task would be to take instantaneously the system to
a suitable initial state, from which the system then evolves
freely (no input applied for t > 0), according to intrinsic
laws (by the way, this seems to be indeed Toynbee’s idea of
the phenomenon). In this case, the output tends to zero if the
system is asymptotically stable or to a finite non-zero value
if it is stable but not asymptotically. Anyway, independently
of which exogenous input is chosen, the transient compo-
nent of the forced response (Dorato, Lepschy, & Viaro,
1994) and, thus, the evolution pattern, is characterized by
the same system modes as any free evolution.

A final remark concerns the initial response latency
equal to td before the abrupt output increase. This clearly
depends on the fact that the entire time delay in the loop has
been attributed to the forward path of the feedback model.
If, for instance, the delay element were removed from the
forward path and assigned entirely to the feedback path,
the response would start increasing from t = 0 but would
still retain exactly the same shape (shifted to the left by an
amount td ) because the loop function would not change. In
the following, the entire delay is assigned to the forward
path.

3. Non-normal civilizations
The ability to reproduce the typical damped oscillatory
behaviour of a civilization like the one represented in
Figure 1, which is characterized by three rather marked
decreasing peaks after the first overall maximum (corre-
sponding to the so-called “normal” behaviour according
to Toynbee), is apparent from Figures 4 and 5. There-
fore, attention is focused first on three different types of
non-normal civilizations, namely:

• a civilization that, after a pair of decreasing peaks,
decays slowly,

• an arrested civilization characterized by a monoton-
ically increasing time course, and

• an abortive civilization, whose evolution exhibits a
bell-shaped form.

A careful study of the ancient Greek civilization, with
particular regard to mathematics (Napolitani, 2001), shows
that, starting from the middle of the fifth century B.C.
(immediately before Hippocrates of Chios), the Greek
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Figure 7. Simulation of the historic development of the Greek
scientific civilization from Hippocrates of Chios to Eutocius of
Ascalon according to Napolitani (2001).

scientific culture grew rapidly, reaching a first very pro-
nounced peak at the middle of the third century B.C.
(Archimedes of Syracuse, 287–211 B.C.), and then slowly
declined until the end of the fifth century A.D. (Eutocius of
Ascalon), exhibiting, however, a second flat peak around
the end of the third century B.C. (Pappus of Alexandria).
Such a behaviour can be obtained, e.g. by placing an addi-
tional derivative term F(s), with kf = 10 and Tf = 10, in
cascade with a function of type (4), with td = 0.4, Ta = 1,
k = 1, h = 2.5. Figure 7 depicts the step response of this
model. It reproduces well the curve derived by Napolitani
(2001).

Arrested civilizations, such as the Polynesian, Eskimo,
Nomadic, Ottoman and Spartan ones according to Toynbee
(1970), exhibit an initial steep growth that terminates rather
abruptly, and then maintain a practically constant value.
Such a behaviour can be obtained from Equation (4), e.g.
by setting h = 0.5, Ta = 1 and td = 0.4. The response of
this system, normalized to its steady-state value, is shown
in Figure 8.

Abortive civilizations, such as the Far Western Chris-
tian, Far Eastern Christian, Scandinavian and Syriac ones
according to Toynbee (1970), start like an arrested one
but are not capable of maintaining the level reached after
the initial growth. They eventually tend to a level similar
to the initial one. Such a behaviour, shown in Figure 9,
can be obtained by placing the transfer function F(s) =
s/(1 + 0.5s) in cascade with Equation (5) for h = 0.5 and
td = 0.4.

Ancient civilizations are the elective field of applica-
tion of the adopted model since historic events reveal their
importance only after a rather long time from their occur-
rence. Moreover, the reliability of the simulations depends
crucially on the accuracy with which the model parameters
have been determined, and this, in turn, requires the avail-
ability of homogeneous data over a long time span. The
form and intensity of the input also plays a fundamental

Figure 8. Simulation of an arrested civilization.

Figure 9. Simulation of an abortive civilization.

role in the presence of globalization phenomena which
imply increased material and information exchanges among
populations. For these reasons, in the analysis of more
recent civilizations, attention should concentrate only on
the evolution patterns, strictly related to the system modes.

With due awareness of these strong limitations, an
attempt can be made to characterize by means of the feed-
back model with transfer function (4) the evolution of the
western civilization from the twelfth century till the end
of the twentieth century. Taagepera and Colby (1979) have
analysed the course, during this period of time, of a creativ-
ity index (Gray, 1966, Figure 2; Taagepera & Colby, 1979,
Figure 1) obtained by grading philosophers, painters, sculp-
tors, poets, dramatists, and other writers on an evaluational
scale derived from the commentaries of historians and clas-
sical scholars. In the mentioned paper by Taagepera and
Colby (1979), a combination of two exponentials has been
fitted to this collection of data that exhibits approximately
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a bell-shaped form truncated at the end of the last century
with a marked peak before the year 1900. Such an aperiodic
evolution could be generated by the feedback model with
a transfer function (4) for rather small loop gains (so as to
avoid oscillatory modes). On the contrary, the more wavy
evolution of the Japanese history from the second half of
the eighteenth century, as may be inferred from the essay of
Akita (1982) seems to require the adoption of larger gains
accounting for a more reactive response.

4. Conclusions
The feedback model of Figure 3 can explain the behaviour of
all the civilizations studied by Toynbee and his successors.
Its component parts are very simple, that is, a retarded first-
order system, accounting for an accumulation process, in
the forward path, and a constant (possibly multiplied by a
first-order filter) in the negative feedback path accounting
for subtracted resources. A further derivative block can be
placed in cascade with this closed-loop system to account
for the possible deterioration of the available resources or a
progressive “disintegration” of the population, caused, e.g.
by wars or migrations.

Of course, the same results could be obtained by approx-
imating the transcendental transfer function of the delay
element, or, better, the product A(s) e−td s, by means of a
(high-order) rational function but, in these authors’ opin-
ion, this would make the model less compact without
appreciably facilitating the analysis.

The output shape of either Equation (4) or Equation (5)
depends on a very small number of parameters, i.e. the gains
k and h, the time constant Ta and the time delay td . Inves-
tigating their relation with sociocultural, technological and
psychological factors is a hard task for anthropologists and
sociologists and is outside the scope of the present contri-
bution. However, it can safely be said that the capacity to
store and transmit information plays a fundamental role in
the evolution pattern and duration. It is hoped that, even if
the considered feedback model can hardly be used for quan-
titative analyses and predictions, it may serve as a useful
“tool for thought” (Rheingold, 2000).
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