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Abstract—In this paper, we address the problem of the
estimation of a spatial field defined over a two-dimensional
space with wireless sensor networks. We assume that the field is
(spatially) bandlimited and that it is sampled by a set of sensors
which are randomly deployed in a given geographical area.
Further, we impose a total bandwidth constraint which forces the
quantization error in the sensor-to-FC (Fusion Center) channels
to depend on the actual number of sensors in the network.
With these assumptions, we derive an analytical expression of
the mean-square error (MSE) in the reconstructed random field
and, on that basis, an approximate closed-form expression of
the optimal sensor density which attains the best trade-off in
terms of observation, sampling and quantization noises. The
analysis is carried out both in Gaussian and Rayleigh-fading
scenarios without transmit Channel State Information (CSI). For
the latter scenario, we also derive an expression of the common
and constant rate at which the observations must be quantized.
Computer simulation results illustrate the dependency of the
optimal operating point on the variance of the observation noise
or the signal-to-noise ratio in the sensor-to-FC channels, as well
as the scaling law of the reconstruction MSE (which is also
derived analytically) for both scenarios.

Index Terms—Distributed estimation, wireless sensor net-
works, random sampling.

I. INTRODUCTION

IN recent years, research on Wireless Sensor Networks
(WSNs) has attracted considerable attention. This is in

part motivated by the large number of applications envisaged,
which encompasses environmental monitoring, building au-
tomation, supervision and control of energy grids, or inventory
tracking, to name a few [1], [2].

In this paper, we focus our attention on environmental
monitoring applications. Specifically, our goal is to estimate a
spatial field (e.g., moisture, temperature) in a given geograph-
ical area from the samples collected by a large number of
low-cost, battery-powered sensor nodes. The observations are
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conveyed via wireless links to a Fusion Center (FC) which,
ultimately, is charge of estimating (i.e. reconstructing) the
entire spatial field. The reconstruction error is mainly affected
by (i) the quality of the received samples; (ii) the number
of spatial samples; and (iii) the spatial sampling pattern.
The quality of the received samples depends both on the
observation noise in the sensing device (a technological issue
and, as such, out of the scope of this paper) and the encoding
scheme at the sensor node. The encoding/decoding process
can definitely benefit from any prior statistical knowledge
on the spatial field, such as its spatial correlation model
(e.g. rational quadratic, Matérn or, power exponential [3]–
[6]), source model (e.g. Gaussian Markov), or dynamic range.
For example, this can be used in order to remove correla-
tion in adjacent spatial samples and, by doing so, increase
the energy efficiency of transmissions [7]. On the contrary,
other works barely exploit prior statistical knowledge in an
attempt to keep the framework as general as possible. For
instance, the probabilistic quantization scheme and power
scheduling strategy of [8] only makes mild assumptions on the
dynamic range of the parameter of interest. Similarly, [9], [10]
investigate universal (pdf-unaware) estimators of spatially-
homogeneous parameters under strict bandwidth constraints
(1 bit per sensor).

The fact that wireless networks typically operate under a
total bandwidth constraint, render the aforementioned issues
(i) and (ii) intertwined. The so-called "bit-conservation princi-
ple" [11] states that, for spatially bandlimited processes allow-
ing inter-sensor communication, the bit budget per Nyquist-
period can be arbitrarily used to (i) increase the quantization
precision; or (ii) add more sensor nodes, while retaining the
same decay profile of the reconstruction error. In this context,
we showed in [12] that for (one-dimensional) bandwidth-
and power-constrained WSNs there exists an optimal number
of sensor nodes which minimizes the actual error in the
reconstructed random field (i.e. it attains the optimal balance
between interpolation and quantization errors). The authors in
[13] address the problem of distributed estimation of Gaussian
Markov fields under stringent bandwidth constraints, where
each sensor quantizes its observation with one bit.

As for the sampling pattern, most of the works on spatial
field estimation adopt deterministic ones (i.e. equally-spaced
sensors). However, this is difficult to achieve in practice, in
particular for deployments in large or remote areas. In these
scenarios, it is more realistic to conduct an airdrop sensor
deployment which results into a random sampling pattern. In
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this line, [14] analyzes the impact of such random sampling
patterns on the reconstructed random field in a rather idealized
scenario where quantization errors are not taken into account.
Besides, in [4] Tong et al conclude that, whereas deterministic
sampling pays off in the high-SNR regime, both schemes
exhibit comparable performance in the low-SNR regime.

Contribution: In this paper, we address the problem of the
estimation of bandlimited spatial field. Unlike in [4]–[6], [13],
[15], we do not exploit any prior statistical knowledge on
the spatial field, which includes any correlation information
or model. We go one step beyond the 1-D case in our
previous work [12] and embrace the (more general) case of
the estimation of a two-dimensional spatial field. Further, we
adopt a random sampling strategy (a deterministic sampling
pattern was used in [12]). Unlike in [14], we impose a total
bandwidth (and sum-power) constraint for the sensor-to-FC
channels and, consequently, the impact of quantization errors
need to be taken into account in the optimization process.
With these assumptions, we ask ourselves whether increasing
the sensor density is always worth doing (in terms of recon-
struction error) or if, alternatively, an optimal operational point
exists. To answer this question, we derive an approximate
closed-form expression of the optimal sensor density for two
scenarios of interest, namely, Gaussian and Rayleigh-fading
channels in the sensor-to-FC links. For this latter scenario,
we assume that sensors operate without transmit CSI and,
hence, the encoding rate cannot be dynamically adjusted. We
derive an analytical expression of the common (to all sensors)
and constant (over time) rate which is optimal in terms of
reconstruction error. Finally, we derive the scaling law of
the reconstruction MSE in the high-SNR regime for both
scenarios.

This paper is organized as follows. First, in Section II, we
introduce the signal, communication and system model. Next,
Section III provides a general framework for the analysis of
the distortion in the reconstructed random field. In Section
IV, we particularize the aforementioned distortion analysis for
Gaussian and Rayleigh-fading scenarios and, on that basis, we
derive closed-form expressions of the optimal sensor density
and/or encoding rate. In Section V, we present some computer
simulations and numerical results and, finally, we close the
paper by summarizing the main findings in Section VI.

Notation: Throughout this paper, s stands for the 𝑙-
dimensional spatial variable. Random processes are denoted
by uppercase letters (e.g., 𝑌 (s), 𝑋𝑠(s)) whereas lowercase is
used for deterministic signals or individual realizations (e.g.,
𝑧(s)). The norm operator is denoted by ∥ ⋅ ∥.

II. SIGNAL, COMMUNICATION AND SYSTEM MODEL

A. Spatial Field Model

Let 𝑧(s) denote a field defined over an 𝑙-dimensional space1.
We assume that 𝑧(s) is spatially bandlimited, i.e., it does
not have significant spectral components beyond 𝐵𝑧 which
denotes the bandwidth per dimension of 𝑧(s). The part of
spatial field monitored by the WSN is contained in a ball 𝒜

1Here 𝑧(s) is a deterministic function of s. We could eventually think of
𝑧(s) as a realization of a random process 𝑍(s) however, no assumption on
the statistical nature of 𝑍(s) (and hence of 𝑋(s)) is made.

of radius 𝑅 and Lebesgue measure 𝜇(𝒜) = 𝐴. Hence, the
truncated signal of interest is given by

𝑥(s) = 𝑧(s) ⋅ 𝑟𝐴(s) (1)

with

𝑟𝐴(s) =

{
1 s ∈ 𝒜
0 otherwise

(2)

and it is assumed to be of finite energy 𝐸𝑥. We denote the
𝑙-dimensional Fourier transform, 𝑆𝑥(𝝂), the autocorrelation
function, 𝑅𝑥(𝝉 ), and the energy spectral density, ℰ𝑥(𝝂), of
𝑥(s), by

𝑆𝑥(𝝂) = 𝔉(𝑙)[𝑥(s)]; (3)

𝑅𝑥(𝝉 ) =

∫
ℜ𝑙

𝑥(s)𝑥(s − 𝝉 )𝑑s; (4)

ℰ𝑥(𝝂) = 𝔉(𝑙)[𝑅𝑥(𝝉 )], (5)

respectively, where 𝝉 = (𝜏1, 𝜏2, . . . , 𝜏𝑙), and 𝝂 = (𝜈1, 𝜈2, . . . , 𝜈𝑙)

is the vector of spatial frequencies. The Fourier transform of
𝑥(s) can also be expressed as

𝑆𝑥(𝝂) = 𝑆𝑧(𝝂)⊗𝑅𝐴(𝝂) , (6)

where 𝑅𝐴(𝝂) = 𝔉(𝑙)[𝑟𝐴(s)] and ⊗ stands for the convolution
operator. Note that, due to the spatial truncation of the original
signal, 𝑥(s) is not bandlimited. However, it can be easily
verified that, in general, 𝑅𝐴(𝝂) ≈ 0 when ∥𝝂∥ > 1

𝜋𝑅 . In
the practical two-dimensional case (𝑙 = 2), for instance, we
have

𝑅𝐴(𝝂) =
𝑅

∥𝝂∥𝐽1 (2𝜋𝑅 ∥𝝂∥) , (7)

where 𝐽1(.) is the Bessel Function of the first kind and order
one. Consequently, 𝑆𝑥(𝝂) and, likewise, ℰ𝑥(𝝂) ≈ 0 outside
𝒮 = {𝝂 s.t. (−𝐵 < 𝜈1 < 𝐵,−𝐵 < 𝜈2 < 𝐵, . . . ,−𝐵 <
𝜈𝑙 < 𝐵)}, with 𝐵 = 1

𝜋𝑅 + 𝐵𝑧 in the two-dimensional case.
The Lebesgue measure of 𝒮 is 𝜇(𝒮) = 𝛽, where 𝛽 = (2𝐵)𝑙

represents the minimum Nyquist sampling rate in the case
of deterministic (uniform) sampling of 𝑥(s) [16], [17]. In
practical applications, we have 1

𝜋𝑅 ≤ 𝐵𝑧 , that is, the area of
observation is chosen larger than the typical spatial correlation
distance which is proportional to 1/𝐵𝑧.

B. Random Sampling of Spatial Fields

Departing from deterministic sampling patterns, we con-
sider a scenario where nodes are randomly deployed according
to a two-dimensional homogeneous Poisson Point Process
(PPP) with spatial density 𝜌 (see Fig. 1). The stationary
random sampling process 𝑃 (s) can thus be expressed as

𝑃 (s) =
∑
𝑘

𝛿(s− s𝑘) (8)

where 𝛿(.) is the Dirac pseudo-function, s𝑘 denotes the spatial
location of the 𝑘-th sensor node2, and 𝑃 (s) verifies 𝜇𝑃 =
𝔼 {𝑃 (s)} = 𝜌. The statistical autocorrelation function and
power spectral density reads [16], [18]

𝑅𝑃 (𝝉 ) = 𝜌 ⋅ 𝛿(𝝉 ) + 𝜌2 , (9)

2By construction, the spatial distribution of sensor nodes in a Point Poisson
(sampling) Process is uniform in any ball 𝒜.
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Fig. 1. Signal, communication and system model.

𝑆𝑃 (𝝂) = 𝜌+ 𝜌2 ⋅ 𝛿(𝝂) , (10)

respectively. The total number 𝐾 of sensor nodes in a given
observation area 𝐴, which follows from the associated Poisson
Counting Process (i.e., the integral of 𝑃 (s)), turns out to be
a random variable (r.v.) with expectation 𝔼 {𝐾} = 𝜌𝐴 and
Poisson distribution given by [1]

𝑝𝐾(𝑘) = Pr {𝐾 = 𝑘} =
(𝜌𝐴)𝑘

𝑘!
𝑒−𝜌𝐴 . (11)

We assume that sensor observations are corrupted by additive
noise that, in the sequel, will be modeled as zero-mean in-
dependent and identically-distributed (i.i.d.) Gaussian random
variables. Thus, the observed (noisy) version of the sampled
spatial field reads

𝑅(s) = 𝑥(s) ⋅ 𝑃 (s) +𝑁(s) ≜ 𝑋𝑠(s) +𝑁(s) (12)

where 𝑋𝑠(s) ≜
∑

𝑘 𝑥𝑘 𝛿(s − s𝑘) with 𝑥𝑘 = 𝑥(s𝑘); and
𝑁(s) ≜

∑
𝑘 𝑛𝑘 𝛿(s − s𝑘) with 𝑛𝑘 ∼ 𝒩 (0, 𝜂2𝑘). Likewise,

we can also write 𝑅(s) ≜
∑

𝑘 𝑟𝑘 𝛿(s− s𝑘). From this model,
it follows that the average observation signal-to-noise ratio
(OSNR) at the 𝑘th sensor node is given by Γobs,𝑘 ≜ 𝐸𝑥/𝜂

2
𝑘.

C. Quantization and Transmission

Sensors adopt a uniform quantization scheme with sub-
tractive dithering [19]. Specifically, each sensor uniformly
quantizes the input signal 𝑟𝑘 using 𝐿𝑘 = 2𝑚𝑘 quantization
levels and generates a discrete message 𝑦𝑘 = 𝑦𝑘(𝑟𝑘,𝑚𝑘) of
𝑚𝑘 bits. The actual value encoded in the discrete message can
be modeled as

𝑦𝑘 = 𝑥𝑘 + 𝑛𝑘 + 𝑣𝑘. (13)

The quantization noise 𝑣𝑘 = 𝑣𝑘(𝑥𝑘,𝑚𝑘) of variance3 [19]

𝑞2𝑘 =
𝑀2

12(2𝑚𝑘 − 1)2
, (14)

can be shown to be white (over sensors) and independent of the
input signal 𝑟𝑘 = 𝑥𝑘 + 𝑛𝑘, with 𝑀 standing for the dynamic
range of the spatial field (namely, 𝑥𝑘 ∈ [−𝑀,𝑀 ]). Since
the uniform quantizer is unbiased, we have 𝔼{𝑦𝑘} = 𝑥𝑘 and
Var{𝑦𝑘} = 𝜎2

𝑘 . Further, it can be shown that 𝜎2
𝑘 = 𝑞2𝑘 + 𝜂2𝑘.

3This holds true for a wider class of input signals and some conditions on
the dithering signal (see [19] for details).

The 𝐾 nodes in the sensor network convey their mea-
surements to the FC over a set of 𝐾 orthogonal channels.
Assuming that each sensor samples the spatial field at a rate
of 𝑅s samples/s, a reliable transmission occurs when the
encoding rate 𝑅s𝑚𝑘 satisfies

𝑅𝑠𝑚𝑘 ≤ 𝑤𝑘 log2

(
1 +

𝑝𝑘∣ℎ𝑘∣2
𝑤𝑘No

)
[b/s] (15)

where 𝑤𝑘 and 𝑝𝑘 stand for the bandwidth and transmit power
allocated to the 𝑘-th channel/sensor, and No denotes the spec-
tral density of the noise in the sensor-to-FC channels. Clearly,
the statistics of the squared gains 𝛾𝑘 ≜ ∣ℎ𝑘∣2, 𝑘 = 1, . . . ,𝐾 ,
depend on the particular channel model under consideration
(e.g., Gaussian, Rayleigh-fading). Besides, we impose a total
bandwidth constraint 𝑊 and a sum-power constraint 𝑃 and
we evenly allocate power and bandwidth4 to the set of 𝐾
sensors, this yielding 𝑝𝑘 = 𝑃/𝐾 and 𝑤𝑘 = 𝑊/𝐾 . For the
ease of notation and without loss of generality, we impose
𝑅𝑠 = 1 and, hence, the following inequality holds for the
number of bits per sample at the output of the 𝑘-th quantizer

𝑚𝑘 ≤ 𝑊

𝐾
log2 (1 + SNR ⋅ 𝛾𝑘) , (16)

with SNR ≜ 𝑃
𝑊No

denoting the average SNR in the sensor-to-
FC channels.

III. RECONSTRUCTION OF THE SPATIAL FIELD:
DISTORTION ANALYSIS

Our goal is to reconstruct the spatial field 𝑥(s) for all s ∈ 𝒮
from the set of samples {𝑦𝑘} collected at the FC. As a result
of the spatial sampling process and the channel bandwidth
constraint, the reconstructed field �̂�(s) is unavoidably subject
to some distortion. In the sequel, such distortion will be
characterized by the average normalized mean square error
(MSE), namely,

MSE =
1

𝐸𝑥
𝔼

{∫
ℜ𝑙

(
�̂�(s)− 𝑥(s)

)2

𝑑s

}
(17)

where the expectation in taken over the realizations of the
spatial sampling process, the observation and the quantization
noise. In order to define an appropriate reconstruction strategy,
first we need to analyze the spectrum of the received signal.
The sampled and quantized version of the spatial field 𝑌 (s)
which is available at the FC can be expressed as

𝑌 (s) =
∑
𝑘

𝑦𝑘𝛿(s− s𝑘) = 𝑋𝑠(s) +𝑊 (s) , (18)

where 𝑊 (s) ≜
∑

𝑘 𝑤𝑘 𝛿(s − s𝑘) with 𝑤𝑘 = 𝑛𝑘 + 𝑣𝑘
accounting for the combined effects of the observation and
quantization noise. Let us now define the average (over s)
statistical autocorrelation function 𝑅𝑌 (𝝉 ) and spectral density

4This is consistent with the fact that, in Gaussian channels (see Section
IV-A ahead), the sensor-to-FC channels are identical and, in Rayleigh-fading
channels (Section IV-B), sensor operate without transmit CSI. In scenarios
with transmit CSI, power and/or bandwidth allocation schemes typically result
into substantial performance gains (see e.g. [8], [20], [21]).
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Useful component white noise: 
- Sampling
- Quantization
- Observation

Spatial frequencyBB

Fig. 2. Diagram of the spectral components of the sampled spatial field. The
one-dimensional case is considered here for the sake of illustration.

ℰ𝑌 (𝝂) of 𝑌 (s) as

𝑅𝑌 (𝝉 ) =

∫
ℜ𝑙

𝔼 {𝑌 (s)𝑌 (s − 𝝉 )} 𝑑s
= 𝑅𝑋𝑠(𝝉 ) +𝑅𝑊 (𝝉 ) (19)

ℰ𝑌 (𝝂) = 𝔉(𝑙)[𝑅𝑌 (𝝉 )], (20)

where 𝑅𝑋𝑠(𝝉 ) and 𝑅𝑊 (𝝉 ) denote the average autocorrelation
function of 𝑋𝑠(s) and 𝑊 (s), respectively. Clearly, 𝑅𝑋𝑠(𝝉 )
can be re-written as

𝑅𝑋𝑠(𝝉 ) =

∫
ℜ𝑙

𝔼 {𝑥(s)𝑥(s − 𝝉 )𝑃 (s)𝑃 (s − 𝝉 )} 𝑑s

=

∫
ℜ𝑙

𝑥(s)𝑥(s − 𝝉 )𝑅𝑃 (𝝉 ) 𝑑s = 𝑅𝑥(𝝉 ) ⋅ 𝑅𝑃 (𝝉 ) ,

(21)

and, hence, the corresponding energy spectral density reads

ℰ𝑋𝑠(𝝂) = 𝔉(𝑙)[𝑅𝑋𝑠(𝝉 )] = ℰ𝑥(𝝂)⊗ 𝑆𝑃 (𝝂) . (22)

From (10) and (22), it follows that

ℰ𝑋𝑠(𝝂) = 𝜌2ℰ𝑥(𝝂) + 𝐸𝑥 ⋅ 𝜌 . (23)

Finally, the average energy spectral density of 𝑌 (s) can be
expressed as

ℰ𝑌 (𝝂) = ℰ𝑋𝑠(𝝂) + ℰ𝑊 (𝝂)

= 𝜌2ℰ𝑥(𝝂) + 𝐸𝑥 ⋅ 𝜌+ ℰ𝑊 (𝝂), (24)

where ℰ𝑊 (𝝂) = 𝔉(𝑙)[𝑅𝑊 (𝝉 )]. From (24), one notices that
the spectrum of the sampled signal is composed of three
terms (see Fig. 2). The first one, the useful component, is
proportional to the spectrum of the spatial field 𝑥(s). The
second term captures the effect of the white sampling noise
associated to the random nature of the sampling process.
The last term accounts for both quantization and observation
noises. From Fig. 2, it becomes apparent that the spatial field
can be reconstructed from its samples by means of an ideal
low-pass filter5 that separates the useful component from out-
of-band noise. This is equivalent to the interpolation of the
received set of samples 𝑌 (s). The estimate �̂�(s) of the spatial
field can thus be expressed as

�̂�(s) = 𝑌 (s)⊗ 𝜙(s) =
∑

𝑘

𝑥𝑘 𝜙(s− s𝑘) +
∑

𝑘

𝑤𝑘 𝜙(s− s𝑘) ,

(25)

5In general, this estimator is not optimal (i.e. in a MSE sense) but, it is the
best one can do in the absence of any prior information about the spectrum
of 𝑋(𝑠)

where 𝜙(s) is the impulse response of the linear interpolator.
For an ideal low-pass filter, its transfer function Φ(𝝂) =
𝔉(𝑙)[𝜙(s)] is given by

Φ(𝝂) =

{
1/𝜌 𝝂 ∈ 𝒮
0 otherwise ,

(26)

where, in the above expression, the normalization factor 1/𝜌
in (26) has been set conventionally in order to have a useful
component with energy 𝐸𝑥 at the output. For notational con-
venience, in the sequel we attempt to express the normalized
estimation error in the reconstruction of the whole spatial field
of (17) as a function of the estimation error in the sampled
locations. Conditioned on signal 𝑥(s), the 𝑦𝑘 samples are
independent and, hence, the best linear estimate of 𝑥𝑘 turns
out to be 𝑥𝑘 = 𝑦𝑘, which is unbiased. The distortion in the
estimate of sample 𝑥𝑘 is thus given by

𝐷𝑘 =
1

𝐸𝑥
𝔼
{
(�̂�𝑘 − 𝑥𝑘)

2
}
=

𝜎2
𝑘

𝐸𝑥

=
1

Γobs,𝑘
+

𝑞2𝑘
𝐸𝑥

=
1

Γobs,𝑘
+

𝐹

(2𝑚𝑘 − 1)
2 (27)

with 𝐹 = 𝑀2

12𝐸𝑥
being proportional to peak factor of the spatial

field 𝐹𝑝 = 𝑀2

𝐸𝑥
. The normalized distortion 𝐷 averaged over

the realizations of the sampling process yields

𝐷 = 𝔼𝐾

{
𝐾∑

𝑘=1

𝐷𝑘

}
=

∞∑
𝐾=0

𝑝𝐾(𝐾)

𝐾∑
𝑘=1

𝐷𝑘 (28)

with 𝑝𝐾(𝐾) given by (11)6. Finally, and after some re-
arrangements shown in the Appendix, the normalized estima-
tion error of (17) can be conveniently expressed as

MSE =
𝛽

𝜌

(
1 +

1

𝜌
𝐷

)
, (29)

where to recall, 𝛽 denotes the Lebesgue measure of 𝒮, namely,
𝛽 = (2𝐵)𝑙.

IV. OPTIMAL NETWORK DESIGN

Here, we particularize the aforementioned distortion analy-
sis for Gaussian and Rayleigh-fading scenarios. On that basis,
we then derive closed-form expressions of the optimal sensor
density and, where applicable, the optimal encoding rate.

A. Gaussian Channels

In Gaussian channels, the channel (squared) gains read 𝛾𝑘 =
1 ∀𝑘. Further, we assume identical observation SNRs in the
sensor nodes (Γobs,𝑘 = Γobs). Hence, from (27) and (28) and
by taking (16) with equality, it turns out that

𝐷 =
𝜌𝐴

Γobs
+ 𝔼𝐾

⎧⎨
⎩

𝐾𝐹(
(1 + SNR)

𝑊
𝐾 − 1

)2

⎫⎬
⎭ (30)

Unfortunately, a closed form expression of 𝐷 is extremely
difficult to obtain and, hence, the actual MSE cannot be used
as a score function to optimize on 𝜌. However, the argument

6This follows from the fact that, clearly, the overall MSE in the samples
does not depend on their actual locations but on its number 𝐾 .
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in the expectation function is convex in 𝐾 and, thus, we can
resort to the following lower bound:

𝐷 ≥ 𝜌𝐴

Γobs
+

𝜌𝐴𝐹(
(1 + SNR)

𝑊
𝜌𝐴 − 1

)2 (31)

which follows from Jensen’s inequality. Now, by replacing
(31) into (29) it yields

MSE =
𝛽

𝜌

(
1 +

1

𝜌
𝐷

)
(32)

≥ 𝛽

𝜌

⎛
⎜⎝1 +

𝐴

Γobs
+

𝐴𝐹(
(1 + SNR)

𝑊
𝜌𝐴 − 1

)2

⎞
⎟⎠ (33)

≥ 𝛽

𝜌

(
1 +

𝐴

Γobs
+

𝐴𝐹

(1 + SNR)
2 𝑊

𝜌𝐴

)
. (34)

The first two terms in (33) account for the contribution of
the sampling noise and the (filtered) observation noise to the
normalized MSE. Both are monotonically decreasing functions
of the node density 𝜌. In other words, having a denser grid of
sensor is, in principle, beneficial in terms of accuracy in the
reconstructed spatial field7. The third term in the summation
accounts for the impact of the quantization noise. Intuitively,
it is a monotonically increasing function in 𝜌: under a total
bandwidth constraint, when the node density increases the
available rate per sensor diminishes, this resulting into a
rougher quantization of the sensor observations (this can also
be formally proved). From this discussion, it follows that there
exists an optimal operating point 𝜌∗ for which the MSE in
the reconstructed spatial field is minimized. By assuming that
(1 + SNR)

𝑊
𝜌𝐴 ≫ 1, we can lower-bound (33) by (34). By

solving the corresponding minimization problem, namely,

𝜌∗ ≈ argmin
𝜌

𝛽

𝜌

(
1 +

𝐴

Γobs
+

𝐴𝐹

(1 + SNR)
2 𝑊

𝜌𝐴

)
, (35)

an approximate yet in general accurate expression of the
optimal node density can be obtained (see numerical results
in Section V). More precisely, by setting the first derivative
of the lower bound in (34) to zero, we have that

𝜌∗ ≈ 2𝑊 ln (1 + SNR)

𝐴
(
1−W−1

(
−𝐴+Γobs

𝐴Γobs𝐹
𝑒
)) (36)

where W−1 (⋅) stands for the negative real branch of the
Lambert function [22]. It is worth noting that the solution
of (36) is only feasible in the real domain of W−1 (⋅) that is,
for 𝐴+Γobs

𝐴Γobs𝐹
≤ 1

𝑒 .
Finally, from (34) and (36) and by letting the overall rate

𝑊 ln (1 + SNR) grow without bound, we realize that the
scaling law of the lower bound reads

MSE ∼ 𝐶

𝑊 ln (1 + SNR)
(37)

with 𝐶 standing for a positive constant. Furthermore, computer
simulation results in Section V ahead show that the scaling law
of the actual MSE is identical to that of its lower bound.

7This follows from the fact that the component associated to the useful
signal in the spectral density of (24) is proportional to 𝜌2 whereas e.g. the
sampling noise term scales with 𝜌.

B. Rayleigh-fading Channels

Now, the squared channel gains 𝛾𝑘 ∀𝑘 turn out to be i.i.d.
random variables with unit-mean exponential distribution. In
realistic scenarios, sensors cannot acquire and track instanta-
neous transmit CSI and, hence, the bit rate cannot be dynami-
cally adjusted to match the actual channel conditions. For this
reason, we hereinafter assume that each sensor observation
is quantized at a common and constant (i.e. time-invariant)
bit rate 𝑅. This unavoidably entails some outage probability
𝑝out, namely, the probability that the source rate 𝑅 exceeds
the instantaneous channel rate:

𝑝out = Pr

(
𝑊

𝐾
log2(1 + SNR ⋅ 𝛾𝑘) < 𝑅

)
(38)

= 𝐹𝛾

(
2𝐾𝑅/𝑊 − 1

SNR

)
(39)

where 𝐹𝛾 (⋅) denotes the cumulative density function of the
random variable 𝛾 (i.e., 𝐹𝛾 (𝑥) = 1 − 𝑒−𝑥 for Rayleigh-
fading channels). The aggregated rate for the whole WSN
reads 𝑅aggr = 𝐾𝑅 and it can be expressed as a function
of the outage probability as follows:

𝑅aggr = 𝑊 log2 (1− SNR ln (1− 𝑝out)) . (40)

The first step towards the derivation of the optimal aggregated
rate 𝑅∗

aggr and its associated optimal average node density 𝜌∗ is
to identify the impact of the outage probability on the sampling
pattern. Let 𝐾𝑠 be the actual number of successfully (i.e. not
in outage) decoded samples at the FC. Since outage events are
independent over sensors (because so are channel gains), 𝐾𝑠

turns out to be a Poisson r.v. with equivalent spatial density
given by 𝜌 (1− 𝑝out). From (29), the normalized MSE yields:

MSE =
𝛽

𝜌 (1− 𝑝out)

(
1 +

1

𝜌 (1− 𝑝out)
𝐷

)
, (41)

where 𝐷 is now given by

𝐷 =
𝜌 (1− 𝑝out)𝐴

Γobs
+ 𝔼𝐾𝑠,𝐾

⎧⎨
⎩

𝐾𝑠𝐹(
2

𝑅aggr
𝐾 − 1

)2

⎫⎬
⎭ (42)

Again, by resorting to Jensen’s inequality we have that

𝐷 =
𝜌 (1− 𝑝out)𝐴

Γobs
+ 𝔼𝐾𝑠,𝐾

⎧⎨
⎩

𝐾𝑠𝐹(
2

𝑅aggr
𝐾 − 1

)2

⎫⎬
⎭ (43)

=
𝜌 (1− 𝑝out)𝐴

Γobs
+ 𝔼𝐾

⎧⎨
⎩

𝔼𝐾𝑠∣𝐾 {𝐾𝑠∣𝐾}𝐹(
2

𝑅aggr
𝐾 − 1

)2

⎫⎬
⎭ (44)

=
𝜌 (1− 𝑝out)𝐴

Γobs
+ 𝔼𝐾

⎧⎨
⎩

(1− 𝑝out)𝐾𝐹(
2

𝑅aggr
𝐾 − 1

)2

⎫⎬
⎭ (45)

≥ 𝜌 (1− 𝑝out)𝐴

Γobs
+
𝜌 (1− 𝑝out)𝐴𝐹(
2

𝑅aggr
𝜌𝐴 − 1

)2 (46)

≥ 𝜌 (1− 𝑝out)𝐴

Γobs
+
𝜌 (1− 𝑝out)𝐴𝐹

22
𝑅aggr
𝜌𝐴

(47)
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where (45) follows from the fact that 𝐾𝑠∣𝐾 is a binomial
random variable with probability of activation 1 − 𝑝out and
population size 𝐾 . In the last inequality, we have assumed

once again that 2
𝑅aggr
𝜌𝐴 ≫ 1. By replacing the right handside

of (47) into (41), a lower bound of the MSE follows

MSE ≥ MSELB =
𝛽

𝜌 (1− 𝑝out)

(
1 +

𝐴

Γobs
+

𝐴𝐹

22
𝑅aggr
𝜌𝐴

)
(48)

which will be used to derive (tight) approximations of the
optimal aggregated rate, 𝑅∗

aggr, and the optimal spatial density,
𝜌∗. From (40), 𝑅∗

aggr is, in turn, a function of 𝜌 and 𝑝out
and, therefore, we equivalently minimize with respect to these
two variables. The optimization problem can be re-written as
follows [23]:

min
𝜌,𝑝out

MSELB (𝜌, 𝑝out) = min
𝑝out

(
min
𝜌

MSELB (𝜌, 𝑝out)

)
(49)

≜ min
𝑝out

˜MSELB (𝑝out) (50)

The solution to the inner minimization problem in (49) yields:

𝜌∗ (𝑝out) =
2𝑊 ln (1− SNR ln (1− 𝑝out))

𝐴
(
1−W−1

(
−𝐴+Γobs

𝐴Γobs𝐹
𝑒
)) . (51)

By inserting (51) into the outer optimization problem (50)
and then setting its first derivative to zero, the optimal outage
probability follows:

𝑝∗out = 1− 𝑒
1

SNR− 1
W0(SNR) . (52)

with W0 (⋅) denoting the principal branch of the Lambert
function [22]. Finally, from (40), (51), and (52) the optimal
encoding rate and node density read

𝑅∗
≈

𝑅∗
aggr

𝐾

=
𝑊

2𝐾 ln(2)

(
1−W−1

(
−𝐴+ Γobs

𝐴Γobs𝐹
𝑒

))
(53)

𝜌∗ ≈
2𝑊 ⋅W𝑜(SNR)

𝐴
(
1−W−1

(
−𝐴+Γobs

𝐴Γobs𝐹
𝑒
)) . (54)

Again, by letting the SNR grow without bound the scaling law
of the lower bound of the actual MSE follows, namely,

MSE ∼ 𝐵

𝑊 ⋅W𝑜 (SNR)
(55)

with 𝐵 standing for a positive constant. Finally, from [22] we
know that

lim
SNR→∞

ln (SNR)

W𝑜 (SNR)
= 1

and, thus, the scaling law is identical to that of Gaussian
channels.

V. NUMERICAL RESULTS

In this section, we present some numerical results aimed
to validate the proposed methodology for the optimal dimen-
sioning of WSNs. Details on specific parameter settings can
be found in the figure captions.

To start with, we focus our attention in scenarios with Gaus-
sian channels. First, in Fig. 3, we depict the actual MSE and
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Fig. 3. Normalized MSE as a function of the spatial density 𝜌 (𝑊 = 500
kHz , 𝑅𝑠 = 1 kHz, 𝐹 = 10, SNR = 10 dB, 𝛽 = 1𝑒− 5 m−2).

the lower bound given by (34) as a function of the (average)
sensor density 𝜌. Curves are parameterized for several values
of the observation signal-to-noise ratio, Γobs. As anticipated,
there exists an optimal operating point on each curve where
the best trade-off in terms of sampling, observation and
quantization noise is attained. Clearly, by diminishing the
observation SNR the optimal density of sensors increases, as
suggested by (36). This means that the spatial field is optimally
reconstructed if the extra observation noise is averaged out
over a larger number of spatial samples, even if this entails
some increase in the quantization noise. Still, this cannot avoid
a severe degradation in the normalized MSE: 6 ⋅ 10−3 for
Γobs = 30 dB vs. 3 ⋅ 10−2 for Γobs = 10 dB. However, the
optimal node density is not a function of the spatial bandwidth
of the field: from (33), the only impact of the per-dimension
spatial bandwidth 𝐵𝑧 of the field (or, in other words, its spatial
variability) is in terms of a scale factor in the normalized
MSE8. This somewhat counter-intuitive result (one could e.g.
think that fields with higher spatial variability require a denser
grid of sensors) follows from the fact that the spatial field is
randomly sampled. Being the inter-sensor distance a random
variable, the optimally designed sensor density turns out to be
optimal regardless of the bandwidth of the spatial field. This
is in stark contrast with our previous works with deterministic
(i.e. uniform) sampling patterns, where the optimal number of
nodes depends on the spatial variability of the field. Finally,
we also observe that, overall, the lower bound of the MSE
(34) is tight. This is particularly true in the region around
the optimal operating point and, hence, the performance loss
stemming from the use of the approximate node density (36)
is negligible. On the contrary, the gap between both curves
is wider for increasing values of 𝜌 since, in this region, the
assumption (1 + SNR)

𝑊
𝜌𝐴 ≫ 1 does not hold.

Figure 4 provides further insights on the impact of a
number of system parameters on the optimal node density. As
discussed above, 𝜌∗ is a decreasing function in the observation
SNR. Besides, increasing 𝑊 results into higher values of the

8Since the amount of noise at the output of the interpolation filter Φ(𝝂) is
proportional to 𝛽 = 𝐵𝑙

𝑧 .
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Fig. 4. Optimal sensor density as a function of the observation SNR for
different values of 𝑊 .

optimal node density since, clearly, more bandwidth per sensor
is made available. Interestingly, the approximation turns out
to be particularly accurate in the high-Γobs region. This stems
from the fact that, for this range of values, the associated
𝜌∗ values are smaller which, again, is beneficial for the
approximation (1 + SNR)

𝑊
𝜌𝐴 ≫ 1.

Next, we present some results for scenarios with Rayleigh-
fading channels. Figure 5 shows the contour plot of the
normalized MSE as a function of the node density and outage
probability given by (48). Clearly, the function depicted in
Fig. 5 has single global minimum. Complementarily, Fig.6.a
shows a horizontal section of the previous plot. More precisely,
it depicts the MSE evaluated at the optimal 𝜌 (computed
numerically) along with the corresponding lower bound (51)
as a function of the outage probability. Again, the lower
bound is tight for the whole range of values and, hence, the
optimal outage probability can be accurately computed in a
closed-form from (52). Likewise, the lower bound of the MSE
evaluated at the optimal 𝑝out is also tight (see Fig. 6.b), this
meaning that the problem (49) can also be accurately solved
if the order in which the inner and outer problems are solved
is reversed.

Finally, Figure 7 depicts the scaling law for Gaussian
and Rayleigh-fading channels without transmit CSI. Several
conclusions are in line. First of all, we observe that, in
both scenarios, the lower bound and the corresponding actual
MSE curves exhibit the same scaling law (and, furthermore,
the lower bound is very tight). Besides, it is also clear
that the scaling laws for the Gaussian and Rayleigh-fading
channels are identical. However, there is a gap between the
corresponding scaling laws due to the fact that, in the absence
of instantaneous transmit CSI, fading has a negative impact in
terms of reconstruction MSE.

VI. CONCLUSIONS

In this paper, we have addressed the problem of the esti-
mation of bandlimited two-dimensional spatial fields under
a total bandwidth constraint in the sensor-to-FC channels.
Besides, we have also assumed that sensor nodes are ran-
domly deployed according to a homogeneous (spatial) Poisson
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Fig. 5. Contour plot of the normalized MSE as a function of the node
density and outage probability (Γobs = 20 dB , 𝑊 = 500 kHz , 𝑅𝑠 = 1
kHz, 𝐹 = 10, SNR = 10 dB, 𝛽 = 1𝑒− 5 m−2).

Point Process. In this context, we have found an analytical
expression of the MSE in the reconstructed spatial field which
includes the contributions of the observation, quantization and
sampling noises. This has been done for two scenarios of
interest: Gaussian channels, on the one hand, and Rayleigh-
fading channels without transmit CSI, on the other. On the
basis of a lower bound of the MSE, we have derived an
approximate closed-form expression of the optimal sensor
density which attains the best trade-off for the aforementioned
noise contributions. Besides, for the Rayleigh-fading scenario,
we have analytically derived an expression of the rate at which
the observations must be encoded (i.e. quantized). We have
also found that the MSE (and its lower bound) in the high-
SNR regime scale as 1

ln(SNR) and 1
W𝑜(SNR) in Gaussian and

Rayleigh-fading scenarios, respectively. Computer simulation
results reveal that, for Gaussian channels, the lower bound is
in general tight and, thus, the approximation of the optimal
node density is accurate. Interestingly, the optimal operating
point depends on a number of system parameters (e.g. total
bandwidth, variance of the observation noise, SNR in the
sensor-to-FC channels) but not on the spatial bandwidth of the
field, this being a consequence of the random sampling pattern.
In Rayleigh-fading scenarios, the approximations of the node
density and the optimal outage probability (or, equivalently,
the aggregated encoding rate) are very accurate, as well.
Finally, we have also found that, although the scaling laws
of the MSE in Gaussian and Rayleigh-fading channels are
identical, there exists a gap motivated by the fact that, in the
absence of instantaneous transmit CSI, fading always has a
negative impact.

APPENDIX

By expanding the definition (17), we can write

MSE =
1

𝐸𝑥

[
𝔼

{∫
ℜ𝑙

�̂�2(s) 𝑑s

}
+

∫
ℜ𝑙

𝑥2(s) 𝑑s

− 2𝔼

{∫
ℜ𝑙

�̂�(s) ⋅ 𝑥(s) 𝑑s
}]

. (56)



MATAMOROS et al.: ON THE ESTIMATION OF RANDOMLY SAMPLED 2D SPATIAL FIELDS UNDER BANDWIDTH CONSTRAINTS 4191

0 0.2 0.4 0.6 0.8 1

10
−1

10
0

p
out

M
S

E
(ρ

* ) 

 

 
Actual value
Lower bound

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.2

0.4

0.6

0.8

1

ρ [node density]

M
S

E
 (

p ou
t

*
)

Fig. 6. a) MSE evaluated at the optimal 𝜌∗ as a function of the outage
probability. b) MSE evaluated at the optimal 𝑝∗out as a function of the sensor
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From Parseval’s relationship and taking into account that∫
ℜ𝑙 𝐸𝑋(𝝂)𝑑𝜈 = 𝐸𝑥, the first term in (56) reads

1

𝐸𝑥

∫
ℜ𝑙

𝔼

{
�̂�2(s)

}
𝑑s

=
1

𝐸𝑥

∫
ℜ𝑙

∣Φ(𝝂)∣2𝔉(𝑙)[𝔼 {𝑌 (s)𝑌 (s−𝝉 )}]𝑑𝝂

=
1

𝐸𝑥

∫
ℜ𝑙

∣Φ(𝝂)∣2ℰ𝑋𝑠(𝝂)𝑑𝝂

+
1

𝐸𝑥

∫
ℜ𝑙

∣Φ(𝝂)∣2ℰ𝑊 (𝝂)𝑑𝝂 . (57)

Now the autocorrelation function of the process 𝑊 (s) can be
expressed as

𝑅𝑊 (𝝉 ) =

∫
ℜ𝑙

𝔼 {𝑊 (s)𝑊 (s − 𝝉 )} 𝑑s

= 𝔼

{
𝐾∑

𝑘=1

𝐾∑
ℎ=1

𝑤𝑘𝑤ℎ

∫
ℜ𝑙

𝛿(s− s𝑘)𝛿(s− 𝝉 − sℎ) 𝑑s

}

= 𝛿(𝝉 )𝔼

{
𝐾∑

𝑘=1

𝜎2
𝑘

}
. (58)

where we have used the property that 𝑤𝑘’s are independent
and the last expectation is with respect to the r.v. 𝐾 . Hence,
the energy spectral density is

ℰ𝑊 (𝝂) = 𝔉(𝑙)[𝑅𝑊 (𝝉 )] = 𝔼

{
𝐾∑

𝑘=1

𝜎2
𝑘

}
. (59)

By substituting (59) into (57) we get

1

𝐸𝑥

∫
ℜ𝑙

𝔼

{
�̂�2(s)

}
𝑑s

= 1 +
𝛽

𝜌
+

1

𝐸𝑥
𝔼

{
𝐾∑

𝑘=1

𝜎2
𝑘

}∫
ℜ𝑙

∣Φ(𝝂)∣2 𝑑𝝂

= 1 +
𝛽

𝜌
+

𝛽

𝜌2
𝔼

{∑
𝑘

𝜎2
𝑘

𝐸𝑥

}
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= 1 +
𝛽

𝜌
+

𝛽

𝜌2
𝐷 , (60)

where we recalled the definition of 𝐷 in (28). The second
term is equal to 1 whereas the third term is given by

− 2

𝐸𝑥

∫
ℜ𝑙

𝔼

{
�̂�(s)

}
⋅ 𝑥(s) 𝑑s

= − 2

𝐸𝑥

∫
ℜ𝑙

Φ(𝝂)𝔼 {𝑆𝑌 (𝝂)}𝑆∗
𝑥(𝝂)𝑑𝝂. (61)

where 𝑆𝑌 (𝝂) = 𝔉(𝑙)[𝑌 (s)]. Due to the stationarity of the
random process 𝑃 (s) and considering that 𝔼 {𝑤𝑘} = 0, it is

𝔼 {𝑆𝑌 (𝝂)} = 𝔼

{
𝔉(𝑙)[𝑥(s) ⋅ 𝑃 (s)]

}
= 𝜇𝑃 ⋅ 𝑆𝑥(𝝂) . (62)

By substitution of (62), (61) becomes

− 2

𝐸𝑥

∫
ℜ𝑙

𝔼

{
�̂�(s)

}
⋅ 𝑥(s)𝑑s

= − 2

𝐸𝑥
𝜌

∫
ℜ𝑙

Φ(𝝂)ℰ𝑋(𝝂)𝑑𝝂 = −2. (63)
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