
Image Anal Stereol 2011;30:135-142 doi:10.5566/ias.v30.p135-142
Original Research Paper

MINKOWSKI-ADDITIVE MULTIMEASURES, MONOTONICITY AND
SELF-SIMILARITY

DAVIDE LA TORRE1 AND FRANKLIN MENDIVIL2

1Department of Economics, Business and Statistics, University of Milan, Italy; 2Department of Mathematics and

Statistics, Acadia University, Wolfville, Nova Scotia, Canada.

e-mail: davide.latorre@unimi.it, franklin.mendivil@acadiau.ca

(Accepted August 31, 2011)

ABSTRACT

We discuss the main properties of positive multimeasures and we show how to define a notion of self-similarity
based on a generalized Markov operator.
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INTRODUCTION

In the first part of this paper we introduce

two different notions of positive multimeasures,

namely positive multimeasures and cone-positive

multimeasures, and we analyze some mononicity

properties of these classes of multimeasures. In the

second part we introduce a definition of self-similar

multimeasure based on a Markov operator.

There are many applications of set functions

to different areas such as mathematical economics,

decision theory and social sciences; for this reason,

many variations on and extensions of measures

have been provided in the literature including, for

instance, subadditive and superadditive set functions,

submeasures, null-additive set functions and so

on. The notion of multimeasure (Vind, 1964;

Debreu and Schmeidler, 1967; Artstein, 1972) is one

of these possible generalizations which consider

set-valued set functions instead of set functions.

Some practical motivations behind this kind of

mathematical structures can be found, for instance,

in mathematical economics, when coalitions are

considered as primitive economic units (Vind, 1964;

Debreu and Schmeidler, 1967) or in the theory of

capacities (Choquet, 1953). There has been a wealth

of work on multimeasures and generalized measures,

both theoretical and in applications (Choquet, 1953;

Vind, 1964; Debreu and Schmeidler, 1967; Brooks,

1968; Artstein, 1972; Hildenbrand, 1974; Drewnokski,

1976; Pap, 1991; Kan, 1992; Alo et al., 1980;

Guo and Zhang, 2004).

Our purpose in this paper is to provide a useful

class of multimeasures for modelling of images

and information derivable from images. Images

are often modeled as functions or measures and

implicitly these are most often positive. In the case

of measures, restricting to positive measures greatly

simplifies the technical details as spaces of positive

measures have nicer properties than spaces of signed

measures (one example is the relationship between

bounded variation of a positive measure µ and

the boundedness of the total mass, µ(Ω), of µ).
Thus we examine two different classes of positive

multimeasures. Many images exhibit approximate

self-similarity and this structure has proven very

useful in applications in image compression,

representation and analysis (Hutchinson, 1981;

Barnsley and Demko, 1985; Barnsley et al., 1985;

Barnsley, 1989; Forte et al., 1999; Forte and Vrscay,

1999; Iacus and La Torre, 2005a;b; Kunze et al., 2007;

2008; 2012; La Torre and Mendivil, 2008; 2009;

La Torre et al., 2009). For instance, in fractal image

coding based on Iterated Function Systems (IFS) and

their generalization, the self-similar attractor is defined

in terms of a compact set and a positive measure

supported on it. The positive measure is the unique

fixed point of a Markov operator defined on a suitable

space of positive measures. The main idea behind

this paper is to extend this approach to the case of

multimeasures, by defining an appropriate complete

space of multimeasures and a contractive Markov

operator which will be used to introduce a notion of

self-similarity in this class.

The paper is organized as follows: next section

reviews the definition of (Minkowski additive)

multimeasures and introduces a metric space of

multimeasures which is complete once an extension

of the Monge-Kantorovich metric is given. The

third section introduces a weak notion of positive

multimeasure; for a multimeasure Φ to be positive it

is enough that 0 belongs to Φ(A) for all measurable

sets A. In the fourth section a stronger notion of

positive multimeasure is provided; in this context,
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a multimeasure Φ is positive if Φ(A) ⊆ P, for all
measurable sets A, where P is an ordering cone. Finally
a definition of self-similarity based on a notion of
generalized Markov operator and some examples are
provided in the last section.

ADDITIVE MULTIMEASURES

Consider a nonempty set Ω and a σ -algebra F on
Ω. A set-valued measure or multimeasure on (Ω,F )
is a function (for more on multimeasures see Artstein,
1972)

Φ : F →{K ⊂ R
m : K 6= /0} ,

which for any sequence of disjoint sets Ai ∈B satisfies

Φ
(

∞
⋃

i=1

Ai

)

=
∞

∑
i=1

Φ(Ai) .

The right side is the infinite Minkowski sum given by

∑
i

Ki =

{

∑
i

ki : ki ∈ Ki, ∑
i

|ki| < +∞

}

.

For A⊂ R
m and q ∈ R

m recall that

supp(q,A) = sup{q · x : x ∈ A}

defines the support function. For a multimeasure Φ let

Φq(B) = sup{q · x : x ∈ Φ(B)} = supp(q,Φ(B)) .

Then Φq(·) is a signed measure with values in
(−∞,∞]. Versions of the Radon-Nikodym theorem
have been proved for multimeasures (Artstein, 1972).
Let Hc(R

m) be the space of all compact and convex
subsets of R

m. In the following we work with
multimeasures defined on the Borel σ -algebra F

of a complete metric space Ω taking values in
Hc(R

m). Let Q,K ∈ Hc(R
m) with Q ⊆ K. We define

MQ,K(Ω,Rm) to be the set of all Minkowski σ -

additive multimeasures Φ on Ω which take values in
Hc(R

m) and such that

1. Φ(Ω) = Q

2. There is some set D ∈ Hc(R
m) and a ∈ Ω so that

∫

Ω f (x)dΦ(x)⊆D for all f ∈ Lip1(Ω)with f (a) =
0.

3. Φ(A) ⊆ K for all A.

Let S1 = {x ∈ R
m : ‖x‖ = 1} be the unit sphere in R

m.
We define the following metric on MQ,K(Ω,Rm),

d̂M(Φ1,Φ2) = sup
p∈S1

dM(Φp
1 ,Φ

p
2).

In this, dM(µ,ν) is the natural extension of the usual
Monge-Kantorovich metric between two probability
measures (see Kunze et al., 2012). It can be proved
that the space (MQ,K(Ω,Rm), d̂M) is a complete metric
space (Kunze et al., 2012).

POSITIVE MULTIMEASURES

We say that a multifunction F : D ⊆ R
n

⇉

R
m is positive if 0 ∈ F(x) for all x ∈ D. In a

similar way one can define positive multimeasure;

given a measurable space (Ω,F ) a multimeasure

Φ : F ⇉ X is said to be positive if 0 ∈ Φ(A)
for all A ∈ F . Let us define M

+
Q,K(Ω,Rm) be

the subspace of positive multimeasures; using the

completeness of MQ,K(Ω,Rm) it is easy to show that

(M +
Q,K(Ω,Rm), d̂M) is a complete metric space.

The following result is easy to prove.

Proposition 1. If Φ is a positive multimeasure then Φp

is a positive measure for all p ∈ S1.

Given two positive multimeasures Φ : F ⇉ X and

ψ : F ⇉ X we say that Φ is absolutely continuous

with respect to ψ if Φp is absolutely continuous with

respect to ψ p for all p ∈ S1 and in this case we write

Φ ≪ ψ . If Φ is absolutely continuous with respect to

ψ and ψ(A) = {0} then Φ(A) = {0}. The following

result provides a list of some simple properties of

positive multi-functions and positive multimeasures.

Let F be a positive multi-function and Φ be a positive

multimeasure. Then:

1. For all f : Ω → R we have f (x)F(x) is a positive

multi-function.

2. For all p∈R
m, the real-valued function F p defined

by F p(x) = supp(p,F(x)) is nonnegative.

3. A ⊆ B implies that Φ(A) ⊆ Φ(B). Thus, Φ(A) ⊆
Φ(Ω) for all A.

4. For all p∈R
m, the signed measure Φp is a positive

measure.

5. If µ is a positive measure then the multimeasure

Φ defined by Φ(A) =
∫

AF(x)dµ(x) is a positive

multimeasure.

6. If 0 ≤ f (x) ≤ g(x), then
∫

Ω f (x)dΦ(x) ⊆
∫

Ω g(x)dΦ(x).

Proposition 2. Suppose that F is a multifunction, F(x)
is a convex set for all x, µ is a positive measure and Φ
defined by

Φ(A) =
∫

A
F(x)dµ(x)

is a positive multimeasure. Then F is µ-a.e. a positive

multifunction.
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Proof. Suppose that the conclusion is false. Then there
is some set A ⊆ Ω with µ(A) > 0 and 0 /∈ F(x)
for all x ∈ A. Let pn be a countable dense sequence
in S1. For each x ∈ A, there is some n ∈ N so
that supp(pn,F(x)) < 0. Thus, with Am

n = {x ∈ A :
supp(pn,F(x)) < −1/m} we have

A =
⋃

n,m∈N

Am
n ,

and so there are n,m with µ(Am
n ) > 0. However, then

this means that

0 > −
µ(Am

n )

m
≥

∫

Amn

supp(pn,F(x))dµ(x) =

supp

(

pn,
∫

Amn

F(x)dµ(x)

)

= supp(pn,Φ(Am
n )) ,

and thus 0 /∈Φ(Am
n )which contradicts the fact that Φ is

positive. Thus F must be a positive multifunction.

Corollary 1. If Φ is a positive multimeasure which

is absolutely continuous with respect to the positive

measure µ , then the Radon-Nikodym derivative F(x)
of Φ with respect to µ is a positive multifunction.

We mention that in Proposition 2 it also works if
µ is a signed measure and not just a positive measure.
To see this, one just decomposes Ω into positive and
negative sets and apply the same proof to each part.

Proposition 3. Suppose that Φ is a positive

multimeasure and f is a real-valued function on Ω.

Then ν defined by

ν(A) =
∫

A
f (x)dΦ(x)

is a positive multimeasure.

Proof. First suppose that f (x) ≥ 0 for all x. Then for
any A we have

0≤
∫

A
f (x)dΦp(x) =

supp

(

p,
∫

A
f (x)dΦ(x)

)

= supp(p,ν(A)) ,

for any p ∈ S1. Thus 0 ∈ ν(A) and so ν is positive in
this case. If f (x) < 0 for all x, we just use the fact
that supp(p, f (x)Φ(A)) = supp(−p, | f (x)|Φ(A)) and
get the same result. Now, if f is a general real-valued
function, let P = {x ∈ Ω : f (x) ≥ 0} and N = {x :
f (x) < 0}. Then A = (A∩N)∪ (A∩P) and so ν(A) =
ν(A∩N)+ ν(A∩P). However, by the argument from
the first part (where f is positive) we see that 0 ∈
ν(A∩N) and 0 ∈ ν(A∩P) and so 0 ∈ ν(A) and thus ν
is a positive multimeasure.

We now deal with type of monotone convergence

for positive multimeasures.

Proposition 4. Let Φn be a sequence of positive

multimeasures with Φn(A) ⊆ Φn+1(A) for all n and

A ∈ F . Then Φ defined by

Φ(A) =
⋃

n

Φn(A)

is also a positive multimeasure.

Proof. The only non-trivial property is countable

additivity. Thus, suppose {Am} are disjoint sets in F .

Notice that ∑m Φn(Am) ⊆ ∑m Φn+1(Am). Using this

and the definition of countably additive, we see that

ζ ∈ ∑m Φ(Am) iff for all ε > 0, there exists some

N ∈ N and points yi ∈ Φ(Ami
) with mi < N so that

|∑i yi− ζ | < ε . Further, this happens iff for all ε > 0

there is some N ∈ N and yi ∈ Φni(Ami
) where ni <

N and mi < N so that |∑i yi − ζ | < ε . On the other

hand, ζ ∈ Φ(∪mAM) iff for all ε > 0 there is some

z∈∪nΦn(∪mAm)with |z−ζ |< ε which happens iff for

all ε > 0 there is someN ∈N and a points yi ∈Φni(Ami
)

with ni < N and mi < N so that |∑i yi−ζ | < ε .

Proposition 5. Let K ⊆ R
m be compact and Φn be a

sequence of multimeasures with Φn(A) ⊆ Φn+1(A) ⊆
K for all n and A. Then Φ defined by

Φ(A) =
⋃

n

Φn(A) = lim
n

Φn(A)

is a positive multimeasure, where the limit is taken in

the Hausdorff distance. If f is any |Φ|-integrable non-
negative function on Ω then

∫

Ω
f (x)dΦn(x) ր

∫

Ω
f (x)dΦ(x) ,

where again the convergence is in the Hausdorff

metric.

Proof. For any A ∈ F and p ∈ R
m, we see that

Φp(A) = supp(p,Φ(A)) = supp

(

p,
⋃

n

Φn(A)

)

= sup
n
supp(p,Φn(A)) = lim

n
supp(p,Φn(A))

= lim
n

Φp
n(A) ≤ supp(p,K) .

This means that for all p, we have that Φp is a

well-defined measure and thus Φ is well-defined as

a multimeasure with compact and convex values.

Furthermore, 0 ∈ Φn(A) ⊆ Φ(A) ⊆ K for all n and
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A ∈ F . Thus Φ is a bounded positive multimeasure.

Notice that we know

lim
n

Φp
n(A) = Φp(A)

for all p∈R
m and A∈F and that this trivially implies

that for all simple functions g we have

lim
n

∫

Ω
g(x)dΦp

n(x) =
∫

Ω
g(x)dΦp(x)

for each p. We know |Φn(A)| ≤ |Φ(A)| for all n and

thus f is also |Φn|-integrable for any n. Since any

selector for Φn is also a selector for Φn+1 and for Φ,

for all n we have
∫

Ω
f (x)dΦn(x) ⊆

∫

Ω
f (x)dΦn+1(x) ⊆

∫

Ω
f (x)dΦ(x).

Further,
∫

Ω f (x)dΦ(x) ⊆ R
m is compact and convex.

To show the reverse inclusion, suppose that it isn’t true.

That is, suppose that there is some

z ∈
∫

Ω
f (x)dΦ(x) but z /∈ L :=

⋃

n

∫

Ω
f (x)dΦn(x).

Then since L is compact and convex, there is some

ε > 0 and a p ∈ S1 with z · p > supp(p,L)+ ε which

implies that

∫

Ω
f (x)dΦp

n(x) = supp

(

p,
∫

Ω
f (x)dΦn(x)

)

< supp

(

p,
∫

Ω
f (x)dΦ(x)

)

− ε/2

=
∫

Ω
f (x)dΦp(x)− ε/2

for any n. Now, there is an increasing sequence of

simple functions gk which converge upwards to f on

Ω. So, by the Monotone Convergence Theorem for

finite positive measures we know there is some N so

that k ≥ N implies that

∫

Ω
gk(x)dΦp(x) ≥

∫

Ω
f (x)dΦp(x)− ε/2 .

But then

∫

Ω
gk(x)dΦp(x)

n→ ∞

←−

∫

Ω
gk(x)dΦp

n(x)

<
∫

Ω
f (x)dΦp

n(x) <
∫

Ω
f (x)dΦp(x)− ε/2

≤
∫

Ω
gk(x)dΦp(x) ,

which is a contradiction.

CONE-POSITIVE

MULTIMEASURES

Let P ⊆ R
m be a pointed convex cone. P induces

in R
m an order in the usual manner, that is a ≤P b if

b ∈ a+P. In a similar way, given A,B ⊆ Rm we say
A ≤P B if B ⊆ A+ P; this defines a partial order on
subsets of R

m. In the following let P∗ = {p∗ ∈ R
m :

p∗p ≥ 0,∀p ∈ P} be the dual cone. The following
properties are easily proved:

1. A⊆ P iff {0} ≤P A

2. A⊆ R
m and B⊆ P implies A≤ A+B

3. A,B⊆R
m andC⊆ P and A≤P B implies A+C≤P

B+C.

4. A ⊆ P and q ∈ P∗ implies that supp(q,A) ≥ 0 and
supp(−q,A) ≤ 0.

5. A,B ⊆ P with A ≤P B implies that supp(−q,A) ≥
supp(−q,B) for all q ∈ P∗.

6. A+C = B with C ⊆ R
m
+ and q ∈ R

m
+ implies that

supp(q,A) ≤ supp(q,B).

We say that a multifunction F : D ⊆ R
n

⇉ R
m is

cone-positive if F(x) ⊆ P for all x ∈ D. In a similar
way one can define cone-positive multimeasure; given
a measurable space (Ω,F ), where F be a sigma-
algebra defined over Ω, a multimeasure Φ : F ⇉

X is said to be cone-positive if Φ(A) ⊆ P for
all A ∈ F . Let us define M

++
Q,K (Ω,Rm) be the

subspace of cone-positive multimeasures; by using the
completeness of MQ,K(Ω,Rm) it is easy to show that

(M ++
Q,K (Ω,Rm), d̂M) is a complete metric space. We

have the following properties:

1. if A⊆ B then Φ(A)≤P Φ(B), that is Φ is monotone
with respect to P

2. if Φ is a cone-positive multimeasure and p ∈ P∗

then Φp is a positive measure and Φ−p is a negative
measure

3. if 0≤ f (x)≤ g(x) for all x and Φ is a cone-positive
multimeasure, then 0≤

∫

A f dΦ ≤
∫

A gdΦ, ∀A

4. if F is a cone-positive multifunction and µ is a

positive measure then Φ(A) =
∫

A
F(x)dµ defines

a cone-positive multimeasure

5. if Φ is a cone-positive multimeasure and is
absolutely continuous with respect to a positive
measure µ , then dΦ/dµ is a cone-positive multi-
function

6. if Φ is cone-positive multimeasure and f is a
positive function then ν(A) =

∫

A f (x)dΦ(x) is a
cone-positive multimeasure.
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Proposition 6. Let A,B ⊆ P, convex and compact.

Then A≤P B iff ∀p ∈ P∗, supp(−p,A)≥ supp(−p,B).

Proof. Since A ≤P B then we have B ⊆ A+P which
implies that ∀b ∈ B there exists a ∈ A such that a ∈ b

and then p(a) ≤ p(b) for all p ∈ P∗. This implies
−p(b)≤−p(a) and then supp(−p,A)≥ supp(−p,B).
Suppose the converse is not true. Then there exists
b̄ ∈ B with b̄ 6∈ A+ P and then a 6≤ b̄ for all a ∈ A.
So for a ∈ A, ∃pa ∈ P∗ such that pa(a) > pa(b), that
is −pa(b) < −pa(a). But we assumed supp(−p,A) ≥
supp(−p,B) so we have a contradiction.

In particular A ⊆ P iff supp(−p,A) ≤ 0 for all
p ∈ P∗.

Proposition 7. Suppose that
∫

AF(x)dµ(x) ⊆ P for all

A. Then F(x) ⊆ P µ-a.e.

Proof. For all p ∈ P∗ and all A we have that
∫

A
supp(−p,F(x))dµ(x) ≤ 0 ,

that is supp(−p,F(x)) ≤ 0 µ-a.e. and then F(x) ⊆ P

µ-a.e.

Given two cone-positive multimeasures Ψ and Φ,
we say that Ψ is absolutely continuous with respect
to Φ and we write Φ ≪ Ψ, iff Φ(A) = {0} implies
Ψ(A) = {0}. It can be easily proved that this is
equivalent to require that Ψp is absolutely continuous
with respect to Φp for all p ∈ P∗.

The following result is an analog of the fact that
a positive measure has bounded total mass iff it has
bounded variation.

Proposition 8. Let Φ be a cone-positive multimeasure

with convex and compact values in R
d . Suppose P

is such that int(P∗) 6= /0. Then there exists K ⊆ P,

compact, such that Φ(A) ⊆ K for all A.

Proof. For all p ∈ P∗, we see Φp is a positive
measure and so Φp(Ω) = Φp(Ω\A) + Φp(A)
and this implies Φp(A) ≤ Φp(Ω), that is
supp(p,Φ(A)) ≤ supp(p,Φ(Ω)) for all p ∈ P∗,
∀A. Let M = supp∈P∗,‖p‖=1 supp(p,Φ(Ω)) < ∞

and K =
⋂

p∈P∗,‖p‖=1{x ∈ P : x · p ≤ M}. Clearly,

supp(p,Φ(Ω)) ≤ M for all p ∈ P∗, ‖p‖ = 1, so
Φ(A) ⊆ K, for all A. Thus we show K is compact.
Suppose not, then there exist xn ∈K such that ‖xn‖> n.
Let p ∈ int(P∗), ‖p‖ = 1 and ε > 0 such that Bε(p) ⊆
P∗. Further, let gn ∈ R

d be such that ‖gn‖ = 1 and
gnxn = ‖xn‖ > n. Then p+ εgn ∈ P∗ and so

M ≥ (p+ εgn)xn = pxn + εgnxn > εn−M

which is a contradiction. Thus K is compact.

The following proposition 9 and corollary 2 can be

easily proved.

Proposition 9. Suppose that 0 ≤ fn ր f , where f

is a bounded function. Suppose further that Φn is

a sequence of cone-positive multimeasures such that

Φn(A) ⊆ Φn+1(A), ∀A, ∀n with Φ
p
n(Ω) < M for all n

and p∈ P∗ with ‖p‖= 1. Let Φ(A) :=
⋃

n Φn(A). Then
∫

fndΦn →
∫

f dΦ in the Hausdorff metric.

Corollary 2. Let Φn be a sequence of cone-positive

multimeasures and suppose that there is a compact

set K with Φn(A) ⊆ Φn+1(A), ∀A ⊂ K, ∀n. Then

Φ(A) :=
⋃

n Φn(A) is a cone-positive multimeasure

and
∫

A f dΦn →
∫

A f dΦ for all positive function f and

∀A⊂ K.

SELF-SIMILAR MULTIMEASURES

Iterated applications of an IFS Markov operator

operating on a probability measure converge to a self-

similar measure which is invariant under the action of

the functions in the IFS. We now turn to the definition

of self-similarity through an IFS Markov operator on

these multimeasures but, to explain this, we give a brief

review of the relevant construction. Let (Ω,d) be a

complete metric space and let F be the corresponding

Borel σ -algebra. Let wi : Ω → Ω for i ∈ {1,2, . . . ,N}
be uniformly contractive. That is, there exists 0< c< 1

such that d(wi(x),wi(y)) ≤ cd(x,y) for each i and all

x,y ∈ Ω. Let (pi)
N
i=1 be a collection of probabilities

such that pi > 0 and ∑i pi = 1. This determines the IFS

(wi, pi, i = 1 . . .N). The Markov operator associated

with this IFS is an operator on probability measures

µ over (Ω,F ), which is defined by

Mµ(B) = ∑
i

piµ
(

w−1
i (B)

)

(1)

for all Borel sets B ∈ F . If µ is supported on B

and the wi(B) are mutually disjoint then the result

of this operator is to assign probability pi to wi(B),
that is Mµ(wi(B)) = pi. A second application of

M assigns probability pip j to the set wi(w j(B)), a
third application assigns probability pip jpk to the set

wi(w j(wk(B))), and so on. This recursively partitions a
limit probability measure over Ω which is concentrated

on the fractal set defined by the wi’s.

Our intention is to generalize this process

to multimeasures; the formulation here of an

IFS type method over multimeasures represents

recent results from an ongoing research programme

concerning the construction of appropriate IFS type
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operators or generalized fractal transforms, including

integral and wavelet transforms, over various function
spaces, distribution spaces and spaces of generalized
measures. Fix two compact and positive sets K,Q (we

can consider either notion of positivity) and recall
that MQ,K(Ω,Rm) is complete. Let wi : Ω → Ω for
i = 1,2, . . . ,N be contractive with the Lipschitz factor

for wi being ci. We also take linear functions Ti :
R
m → R

m with ∑iTiQ = Q and ∑i∈STiK ⊆ K for all
S ⊆ {1,2, . . . ,N} (the choice K = λQ for some λ ≥ 1

often works, but might be overly restrictive). We define
the IFS operator

MΦ(B) = ∑
i

Ti
(

Φ(w−1
i (B))

)

(2)

for all B ∈ F . A simple argument shows that MΦ ∈
MQ,K(Ω,Rm) whenever Φ ∈ MQ,K(Ω,Rm) (to see
this, it is useful to note that each Ti is continuous with
respect to the Hausdorff metric since Ti is linear, and

thus Lipschitz).

Theorem 1. For the IFS Markov operator defined

above we have

d̂M(MΦ1,MΦ2) ≤

(

∑
i

ci‖Ti‖

)

d̂M(Φ1,Φ2) (3)

for all Φ1,Φ2 ∈ MQ,K(Ω,Rm).

Proof. First we note that for linear T and convex A, we
have

sup
q∈S1

supp(q,TA) = sup
q∈S1

supp(T ∗q,A)

≤ ‖T ∗‖ sup
q∈S1

supp(q,A) = ‖T‖ sup
q∈S1

supp(q,A) .

Let c = maxi ci be the contraction factor for the IFS.

For a given fixed q ∈ S1 and Lipschitz f , we have

∫

Ω
f (x)d [supp(q,MΦ1(x))− supp(q,MΦ2(x))]

=
∫

Ω
f (x)d

[

supp(q,∑
i

TiΦ1(w
−1
i (x)))

− supp(q,∑
i

TiΦ2(w
−1
i (x)))

]

=
∫

Ω
f (x) ∑

i

d
[

supp(T ∗
i q,Φ1(w

−1
i (x)))

− supp(T ∗
i q,Φ2(w

−1
i (x)))

]

≤
∫

Ω

{

∑
i

‖Ti‖ f (wi(y))

}

·

d [supp(q,Φ1(y))− supp(q,Φ2(y))] .

Now, we see that the function f̃ = ∑i ‖Ti‖ f ◦wi has
Lipschitz factor at most ∑i ci‖Ti‖. Thus, when we take
the supremum over all q and all Lipschitz functions,
we get that

d̂M(MΦ1,MΦ2) ≤

(

∑
i

ci‖Ti‖

)

d̂M(Φ1,Φ2) ,

as was desired.

Example 5.1. As illustrative example, we choose K =
Q ⊂ R

m to be the closed unit ball and Ω = [0,1] with
wi(x) = x/2+ i/2 for i = 0,1. Further let p0 ∈ (0,1)
and p1 = 1− p0 and define Ti = piI. Then the invariant

multimeasure for the IFS Markov operator

Mφ(B) = T0φ(w−1
0 (B))+T1φ(w−1

1 (B)) (4)

is the measure Qµ where µ is the probability measure

which is the invariant distribution for the standard

IFS with maps {w0,w1} and probabilities {p0, p1}. In
this case, the multimeasure is rather simple, being the

product of the scalar (probability) measure µ and the

set Q. Fig. 1 shows two multimeasure attractors of IFS

Markov operators and they have been obtained with

the following parameters: p0 = 0.3, p1 = 0.7 for both

of them and, for the rectangular, one direction is 0.3
and 0.7 and the other direction is 0.7 and 0.3 The wi

are x/2+ i/2, i = 0..1.

Fig. 1. Rectangular and circular positive

multimeasures.

Example 5.2. Let Ω = [0,1], w0(x) = x/3, w1(x) =
x/3+2/3 (so c0 = c1 = 1/3) and

T0(x,y) =

(

α 0

0 1−α

)(

x

y

)

, (5)

T1(x,y) =

(

1−α 0

0 α

)(

x

y

)

, (6)

with 1/2 < α < 1. Now, let K = Q = [0,1]2 ⊂ R
2. It is

easy to see that T0(Q) + T1(Q) = Q. In this case, the

invariant multimeasure φ is supported on the classical

Cantor Set and the values are rectangles which are

more “vertical” to the left and more “horizontal” to

the right.
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Let us suppose that Ti(P) ⊆ P. This implies that

if B ⊆ P then ∑iTi(B) ⊆ P. Notice if T satisfies

these two hypotheses, then if Φ is a cone-positive

multimeasure with Φ(Ω) = Q, then TΦ(Ω) = Q and

TΦ is a cone-positive multimeasure. Thus TΦ(A) ⊆
⋂

p∗∈P∗,‖p∗‖=1{x : xp
∗ ≤M} with the same M.

It is also trivial to see that if Φ is positive in the

sense that 0 ∈ Φ(A) for all A, then MΦ is also positive

in this same sense. Thus M preserves both classes of

positive multimeasures.

CONCLUSIONS

At the end of this paper, it is worth spending

few words to justify why the concept of positive

multimeasure arises quite naturally in the context of

fractal image coding. In fact, in the classical IFS

coding an image F can be modeled as an Lp function or

as a positive probability measure. Practically speaking,

these are two identical ways to look at a given

image; when a function-based representation is used,

at each pixel in the domain the function assigns the

color corresponding to that pixel. However, when the

color of pixel can not be assigned with precision, it

might be preferable to use a measure-based approach

which assigns the averaged color of a given block

of pixels. From a mathematical point of view, there

exists a straight correspondence between the above

approaches; when a positive function is integrated

with respect to the Lebesgue measure, this leads to

a positive measure and vice versa, if the the positive

measure is absolutely continuous with respect to the

Lebesgue measure then, by Radon theorem, there

exists a density. In other words these two approaches

can be understood as the two faces of the same

medal. What happens if we consider a multifunction-

based environment instead? In La Torre et al. (2006)

we motivated what are the advantages of using the

notion of multifunction in image analysis; roughly

speaking this formalism allows to include in a unique

framework possible uncertainty or noise on the color

of a pixel. In this context, as well described in Fig. 2,

the easiest example happens when we consider an

interval-valued multifunction, in which the lower and

upper functions describe the range of possible color

variations.

As it happens for single-valued function, it might

happen that the color of a single pixel is difficult to

be determined; this leads to consider the measure of

a block of pixel and then, quite naturally, to introduce

the definition of positive multimeasure.

Fig. 2. Lower and upper Lena images.
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