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ABSTRACT Personalised training of motor and cognitive abilities is fundamental to help older people
maintain a good quality of life, especially in case of frailty conditions. However, the training activity can
increase the stress level, especially in persons affected by a chronic stress condition. Wearable technologies
and m-health solutions can support the person, the medical specialist, and long-term care facilities to
efficiently implement personalised therapy solutions by monitoring the stress level of each subject during
the motor and cognitive training. In this paper we present a comprehensive work on this topic, starting from
a pilot study involving a group of frail older adults suffering from Mild Cognitive Impairment (MCI) who
actively participated in cognitive and motor rehabilitation sessions equipped with wearable physiological
sensors and a mobile application for physiological monitoring. We analyse the collected data to investigate
the stress response of frail older subjects during the therapy, and how the cognitive training is positively
affected by physical exercise. Then, we evaluated a stress detection system based on several machine
learning algorithms in order to highlight their performances on the real dataset we collected. However,
stress detection algorithms generally provide only the identification of a stressful/non stressful event, which
is not sufficient to personalise the therapy. Therefore, we propose a mobile system architecture for online
stress monitoring able to infer the stress level during a session. The obtained result is then used as input for
a Decision Support System (DSS) in order to support the medical user in the definition of a personalised
therapy for frail older adults.

INDEX TERMS Cognitive training, m-Health, Physiological Data analysis, Stress Detection, Wearable
Sensors, Decision Support System, Machine Learning

I. INTRODUCTION

TODAY, ageing represents an increasing phenomenon,
involving even more complex health conditions due to

the coexistence of multiple chronic diseases. This generates
a decreasing trend in the quality of life of both older people
and their caregivers, often flowing in frailty condition.
Nowadays, frailty is considered a geriatric syndrome, usually
involving over 65 years old people, representing a state of
vulnerability with increased risk of poor health outcomes, in-
cluding falls, incident disability, hospitalization and mortality
[1]. Common signs and symptoms of frailty are weight loss,
fatigue, muscle weakness and reduced physical and mental

performances [2]. This condition, in addition to a possible
social isolation, can also contribute to increase the psycho-
physical stress, which can negatively affect sleep quality,
mood, and cognitive performances. [3]. The entire picture
refers to a complex clustering of emotional symptoms and
behavioural features that generates a chronic stress condition.
In addition, several studies established a link between frailty
and cognitive decline [4]. Specifically, cognitive decline in
older people is currently defined as Mild Cognitive Impair-
ment (MCI). MCI is frequently associated with physiological
ageing, but it can often represent a transitional phase from
cognitive changes or deficits of normal ageing to patho-
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logical features found in neurodegenerative and vascular
dementia [5]. These two conditions, which often coexist in
older people, can represent a cumulative health risk factor
[6]. Specifically, MCI can affect an important domain of
cognitive processes called executive functions, which refer to
the ability to execute and maintain goal-directed behaviour.
Working memory, inhibitory control, and cognitive flexibility
represent the core components of the executive functions [7].
Therefore, in order to slow down and reduce the risk of
collapse of frailty, it is necessary to define personalised
programs, both in terms of health monitoring solutions, and
cognitive and motor rehabilitation, which are often suggested
by gerontologists. However, personalisation should also take
into account the level of stress that this type of programs can
generate in each subject, trying to identify the ideal train-
ing condition in terms of both improvements and personal
compliance. In fact, even though it has been demonstrated
that a proper training helps maintain efficient cognitive and
motor abilities, the relationship between the frailty status
and the execution of specific training sessions has not been
investigated yet [8], especially in terms of related stress.
Stress can be classified into two main categories: acute and
chronic stress. Acute stress refers to a transient occurrence
of a single stressing agent, whereas chronic stress refers
to an ongoing difficulty or disease that may be a constant
threat to the individual’s life [9]. The human body copes with
stress using two response systems: a quick response (’fight-
or-flight’) to acute stress following the sympathetic adrenal
medullary (SAM) axis, and a slow response to chronic stress
following the hypothalamic pituitary adrenal (HPA) axis
[10]. When the human brain faces a stressor, i.e., an internal
or external agent that alters the body’s homeostasis, the
activation of the system response aims to restore the body’s
internal balance through physiological and behavioural adap-
tive responses [11]. This results in the modification of several
physiological processes, such as heart activity, respiration,
blood pressure, pupil dilation and many others [12]. For this
reasons, several methodologies and instruments (obtrusive
and unobtrusive) have been used in the last years in order to
identify and classify physiological stress markers. According
to [13], Heart Rate (HR), Heart Rate Variability (HRV) and
Electrodermal Activity (EDA) represent the primary mea-
sures used for stress detection and classification. Recently,
other studies have introduced also EEG, Blink Reflex through
surface EMG, and eye tracking data analysis [14], but the
instruments to collect these physiological signals could not
be easily accepted by frail older people.
In our study we mainly refer to the detection of acute stress,
related to specific training sessions, in frail MCI older adults
living in a long-term care (LTC) facility, which are already
affected by a chronic stress condition. We focused on the
collection of HR, HRV and EDA for stress detection purposes
by commercial wearable sensors and a customised m-health
solution. Each participant has been monitored during specific
training sessions based on standard rehabilitation activities
commonly used in the daily LTC facility. Activities consist

in cognitive training alternated by a light physical exercise
by using a cycle-ergometer. In fact, clinicians observed that
cognitive performances can be improved by the physical
activity, but they have no information about how this can
affect the stress conditions of frail subjects. Therefore, the
proposed system is designed to highlight the short-time
improvements of cognitive performances generated by the
proposed physical exercise, and the related stress response.

In fact, by increasing or changing either the physical activ-
ity or the cognitive training to further stimulate the subject’s
abilities, the level of stress can increase, generating further
risks for the frailty condition. For this reason, and for the
subjective nature of the stress response, it is important to
provide a novel solution for automatic stress detection. To
this aim, we exploited the physiological dataset, collected
during the pilot study, to evaluate the performances of a
binary stress detection system, based on different machine
learning (ML) algorithms. It provides promising results with
respect to standard solutions conducted in controlled settings.
In fact, in this case, we conducted the pilot study in a semi-
controlled setting, by performing the activities in ambulatory
and with the medical support, but inferring stimuli without
a predefined stress response. However, this system is not
suitable to infer and quantify the level of stress generated by
a specific training activity, and consequently personalise the
treatment. For this reason, we propose to enrich the m-health
solution through the definition of a novel Decision Support
System (DSS) for online stress monitoring. This solution
is based on the analysis of physiological signals during the
therapy in a time- or event-based manner, which results are
then used as input for a decision module able to infer the user
stress level and support the medical user in the definition of
a personalised training activity. The complete system is thus
composed by a mobile solution, aimed at collecting data and
extracting relevant features by making a preliminary signal
processing, and a DSS cloud-based system that provides its
output to the m-health app.

A. MAIN CONTRIBUTIONS
The main contributions of this work can be summarized as
follows:

• The pilot study demonstrates the efficacy of the physical
activity on the cognitive performances in frail older
adults, while maintaining a low stress level.

• We use the real dataset, collected in a semi-controlled
environment, to evaluate the performances of a binary
stress detection system based on different classification
algorithms. It provides promising results compared with
solutions used in completely controlled settings.

• Finally, we propose a novel Decision Support System
(DSS) with a mobile pervasive architecture for online
stress monitoring. This solution supports users and the
medical specialists with a more valuable and detailed
feedback during the therapy, in order to provide person-
alised treatments. Our proposal can be exploited both in
clinical settings and in remote monitoring systems.
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B. PAPER OUTLINE
The paper is organised as follows. Section II presents an
overview of the related works and motivations in terms of: (i)
the effects of physical activity on cognitive performances in
older adults, and (ii) stress monitoring and detection systems.
Sections III and IV present material and methods of the
randomised cross-over pilot study and stress classification,
respectively. Section V presents and discusses the results of
both studies. Section VI describes our proposal of a DSS for
online stress monitoring and the mobile system architecture.
Finally, Section VII draws conclusions and future works.

II. RELATED WORKS
In order to better highlight the novelty of the proposed solu-
tions and results, we provide a brief summary of the related
works in two different research fields: (i) methodologies
and results on the impact analysis of physical activity on
cognitive performances in older adults, and (ii) the state of
the art in stress monitoring and detection systems.

A. PHYSICAL ACTIVITY AND COGNITIVE
PERFORMANCES IN OLDER ADULTS
In the last decades, several randomised controlled trials
(RTCs) have been conducted to evaluate the impact of phys-
ical activity on cognitive performances and mental health in
older adults [15], [16]. Most of them involve healthy subjects,
able to execute long-term physical exercise programs, and
assess the cognitive improvement mainly through the clini-
cal evaluation of different cognitive functions (e.g., through
neuro-psychological tests or a test battery). Among the re-
viewed studies, 25 of them measure attention and processing
speed, 17 memory recall (immediate and/or delayed), 20 ex-
ecutive functions, and 13 working memory. Reported RTCs
present considerable heterogeneity in terms of subjects’ char-
acteristics, exercise programs, treatment duration, samples’
size, adherence rate, and cognitive tests. Nevertheless, those
studies provide a general evidence of the improvements on
the cognitive functions generated by the physical exercise.
On the other hand, considering MCI older adults, a recent
review points out that there is no general evidence of the
positive effect of physical exercise on cognitive functions
for this target population [17], and more rigorous and fo-
cused studies are necessary to identify possible benefits.
Specifically, [18]–[20] have demonstrated improvements in
one or more executive function domains by applying het-
erogeneous, supervised, and group-based training programs
using different exercise categories (e.g., aerobic, resistance,
and multi-modal). Conversely, other studies do not present
any significant improvement [21], [22]. This difference can
be due to both the heterogeneity of the studies and the
different clinical type of MCI. In fact, MCI is currently
distinguished in uni-domain and multiple-domain, based on
the number of impaired cognitive functions, which can gen-
erate different reactions to physical and cognitive stimuli.
For these reasons, it is important to define focused studies
on homogeneous populations as preliminary investigation

towards personalised treatments and training programs aimed
at maintaining subjects’ main abilities. Furthermore, since
frailty often includes a chronic stress condition due to the
management of multiple chronic illnesses, it is important to
investigate if the physical-cognitive training has also a pos-
itive or negative impact on the stress condition, considering
that it is a supplementary requested activity. To the best of
our knowledge, there is no specific study neither on the effect
of acute physical exercise on the cognitive performances of
MCI frail older adults, or on the stress generated by this
type of training. To this aim, we defined a specific cognitive
and physical training protocol that has been executed with a
group of MCI frail older adults as a randomised cross-over
pilot study.

B. STRESS MONITORING AND DETECTION SYSTEMS
Classification algorithms of the physiological response to
stressful and non-stressful conditions have been deeply stud-
ied in the last years [23]. HR, HRV and EDA represent the
reference physiological signals for stress detection [13], and
they can be accurately monitored through commercial wear-
able devices. Physiological markers are often matched with
the analysis of cortisol levels, which represents the biological
gold standard for stress detection, to generate a more accurate
evaluation of the stress response [24]. However, cortisol sam-
pling is an invasive method, it does not allow a continuous
monitoring and requires complex laboratory analysis, with a
significant delay in the stress detection phase, not suitable
for the system we are envisioning. In other studies, EDA and
HRV are also integrated with EEG [25], physical activity data
based on 3D accelerometer [26], video-based activity data
[27], facial expressions [28], and speech analysis [29].
Other research studies have investigated different biosignals
as stress detection markers, such as pupil diameter [30], and
eye gaze [31]. Thermography through thermal camera or IR
touchscreen has been used to extract stress-related markers,
such as breathing [32], facial blood flow changes [33], and
photoplethysmographic (PPG) signal [34], [35]. Facial hy-
perspectral imaging (HSI) method has also been tested in
order to obtain tissue oxygen saturation (StO2) for stress
detection [36]. Finally, some study also used behavioural
data, especially while performing computerised tasks, in-
cluding keystroke dynamics [37], and typing behaviour on
a smartphone using accelerometer and gyroscope data [38].
Most of these studies are conducted in laboratory settings,
alternating non-stressful periods with validated stress induc-
tion tests, such as Trier Social Stress Test (TSST) [39],
Stroop Color-Word Test (SCWT) [40] , Sing-a-Song Stress
Test (SSST) [41], and cold pressor test [42]. Moreover,
the stressing protocols are designed in such a way that all
the stressors’ characteristics (i.e., intensity, duration, timing,
frequency) are rigorously controlled. Therefore, the system
has an implicit ground truth in the classification of stressful
and non-stressful events.
On the other hand, a limited number of studies attempted to
move from laboratory settings, performing stress detection
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in work offices [43], [44], university campus [45], [46],
automobile environments [47], [48], and finally targeting
unrestricted daily life conditions [49], [50]. These studies use
self-reports as stress ground truth, which are collected by us-
ing self-report questionnaires and scales, such as Cohen Per-
ceived Stress Scale (CPSS) [51], and Ecological Momentary
Assessment (EMA) [52]. However, self-report measurement
suffers from several forms of recall bias [53], which can be
alleviated by prompting users to report their status multiple
times in their current environment. Nevertheless, participant
burden is a major drawback in this approach, due to the
repeated administration of multi-item questionnaires.
Moreover, stress detection studies don’t usually focus on
specific target populations, and they mainly involve young
healthy subjects, whereas the number of studies targeting
older adults is really limited. To the best of our knowledge,
stress in older adults is usually assessed using standard self-
report questionnaires or clinical rating scales. [54] is the only
study we found aimed at detecting stressful and non-stressful
events in activity of daily living (ADL) of 6 older subjects
with dementia, and it is based only on EDA monitoring. In
this case the authors used the care giver subjective notes
as ground truth on the stress condition of each subject, and
they applied predefined signal thresholds to determine both
generalized and personalized stress levels, without exploiting
any data learning or modeling technique. No additional stress
detection studies using physiological data and sensor tech-
nologies with older adults are reported. A particular work has
been presented in [55] where a step watch is used to measure
the wandering behavior of older people suffering from de-
mentia. The authors exploit this activity as individual stress
indicator, even though there is no generalised assumption on
this.
In our reference scenario we are focusing on MCI frail older
adults, characterised by a chronic stress condition, monitored
during specific rehabilitation and training sessions, which
represent part of the general activity conducted in a LTC
facility. Despite the ambulatory environment where the daily
training and rehabilitation activities are usually carried out
in a LTC facility may be considered similar to a laboratory,
our reference scenario represents an intermediate condition
between lab and natural settings (i.e., "into-the-wild".) In
fact, we can define our stress induction protocol as semi-
controlled considering the following conditions:

• The cognitive stressor (SCWT) has not a predefined
duration and intensity, since it depends on individual
cognitive abilities.

• There is no evidence found in the literature that the
proposed physical activity, suitable for our target pop-
ulation, can be considered an intended stressors. We
just set the duration of this physical exercise, and we
investigated its effect on both the physiological stress
response and cognitive performances.

We refer to HR, HRV, and EDA as physiological stress mark-
ers, and we analysed in the literature the reference learning

algorithms used for stress detection. Stress detection is usu-
ally defined as a supervised learning problem, and Support
Vector Machines (SVMs), Decision Trees (DTs), Random
Forests (RFs), k-Nearest Neighbours (k-NNs), Bayesian Net-
works (BNs), AdaBoost (AB), and artificial neural networks
(ANNs) are the most widely used learning schemes in this
research field [56]. Alternative solutions are based on Fuzzy
Inference Systems (FISs) [57], [58] or clustering techniques
[59]. In the first case, FISs are mainly characterised by
predefined Membership Functions (MFs) and rules, whereas
clustering use iterative approaches to determine the optimal
number of clusters. These solutions suffer from the main
drawback of knowledge elicitation for system modeling and
learning from collected data. Moreover, unsupervised ap-
proaches based on Self-Organizing Maps (SOMs) have been
used, thus avoiding the collection of stress class labels [60],
[61]. However, they require an additional effort to analyse the
patterns emerged onto the map, and a comparison with a clin-
ical stress evaluation is still required as a system validation.

III. THE PILOT STUDY
In this section we present in detail the materials and methods
used in the pilot study design, and in the evaluation of stress
detection algorithms based on different ML techniques.

A. PARTICIPANTS
We conducted a randomised cross-over observational study
in collaboration with LTC facility iCARE, located in Viareg-
gio (Lucca, Italy)1, which is interested in improving its
assistance services by implementing personalised treatments.
The study received the Ethical Clearance both by CNR
Ethical Committee2 and by iCARE internal committee. All
the participants have been deeply informed about the study
methodology, specifying the purpose, the technology func-
tionality, the monitoring sessions and the data management
phases, and they signed the informed consent to participate
in the study.
Recruitment of older people, especially those suffering from
multimorbidity and frailty , is a major challenge for most
research studies struggling to find participants among these
population groups [62]. Figure 1 shows the CONSORT3

Flow Diagram for transparent reporting of trials. 57 subjects
have been assessed for eligibility in the nursing home; 24 did
not provide the informed consent to participate in the study.
Among those who signed the informed consent, 20 did not
meet the inclusion criteria reported in Table I. In addition,
4 subjects dropped out before the study began (i.e., some of
them moved to another LTC facility, and others had health
complications). Eventually, we enrolled 9 frail older adults,
5 women (mean age 83.6 ± 4.3 yo) and 4 men (mean age
74.7 ± 11.6 yo).

Psycho-physical and behavioural characterisation of the
study population has been conducted before the beginning

1http://www.rsatabarracci.it/
2CNR protocol number 0060896/2017 date Sept. 25, 2017.
3http://www.consort-statement.org/

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2985301, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

of the study, based on the evaluation of the following clinical
rating scales:

• Mini Nutritional Assessment (MNA) for a screening of
the nutritional status.

• Activity Daily Living (ADL) and Instrumental Activity
Daily Living (IADL) for functional autonomy.

• Apathy Evaluation Scale (AES) and Hamilton Depres-
sion scale (HDS) for mood and behaviour.

• Cohen Perceived Stress (CPS) for stress awareness.
• Insomnia Severity Index (ISI) for sleep quality.

The obtained scores, shown in Table II, classify most of
the subjects in a normal nutritional status (MNA ≥ 23.5),
in a low index of dependence in ADL (ADL ≥ 5), with a
severe to moderate dependence in IADL, which is mainly
caused by the lack of practice in specific activities due to
living in a nursing home (3 ≤ IADL ≤ 5). The remaining
scores highlight that most of the participants presents mood
disorders (moderate to severe depression conditions, HDS
≥ 18), 33% presents reduced initiative and apathy (AES
> 37.5) and 33% reports high level of perceived stress
(CPS ≥ 20). The entire group presents light (8 ≤ ISI
≤ 14) to moderate (15 ≤ ISI ≤ 21) insomnia. Moreover,
we evaluated all the subjects through a brief pathological
and pharmacological assessment, from which emerged the
presence of multiple chronic diseases under personalised
pharmacological treatment for the entire group.
Screening of cognitive performances has been carried out
through Mini Mental State Examination (MMSE). MMSE
provides a clinical picture compatible with the diagnosis of
MCI for all the subjects, with particular reference to atten-
tion, memory recall, and executive functions, which is further
supported by the partial functional autonomy highlighted
by IADL. Then, each subject executed an additional neuro-
psychological test battery, composed by Frontal Assessment
Battery (FAB), Trail Making Test (TMT A, B, B-A), and
Disyllabic Word Span Test (DWST) to specifically assess
these cognitive domains. MMSE scores, together with neuro-
psychological scores, are reported in Table III. 6 subjects
exhibit reduced performance in executive functions (FAB
< 13.5), 3 subjects present attention deficits (TMT-A > 94,
TMT-B > 283), whereas almost all present reduced mem-
ory recall (DWST equivalent ≤ 3). Subject #5 refused to
complete TMT and, for this reason, the execution time for
both TMT-B and TMT-B-A is not assigned (N.A). There-
fore, neuro-psychological evaluation supports the diagnosis
of multi-domain MCI, with reduced performances in all the
analyzed cognitive domains.

B. INSTRUMENTS
We designed and developed the m-health solution used to
monitor and evaluate the relationship between cognitive per-
formances and physiological stress response. The monitor
functionalities have been briefly presented in [63], whereas
in this paper we present its application on a real group of
subjects and the evolution towards stress detection and DSS.

The system consists of two different wearable sensors, aimed
at collecting HR, HRV and EDA, connected to a mobile app
in charge of sensors’ synchronisation, data streaming and
storage, both on the mobile device and on a remote server
used for signal processing and analysis. In order to guarantee
a good user acceptance of the system, we selected two com-
mercial mobile devices: Zephyr BioHarness34 (Figure 2a) for
ECG monitoring, and Shimmer3 GSR+ Development Kit5

(Figure 2b) for EDA.
ECG signal is recorded with 250 Hz sampling rate, since
a sampling rate lower than 200 Hz may create a jitter in
the QRS complex recognition, thus introducing errors in the
reconstruction of RR intervals. Moreover, a lower sampling
rate can generate an error in the HRV spectrum estimation,
which increases with frequency [64]. The chosen sampling
rate also allows to save both bandwidth and storage space
compared to higher rates, such as 1 KHz. ECG is processed
on board to extract HR and HRV. HR is reported at 1 Hz,
whereas HRV is derived from the detection of the time
interval between consecutive R-peaks in the ECG signal.
Shimmer3 GSR+ consists of a wrist-worn unit and 2 elec-
trodes to be applied to fingers of the non-dominant hand, and
it provides both skin resistance (KΩ) and conductance (µS)
values with 51.2 Hz sampling rate.
The mobile app is developed for Android OS. As a first
step, it sequentially connects both devices through standard
Bluetooth (BT) or Bluetooth Low Energy (BLE) interfaces.
Then, once the medical specialist selects the specific moni-
toring protocol, the app performs the necessary setup, such
as synchronising the devices’ real time clock (RTC) with the
smartphone, selectively enabling and/or disabling sensors,
and setting different sampling rates. It is also in charge of
starting the data stream from the wearable devices and pars-
ing, processing and storing all the physiological data during
the experiments. The data stream can be also displayed for
real-time data visualization.
In terms of protocol execution, the mobile app allows the
medical specialist to switch between the successive phases
(as detailed in Figure 3), so that the system is able to precisely
match each signal time window to the corresponding protocol
phase.

C. EXPERIMENTAL SETUP
The experimental protocol is designed to analyse the impact
of physical activity both on the cognitive performances and
the related physiological stress response of MCI frail older
people. To this aim, in our study design we asked partic-
ipants to execute the Stroop Color-Word Test (SCWT) as
cognitive training, alternate to a light physical exercise or
a rest period. The physical exercise (E) and rest (R) are
considered as conditions in the randomised cross-over study,
in which each subject is allocated for both interventions.
In terms of physical activity, we decided to use a cycle-

4www.zephyranywhere.com
5www.shimmersensing.com
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Assessed for eligibility 

(n=57)

Excluded (n=48)

Not meeting inclusion 

criteria (n=20)

Declined to 

participate (n=24)

Other reasons (n=4)

Analysed (n=9)

Excluded from analysis 
(n=0)

Allocated to cycle-ergometer (n=9)

Received allocated intervention 

(n=9)

Did not receive allocated 

intervention (n=0)

Allocated to rest (n=9)

Received allocated 

intervention (n=9)

Did not receive allocated 

intervention (n=0)

Analysed (n=9)

Excluded from analysis 
(n= 0)

Allocation

Analysis

Randomized 

Enrollment

FIGURE 1. CONSORT Flow Diagram of the randomised cross-over study

TABLE I. Inclusion and exclusion criteria for the randomised cross-over pilot study

Inclusion criteria Exclusion criteria

Age ≥ 65 yo, both genders Diagnosis of dementia (MMSE < 23)
Living in the nursing home for at least 6 months Any already diagnosed psychiatric pathology
No absolute contraindications to perform aerobic exercise Pacemaker or any implantable electrical device

TABLE II. Clinical rating scale scores.

SUBJECT MNA ADL IADL AES HDS CPS ISI

#1 27 6 3 59 34 18 15
#2 28 6 5 37 45 21 21
#3 26 6 4 9 7 12 10
#4 26 6 3 40 19 20 18
#5 25 6 3 52 28 11 11
#6 26 6 3 35 22 17 22
#7 23 6 3 32 25 22 18
#8 25 5 5 11 7 12 15
#9 25 6 3 18 6 11 13

TABLE III. Neuro-psychological test scores. DWST scores are corrected according to age and education level of each subject.

SUBJECT MMSE FAB TMT-A TMT-B TMT-B-A DWST DWST equivalent

#1 25.2 13.7 100 288 188 3.25 1
#2 27.2 15.7 26 62 38 3.75 2
#3 28.3 8.3 24 49 25 3.25 1
#4 26.4 15.7 27 106 79 3.50 2
#5 25.4 11.2 117 N.A N.A 3.75 2
#6 25.4 9 112 198 86 4.25 3
#7 23.1 12 30 102 72 3.75 2
#8 23 13 89 140 51 3.50 2
#9 28 13.4 49 76 27 4 3
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(a) Zephyr Bioharness 3 (b) Shimmer3 GSR+ Unit

FIGURE 2. Wearable devices.

ergometer, as frequently used in clinical trials, especially
with this subject category. We set the length of the exercise
to 12 minutes, considering that clinical evidences have shown
that physiological parameters change related to the physical
activity can be observed already after 6 minutes of cycle
ergometer training [65].
SCWT is a validated, quickly and non-invasive mental stress
test, widely used in the literature to assess the inhibitory
control. Inhibitory control is one of the core components
of the executive functions, and it involves the control of
attention, behaviour and emotions to override a dominant
behavioural response and select a more appropriate behavior
that is consistent with a specific goal [7]. We used a short-
form of the standard SCWT composed by 3 consecutive
phases:

1) Color reading phase: color names are written with
black ink, and the subject should simply read them in
the order they are presented.

2) Color recognition phase: there are colored patches
(with the same colors presented in the previous phase),
and the subject should say the color of the patches in
the order they are presented. Phase 1 and 2 constitute
the congruent part of the SCWT.

3) Color interference phase: color names are written with
different colored inks, and the subject should say the
ink color of each color name. This phase represents
the incongruent part of SCWT, demanding a stronger
cognitive effort due to the inhibitory control.

In the study protocol, each subject performs the SCWT
before and after the condition (i.e., R or E). For each test,
we analyze the results in terms of execution time (Timeex),
and accuracy (i.e., number of errors, Errors), for each test
phase and for the whole test. Execution time and accuracy
of each test phase are then combined to obtain two differ-
ent scores, which represent respectively the Timeeffect and
Interferenceeffect for the overall test. Both scores are also
corrected on the basis of age and education level of each
subject [66].
As shown in Figure 3, each session consists in the following
phases:

• Baseline (B), in which the subject sits on a chair in a
rest condition for 3 minutes.

• 1st SCWT (S1).
• 3-minute recovery (Rec1).

• 12-minute exercise (E) or rest (R) condition.
• 3-minute recovery (Rec2), made in both cases to keep

the same protocol design.
• 2nd SCWT (S2).
• 3-minute recovery (Rec3) before stopping the session.

In order to further engage the study participants, the LTC
facility provided us with a dedicated ambulatory room, de-
signed for the monitoring sessions, in which the medical
specialist receives the subjects and help him/her wearing the
sensors before the session starts. At this moment, the m-
health app connects to the devices, performs all the necessary
setup and finally begins the data streaming. Each subject
performed the two sessions (Rest and Exercise) in a random
order with a minimum distance of 1 week. As shown in
Figure 1, all the enrolled subjects successfully executed both
interventions.

IV. METHODS
A. PHYSIOLOGICAL DATA ANALYSIS
In this section we present the main methods used to analyse
the physiological signals collected during the training ses-
sions.

1) Data pre-processing and feature extraction
After checking the integrity of the collected data due to the
wireless communication between the wearable devices and
the smartphone, we evaluated the reliability of the collected
samples in the signal time series. As far as ECG is concerned,
R-peak detections are computed from contiguous 250 ms
blocks of raw ECG data, which are processed on board to ac-
count for false or missed R-peak detections. HR is computed
mainly from the preceding 15 seconds of ECG data. Zephyr
BioHarness3 exploits an on-board worn detection algorithm
to indicate HR data collected when the chest strap is not
correctly worn. Moreover, signal-noise ratio (SNR) of ECG
signal is also used to identify extremely noisy ECG sam-
ples, which allows to establish HR confidence and indicate
reliability of each 1-second HR sample. As far as HRV is
concerned, we considered values in the range [250 − 2400]
ms, as suggested by the vendor, which were not time-aligned
with unreliable HR samples. All unreliable samples were
considered as missing values in the corresponding signal time
series. Finally, HR and HRV time series consisted in ≥ 95%
of reliable samples.
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FIGURE 3. Sequence and duration (minutes) of the different phases of the cross-over study design. SCWT (S∗) has not a fixed
execution time since it depends on the subjects’ ability.

TABLE IV. Features extracted from HR, HRV, and EDA.
(bpm = beats per minute. s = seconds. n.u. = normalised units. S = Siemens)

Feature Name Signal Description

max HR/HRV Maximum value of HR/RR intervals (bpm/ms)
min HR/HRV Minimum value of HR/RR intervals (bpm/ms)

max-min HR/HRV Difference between maximum and minimum value of HR/RR intervals (bpm/ms)
mean HR/HRV Mean value of HR/RR intervals (bpm/ms)

median HR/HRV Median value of HR/RR intervals (bpm/ms)
std HR/HRV Standard deviation of HR/RR intervals (bpm/ms)

RMSSD HRV (time domain) Root Mean Square of the Successive Differences between RR intervals (ms)
NN50 HRV (time domain) Number of adjacent RR intervals with an absolute difference ≥ 50ms;

pNN50 HRV (time domain) % of NN50 within the analysed time window

Tot. spectrum power HRV (frequency domain) Total spectrum power (ms2)
VLF HRV (frequency domain) Very Low Frequency (0.003−0.04 Hz) power band (ms2)
LF HRV (frequency domain) Low Frequency (0.04−0.15 Hz) power band (ms2)
HF HRV (frequency domain) High Frequency (0.15−0.40 Hz) power band (ms2)

LF norm HRV (frequency domain) LF divided by the total spectrum power minus VLF band (n.u.)
HF norm HRV (frequency domain) HF divided by the total spectrum power minus VLF band (n.u.)
LF/ HF HRV (frequency domain) Ratio between LF and HF power bands (n.u.)

nSCRs EDA Number of above-threshold Skin Conductance Responses
Cum Amps EDA Cumulative amplitudes of all the detected SCRs (µS)

ISCR EDA Area (i.e., time integral) of the all the detected SCRs (µS·s)
mean SCL EDA Mean Skin Conductance Level value (µS)
mean EDA EDA Mean value of the overall EDA signal (µS)

max EDA deflection EDA Maximum positive deflection of the overall EDA signal (µS)

Then, we divided the physiological signals into their respec-
tive protocol phases, by using the start and end timestamps
of each phase recorded by the application. We use Mat-
lab (v.R2017b) for features extraction from HR and HRV,
whereas EDA is processed by using the Matlab-based soft-
ware Ledalab (v3.4.9)6. Table IV presents all the features
extracted from HR, HRV (both time and frequency domains)
and EDA.
For HRV spectral analysis, we estimated the power spectral
density (PSD) by applying the Lomb-Scargle algorithm [67].
It provides the information about how the power of HRV is
distributed with respect to the frequency. This approach let
us to work directly with HRV as a not uniformly sampled
signal, thus avoiding an initial interpolation to convert HRV
in a signal with a fixed sampling rate, usually set between 2
Hz and 5 Hz. In this way, we avoid any additional artifacts
that can be generated by adding new harmonic components
to the original signal.
As far as EDA processing is concerned, we applied a Butter-

6http://http://www.ledalab.de/

worth 1st-order low-pass filter with 5 Hz cut-off frequency to
remove the high frequency noise, since the signal dynamic is
usually considered to be in the range [0− 5] Hz [68]. Motion
artifacts, especially during the physical activity, could be
considered negligible, since each participant performed the
whole experimental protocol in a sitting position (included
cycle-ergometer training), with the wearable devices attached
on the upper part of the body. However, they have been com-
pletely removed through low-pass filtering. Then, we per-
formed a Continuous Deconvolution Analysis (CDA) in or-
der to decompose EDA into its Skin Conductance Response
(SCR) and Skin Conductance Level (SCL) components [69].
SCL (i.e., tonic component) is the slowly changing part, and
it is usually considered as the baseline portion of the signal,
whereas SCR (i.e., phasic component) is the faster changing
part, and its behavior can be related to specific or not specific
stimuli. After CDA, we defined a response window of the
same length of protocol phase under investigation, and a
minimum signal amplitude threshold of 0.01µS, in order to
detect all the above-threshold SCRs.
The feature extraction process resulted in 10 features vectors
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for each session, including 4 features vectors for both S1 and
S2 (i.e., the 3 test phases and the whole test), baseline (B) and
condition (R or E) phases. Each feature vector is composed
by 28 physiological features, and the outcomes of the SCWT
for the cognitive tests.

2) Statistical Analysis
Each subject performed the Rest and Exercise sessions in a
random order. Therefore, in order to assess the independence
of all the sessions, we examined separately those executed
in the first cycle and in the second one by evaluating any
significant difference between B and S1 (full test) phases
of each cycle. Then, we compared the physiological features
and cognitive outcomes obtained in S1 and S2, in the Rest
and Exercise sessions, separately. At the same time, we
also evaluated any significant difference in S2 among Rest
and Exercise sessions. This analysis provides an overview
of the impact of the physical activity on both cognitive
performances and the physiological stress response. We also
compared physiological features during R and E conditions
to assess the physiological impact of the proposed physical
activity. Then, in order to evaluate the adaptive stress re-
sponse throughout the monitoring protocol, we evaluated any
significant difference in the physiological features related to
B and S2 of both sessions.
Regarding the statistical analysis, we used Shapiro-Wilk to
test the normal distribution of the data, and Levene’s test
to assess the homogeneity of variances. Paired t-test is used
to make the comparison, in case both normality and ho-
moscedasticity assumptions are met, Wilcoxon signed-rank
test otherwise. We performed one-side test for both tail sides
(α = 0.05).

B. STRESS DETECTION
After the the statistical analysis, we investigated the perfor-
mances of several ML techniques for stress detection.

1) Dataset Preparation
For each monitoring session, we considered the following
protocol’s phases: baseline (B), SCWT (both S1 and S2) and
condition phases (E or R). Recovery periods (Rec1, Rec2,
andRec3) have been excluded from analysis, since we cannot
estimate the time necessary for each subject to return to
the initial physiological condition after stressor application.
For this reasons, recovery periods may have an intermediate
stress nature [25]. We divided each phase into 1-minute
consecutive time windows with 50% overlap to maximize
the number of available frames and to allow the extraction
of meaningful stress-related HRV features even in short-time
windows [70]. Since SCWT duration is not fixed a priori, but
it depends on the individual cognitive abilities, we considered
the full test duration if the cognitive test lasted less than 3
minutes, otherwise we selected the last 3 minutes for both
S1 and S2. In our study only 2 participants have been able
to execute at least one of the 2 cognitive tests in less than
3 minutes. This let us select similar time windows for S1

and S2 and to include the last (i.e., incongruent) phase of the
SCWT, which usually requires the greater mental effort and
related stress response. This approach resulted in 38 instances
for each subject, including 5 instances for B, S1 and S2, and
23 instances for R and E. For each instance we extracted
28 features from HR, HRV, and EDA, which are listed in
Table IV.
Then, we manually labeled each dataset. As far as rest and
cognitive activities is concerned, we used the study protocol
as an implicit binary stress ground truth, assuming that the
SCWT generates a stress condition as extensively shown in
the literature [71]. For this reason, S1 and S2 instances have
been labeled as ’Stress’ (’S’), whereas B and R instances
as ’No Stress’ (’NS’). On the other hand, since we are ex-
perimenting a particular type of physical activity that cannot
be considered as a validated stressing agent, no preliminary
assumptions can be made. Thus, we rely on the statistical
results shown in V-A3 assuming that the proposed physical
activity is non-stressful (’NS’). We refer as R∗ to the dataset
composed of the Rest sessions of all subjects, whereas ENS

represents the dataset for Exercise sessions. Each dataset is
composed by 342 instances.

2) Model Selection and evaluation
We investigated the performance of some stress detection
algorithms, based on a set of ML classifiers. Specifically,
we used BN, SVM, k-NN, C4.5 Decision Tree (J48 imple-
mentation), RF, and AB learning methods. Regarding AB,
we selected decision trees as weak learners. Model selec-
tion was performed through 10-time stratified 10-fold cross-
validation. We performed hyperparameter tuning for each
classifier by applying an exhaustive grid search over a subset
of the hyperparameter space of each learning algorithm, se-
lecting the best performing configuration. We used WEKA7

ML engine to train our learning schemes.
In our scenario, it is fundamental to keep in mind that all the
datasets are unbalanced. The minor class (’S’) represents the
26.3% of the whole dataset for both R∗ and ENS dataset,
with a ratio between major and minor class of 2.8.
For this reason, we applied stratification to preserve the
class ratio within each fold, avoiding "unlucky" splittings
composed by almost single-class examples. When dealing
with unbalanced datasets, accuracy is not reliable as a single
performance metric. In this case, training a classifier with an
unbalanced dataset could create a biased model that always
classify new instances with the major class. This can still
provide a good accuracy (∼ 74% for a biased classifier in our
case), which increases as the imbalance increases. Consider-
ing minor class instances as positive instances, precision and
recall (i.e., sensitivity) represent more reliable metrics since
they are not affected by the imbalance, as they focus only on
the ability of detecting positive instances. For these reasons,
accuracy should be evaluated together with precision and
recall. Moreover, despite the majority of studies involving bi-

7https://www.cs.waikato.ac.nz/ml/weka/
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nary classifiers with unbalanced datasets use the Area Under
Receiver Operating Characteristic (AUROC) curve as main
evaluation metric, it has been demonstrated that the Area
Under Precision Recall Curve (AUPRC) represents one of the
most fair, informative, and powerful metrics for unbalanced
cases [72]. According to these considerations, we referred to
precision, recall, and AUPRC, by selecting classifiers which
exhibited the best trade-off among these metrics.
Afterwards, for each dataset we applied Synthetic Minor-
ity Oversampling TEchnique (SMOTE) on training data to
balance the class ratio in the training folds [73]. This let
us to compare the classification performances by using both
original unbalanced training sets, and synthetically-balanced
ones, testing the models only on real data, and obtaining
thus more realistic performances. Regarding the balanced
datasets, we selected learning schemes which exhibited the
best accuracy.
Although ML analysis has been performed in offline settings,
we also provide a preliminary evaluation of the training
time of the best-performing configuration of each classifier.
For this evaluation, we used the algorithm implementation
provided by the WEKA ML engine, using the following
settings:

• Notebook Dell XPS 9343;
• Windows 10 OS;
• Intel(R) Core(TM) i5-5200U CPU @ 2.20 GHz;
• 8.0 GB RAM;

This analysis has been performed for both R∗ and ENS

datasets, since the best-performing model might be different
among them. Results are averaged among 10 repetitions of
the 10-fold cross validation scheme, in order to take also into
account changes induced by the creation of different folds
and by the order in which single instances are processed.

3) Feature Selection and Reduction
All the classifiers have been initially trained using all the
extracted physiological features as input data. Then, for each
dataset, the best performing classifiers have been further
trained using a subset of the most relevant features, which
have been automatically selected within the training set.
Specifically, we applied:

1) Correlation-based feature selection (CFS) [74];
2) Information gain ratio-based feature selection [75];
3) Principal Component Analysis (PCA) as feature reduc-

tion technique [76]. We set variance threshold to 95%.
Training time has also been evaluated for these cases.

V. RESULTS AND DISCUSSION
In this section we present and discuss the results of the
pilot study in terms of statistical analysis of the collected
dataset, and the performances of the ML algorithms for stress
detection.

A. PILOT STUDY
We divided the results based on the different objectives of
the study and, first of all, we present the assessment of the

sessions’ independence, as a preliminary condition for the
following analysis. To this aim, we evaluated any significant
difference between B and S1 (full test) of all the sessions as
belonging to two separate groups: the first cycle and the sec-
ond cycle. Significant differences with their corresponding
p-value are reported in Table V. In both cycles, mean EDA,
ISCR and HRV NN50 are significantly greater in S1 than
in B, whereas HRV pNN50, nSCRs and SCRs cumulative
amplitude present the same behaviour only in the second
cycle.
Results presented in Table V show quite high standard devi-
ation values in both cycles, which may be mainly due to the
small sample size. However, a similar trend appears in both
cycles, witnessing an increased physiological response to the
cognitive workload with respect to the baseline. Moreover,
the increasing trend shown only in the second cycle is in
contrast with a possible habituation and relaxation effect that
could emerge in repeating the protocol. Therefore, we can
assume that the physiological response at the first step of the
two sessions is similar and we can consider each session as
independent from the other for subsequent analysis.

1) Cognitive tests comparison
In order to highlight the effect of the physical activity on
the cognitive performances of MCI frail older adults, and
on their physiological stress response, we investigate the
significant differences among the analysed cognitive out-
comes and the physiological features obtained in both Rest
and Exercise sessions, separately. Results are presented in
Table VI, divided by the corresponding test phase. As far
as the cognitive outcomes in Rest sessions is concerned, the
subjects spend significantly less time to perform S2 than
S1, while introducing a significantly higher number of errors
in S2. The Timeeffect and Interferenceeffect correct scores
further highlight this behaviour, since the former decreases
in S2, whereas the latter increases. By comparing the single
phases of each test, we notice a higher number ofErrors and
a lower execution time (Timeex) for S2 phase 3 (i.e., SWCT
incongruent phase).
Instead, in the Exercise sessions, the subjects spend less
time to complete S2 (especially in phase 3), and Errors are
reduced in all S2 phases, significantly improving the overall
cognitive performance with respect to S1. By comparing the
cognitive performances in S2, between Rest and Exercise
sessions, we notice also that Errors is significantly lower
in the Exercise sessions than in the Rest ones, especially in
phases 2 and 3. In addition, Timeex is reduced in the Exer-
cise sessions in phase 1, in which all the subjects generally
obtained the maximum score. Finally, in terms of full test,
the Interferenceeffect correct scores are lower in the Exercise
session than in the Rest ones.
As far as the physiological features is concerned, by
analysing the Rest sessions we notice that the mean EDA
value is significantly higher in S2 than in S1 (full test and
all phases), the same for the cumulative amplitude of the
detected above-threshold SCRs (full test), ISCR (phase 1),
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TABLE V. Significant differences observed between baseline (B) and S1 for both sessions (α = 0.05). Feature values are
reported as mean ± standard deviation

Feature Name Session’s Cycle B S1 p-value

NN50 1 36.33±52.42 64.00±71.15 0.0039
2 27.11±30.06 63.78±82.98 0.0078

mean EDA 1 1.18±2.30 1.54±3.18 0.0019
2 1.11±2.31 1.57±2.32 0.0019

ISCR 1 0.74±1.02 1.92±2.37 0.0273
2 0.85±1.24 1.82±1.95 0.0137

pNN50 2 12.76±15.92 15.73±18.66 0.0140
nSCRs 2 22.44±55.45 116.44±188.98 0.0156

Cum Amps 2 0.31±0.74 1.57±2.71 0.0156

TABLE VI. Significant differences observed between S1 and S2 in both sessions, and in S2 between Rest and Exercise sessions
(α = 0.05).

S1C vs S2C S1E vs S2E

Feature Name Test phase p-value Feature Name Test phase p-value

T imeex Full test 0.0472 Errors Full test 0.0430
3 0.0371 Interferenceeffect Full test 0.0468

Errors Full test 0.0104 T imeex 3 0.0371
3 0.0062 mean EDA 1 0.0098

Timeeffect Full test 0.0150 2 0.0273
Interferenceeffect Full test 0.0066 max EDA deflection 3 0.0273

mean EDA Full test 0.0019 max HR Full test 0.0142
1 0.0059 2 0.0129
2 0.0039 3 0.0123
3 0.0039 mean HR Full test 0.0292

Cum Amps Full test 0.0391 2 0.0119
ISCR 1 0.0371 3 0.0324

max EDA deflection 3 0.0059 median HR Full test 0.0297
S2E vs S2C 2 0.0371

Errors Full test 0.0003 3 0.0428
2 0.0156 max HRV 2 0.0195
3 0.0009 mean HRV Full test 0.0226

Interferenceeffect Full test 0.0019 3 0.0162
T imeex 1 0.0143 min HRV Full test 0.0273

3 0.0019

and EDA maximum positive deflection (phase 3). These
results show that there is a greater physiological response in
repeating the SWCT test after the rest condition, which is
carried out by an increasing trend in several EDA features.
On the other hand, there is no significant difference in HR
and HRV features between S1 and S2.
This trend is different in the Exercise sessions. Even though
there is still a physiological response in terms of EDA fea-
tures, it is mitigated in the phase 3 of S2 presenting mean
EDA values significantly lower than in the other phases,
while EDA maximum positive deflection is significantly
higher in phase 3. The mitigation effect is also witnessed by
the SCRs cumulative amplitudes, which do not significantly
differ among the cognitive tests. In addition, in terms of HR
and HRV features, maximum, mean, and median HR values
are significantly lower in S2 than in S1, and in particular
for phases 2 and 3. Consequently, maximum, mean, and
minimum HRV values are significantly higher in S2, for the
full test and in particular in phase 3.
From an overall point of view, these findings suggest a
relaxation trend in the cardiac response in the repetition of
the cognitive test after the acute physical exercise. This can

also represent an indication of an adaptive stress response.
In addition, there is an evident improvement in the cognitive
performances.

2) Stress adaptive response

In order to investigate a possible adaptive response of the sub-
jects to the stress induced by physical activity and cognitive
training, we compare the physiological features measured
in S2 with those of B for both Rest and Exercise sessions.
Table VII shows the features that present significant differ-
ences. In both cases, nSCRs, cumulative amplitudes, ISCR,
mean EDA, and EDA maximum deflection are significantly
higher in S2 than in B. In the Rest sessions, HR and HRV
features do not exhibit any significant differences between S2

and B, whereas in the Exercise sessions their trend provides
further support to the relaxation previously pointed out by
comparing S1 and S2. In fact, maximum, mean, and median
HR exhibit lower values in the whole S2 even if compared
with B, starting from test phase 2. Accordingly, mean HRV
is higher in the S2 full test, and in particular in phases 2 and
3, whereas minimum HRV is higher in S2 phase 3.
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TABLE VII. Significant differences observed between B and S2 in both sessions (α = 0.05).

BC vs S2C BE vs S2E

Feature Name Test phase p-value Feature Name Test phase p-value

nSCRs Full test 0.0078 nSCRs Full test 0.0156
Cum Amps Full test 0.0078 Cum Amps Full test 0.0156

ISCR Full test 0.0019 ISCR Full test 0.0098
mean EDA Full test 0.0019 mean ED Full test 0.0059

max EDA deflection Full test 0.0137 max EDA deflection Full test 0.0195
max HR Full test 0.0429

1 0.0183
2 0.0039
3 0.0039

mean HR Full test 0.0387
2 0.0285
3 0.0273

median HR Full test 0.0381
2 0.0391
3 0.0381

mean HRV Full test 0.0140
2 0.0398
3 0.0090

min HRV 3 0.0102

3) Exercise and Rest conditions

Finally, we also analyse the physiological data obtained
during the two condition phases: 12-minute physical exercise
and rest. Results show that the physical activity impacts only
on few HR/HRV features. Specifically, max HR (p=0.0289),
min HR (p=0.0041), mean HR (p=0.0022), and median
HR (p=0.0021) are significantly higher during the exercise
phase than in the rest phase. Accordingly, mean HRV is
significantly higher during rest (p=0.0076). These outcomes
suggest that the proposed physical exercise has not a signif-
icant impact on the individual stress responses, except for
the physiological increase of HR. No other features change
significantly between R and E conditions, including all
EDA features. This may indicate that the proposed physical
activity (type, duration, and intensity) does not elicit a robust
stress response.

B. STRESS DETECTION

1) Model Validation

Classification performances are presented in Figure 4, di-
vided by the reference datasets. AUPRC is reported as per-
centage for visualization purposes only. Random Forest (RF)
and AdaBoost (AB) learning schemes outperform the other
classifiers for both R∗ and ENS . Specifically, in case of
original R∗ (Figure 4a), RF presents 85.3% accuracy, 85.1%
precision, 96.0% recall and 0.94 AUPRC. AB obtains similar
performances with 85.3% accuracy, 85.7% precision, 96.0%
recall and 0.95 AUPRC. Results on balancedR∗ are shown in
Figure 4b, showing again RF and AB as the best performers.
Results obtained on ENS dataset support our preliminary
hypothesis regarding the non-stressful effects of the proposed
physical activity. RF and AB still result to be the best per-
formers with the following values: RF (accuracy = 85.4%;
precision = 88.5%; recall= 92.3%; AUPRC= 0.98); AB (ac-
curacy = 85.3%; precision = 88.6%; recall = 92.1%; AUPRC

= 0.97). Results are shown in Figure 4c. Performances on
the balanced dataset are in line with those obtained on the
original dataset, with RF (accuracy = 87.0%; precision =
92.4%; recall= 88.2%; AUPRC = 0.97) and AB (accuracy
= 88.2%; precision = 92.3%; recall= 92.0%; AUPRC = 0.92)
algorithms outperforming the other classifiers (Figure 4d).
These results are related to the nature of RF and AB algo-
rithms. In fact, they are both ensemble learning methods,
which combine multiple models to improve predictions in a
different manner, i.e., by using bagging and boosting meth-
ods. Specifically, RF creates a large number of relatively
uncorrelated individual decision trees, and it trains each
decision tree on a different data subset where sampling is
done with replacement. Then, it provides as output the class
that is the mode of all tree predictions [77]. In this way, RF
overcomes the high sensitivity of decision trees to the training
data (i.e., overfitting). The low correlation between models
(i.e., randomisation) is the key feature of RF. Trees protect
each other from their individual errors as long as they do
not constantly make errors in the same direction, and they
cooperate to outperform any of the individual constituent
models.
AB is an iterative algorithm which uses the boosting method
to combine multiple models of the same type, by explicitly
seeking models that complement one another [78]. Whereas
in bagging approaches individual models are built separately,
in boosting each new model is influenced by the performance
of those built in the previous iterations. Moreover, AB does
not assign an equal weight to all models, but rather creates a
set of weighted models, updated at each iteration.
Therefore, the combination of multiple models provides bet-
ter predictions with respect to simpler learning algorithms,
such as SVM, single decision tree (J48), and instance-based
learners (k-NN). RF and AB show promising classification
performances directly on original unbalanced RD and ENS ,
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FIGURE 4. Classification performance on all datasets

since no noticeable improvements can be appreciated by
balancing these datasets using SMOTE.

2) Feature selection
RF and AB algorithms have been tested on R∗ and ENS

datasets together with different feature selection techniques.
In this case, we directly used original unbalanced datasets,
since no significant difference in performances has been
shown by using SMOTE. Classification results are shown in
Figure 5, divided by the reference datasets.
As far as R∗ dataset is concerned, RF-GainRatio and RF-
PCA provide similar results to those obtained with all the
physiological feature set, with information gain ratio as the
best metric for feature selection (RF-GainRatio: accuracy=
82.9%, precision= 83.8%, recall = 96.0%, AUPRC = 0.95).
Results with AB are similar, showing AB-GainRatio as
best performer (AB-GainRatio: accuracy= 85.3%, precision=
85.2%, recall = 97.0%, AUPRC = 0.94). Instead, CFS shows
lower performances for both RF and AB. Specifically,it neg-
atively affects more accuracy than precision and recall, thus
it reduces specificity.
Classification performances for ENS dataset still indicate
information gain ratio as the best feature selection technique
for both RF and AB, whereas CFS again shows lower perfor-
mance than the other two methods (RF-GainRatio: accuracy=
85.3%, precision= 88.5%, recall = 92.0%, AUPRC = 0.98;
AB-GainRatio: accuracy= 85.5%, precision= 88.9%, recall
= 92.3%, AUPRC = 0.98).
These results demonstrate that it is possible to reach almost

equal performances by using a smaller set of input features.
This can help discard irrelevant and redundant features, and it
can reduce overfitting by providing less opportunity to make
predictions based on noisy data.

C. TRAINING TIME EVALUATION
Table VIII shows training times (in s) for the best-performing
configuration of each classifier inR∗ andENS . Training time
for k-NN is not reported since it is always less than 0.01
ms, which is much lower than all the other classifiers. This
may depend on the fact that it is a heuristic-based classifier
that does not require any learning process. RF needs about
1 s for training. Specifically, the measured training time is
1.084 ± 0.159 s for R∗ dataset and 0.775 ± 0.136 s for
ENS . Instead, the iterative scheme of AB takes a significantly
higher training time, which ranges between 26 s and 27 s
for both datasets. Finally, BN and J48 take training times
less than 0.2 s for both datasets, whereas SVM training time
ranges from 1.739±0.434 s for ENS to 11.365±1.026 s for
R∗.
Feature selection techniques speed up the training process
for the best performing classifiers (i.e., RF and AB), as
shown in Table IX. AB training time significantly reduces
for both datasets, with AB-GainRatio average training time
ranging from 2 s to 4 s. A faster training phase can still be
appreciated by applying all the feature selection technique to
RF. Specifically, RF-GainRatio training time is 0.797±0.076
s for R∗ and 0.523 ± 0.054 s for ENS .
Despite the training time depends on several factors, in-
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FIGURE 5. RF and AB performance with different feature selection techniques

TABLE VIII. Training time for the full input feature set (seconds)

Dataset BN RF J48 SVM AB

R∗ 0.103± 0.075 1.084± 0.159 0.169± 0.091 11.365± 1.026 26.809± 0.718
ENS 0.031± 0.016 0.775± 0.136 0.098± 0.029 1.739± 0.434 26.495± 2.778

TABLE IX. Training time for feature selection (seconds)

Dataset RF-CFS RF-GainRatio RF-PCA AB-CFS AB-GainRatio AB-PCA

R∗ 0.786± 0.097 0.797± 0.076 0.945± 0.110 0.211± 0.024 2.098± 0.750 0.439± 0.125
ENS 0.528± 0.059 0.523± 0.054 0.569± 0.074 0.475± 0.135 4.020± 0.797 5.002± 1.088

cluding dataset size, model complexity, algorithm imple-
mentation, and also hardware settings, we can state that in
our experimental setup best performances can be quickly
achieved by using RF, with a training time of approximately
1 s. RF training process becomes even faster using feature
selection techniques. Moreover, AB-GainRatio also provides
a quite fast training using a smaller set of inputs, while
keeping the same classification performances. To speed up
the training time represents an even more valuable advantage
when training models in mobile settings, using resource-
constrained devices.

D. MAIN LIMITATIONS

RF and AB algorithms show promising stress detection re-
sults, which support our experimental analysis. This repre-
sents a fundamental preliminary assessment of the system’s
capabilities to correctly classify stressful and non-stressful
events in experimental protocols that include different ac-
tivities. Obtained performances are in line with most binary
stress detection studies performed in fully controlled labora-
tory environments. According to [23], reported accuracy of
binary in-lab stress detection studies combining EDA and
heart activity ranges from 80.0% to 95.8%, whereas mul-
timodal studies including also different biosignals provide
a wider accuracy range ([66%-98%]). Instead, multimodal
binary stress detection studies in controlled laboratory en-
vironments reviewed in [56] report accuracy values ranging
from 79% to 97%.
In order to both train our system with more data and to further

test its generalisation capabilities, more subjects and more
monitoring sessions are necessary. We are currently working
on this in order to use Leave One Subject Out (LOSO)
validation scheme to evaluate classification performances on
one (or more) new unseen subjects. However, ML algorithms
are mainly used for binary or multi-class classification. In
order to detect different stress levels, multiple classes should
be used, but a higher number of classes can negatively affect
the classification performances if not enough patterns for
each class are provided. To provide the users, medical spe-
cialists, and medical personnel with more useful and detailed
information, we need a system able to predict a numerical
stress level (SL). This stress score can be computed in an
event- or time-based manner (i.e., every minute) to make it
timely and easily accessible during the therapy. The inferred
SL is a valuable information which can be used to tune
and personalise the treatment for frail older subjects, based
on their stress-related physiological response. For instance,
medical specialists can stop the training if a subject is experi-
encing a too high stress level for a prolonged time; viceversa,
they can push a subject into a more challenging training if the
inferred stress level remains low-to-moderate over the time.
To this aim, the reference stress ground truth needs to be
changed, using stress self-reports and/or clinical assessments
at the end of each protocol phase to track individual stress
levels throughout the training and rehabilitation activities.
Obtained stress scores should be normalized to tackle with
the subject-dependent stress perception.
For this reason, in the next section we describe other possible
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solutions and we present our proposal for a DSS for online
stress monitoring based on a mobile software architecture.

VI. DECISION SUPPORT SYSTEM FOR ONLINE STRESS
MONITORING
Despite the wide number of stress detection systems, only
few studies present DSS able to support an online stress
diagnosis and they are mainly designed for clinical environ-
ments. Begum et al. and Nilsson et al. propose two different
Case-Based Reasoning (CBR) clinical DSS for stress diag-
nosis using finger temperature (FT) and Respiratory Sinus
Arrhythmia (RSA) patterns, respectively [79], [80]. Features
extracted from such patterns are used to formulate a new
problem case and, then, they are matched with a case base of
collected records using different similarity measures. As any
CBR system, they retrieve a ranked list of the most similar
records in the case base to propose a suitable solution for the
new case. The proposed solutions provide a feedback related
to the probability that the subject may suffer from stress-
related disorders, but neither of the two approaches aim to
infer the user experienced stress level.
The main advantage of CBR systems is that they are very
intuitive and do not require any knowledge elicitation to
create rules or models, since they reuse the previous knowl-
edge to solve future problems, thus exploiting a reasoning
technique very similar to human reasoning [81]. However,
CBR systems can require a large storage to build a case base,
as well as a large processing time for the similarity matching
and case retrieval phase, especially as the case base grows up.
Additionally, human interaction is usually necessary to adapt
the proposed solution in the reuse and retain phase.
Tartarisco et al. [82] propose an enhanced solution based on
a Personal Health System for stress monitoring in natural
settings with an additional support to decision making. The
proposed sensing system relies on ECG and 3D accelerom-
eter data, but it can be extended to additional wearable and
smartphone sensors. The analysis module exploits a super-
vised SOM for activity recognition, whereas the decision
module is a classical FIS, which predicts user stress levels
from physiological input features. The proposed FIS struc-
ture is defined a priori, thus MFs and rule base are not tuned
over input data. This approach does not exploit data modeling
and learning techniques, so knowledge elicitation represents
a major drawback.
Gaggioli et al. [83] have developed a DSS for real-time
stress detection to track users experienced stress during
Stress Inoculation Training (SIT) procedures by exploiting
the subject’s exposure to virtual reality (VR) environments.
The DSS integrates ECG, EEG, breathing rate (BR), and
body gestures collected using multiple sensing platforms in
order to extract several features, and it is built by using
fuzzy logic in conjunction with supervised SOMs. In the
training phase, SOMs are trained using fuzzified physio-
logical features along with self- and clinical-reported stress
levels, which are used as ground truth during VR exposure.
In the test phase, the trained DSS predicts a stress level

whenever a new instance is provided. This solution relies
on a supervised variant of SOMs, which still needs self-
reports and/or clinical annotations as stress ground truth,
whereas membership functions for each feature are defined a
priori. Moreover, SOMs require further analysis of the output
patterns, but no precise indication about how the stress score
is computed from SOMs is provided.
To overcome these limitations, we propose a mobile architec-
ture for a novel DSS aimed at online stress monitoring and
stress level detection. The system architecture is presented in
Figure 6. It consists of different wireless modules, integrated
to perform data collection, processing, analysis and support
to decision making. Specifically, the system is equipped with:

1) a sensing platform, composed by different heteroge-
neous wearable devices;

2) a mobile node, which collects and processes physio-
logical data from the sensing sources;

3) a back-end node, which hosts the data analysis and
decision module.

The m-health solution used in the pilot study and presented
in section III-B will be further enhanced with data pre-
processing and feature extraction functionalities, following
the principles of edge computing [84]. Moreover, we are
currently implementing the decision module by investigating
different predictive models that may provide an accurate
stress inference. We plan to maintain storage and computa-
tional intensive features on the back-end module as a pre-
liminary solution, thus respecting the real-time constraints of
the DSS. In a second phase, we will also study the feasibility
of porting the trained model on the mobile node, and also to
train and update the model directly in mobile settings.
The system have also a closed-loop structure, by integrating
self-reports and/or clinical evaluations collected at the end of
each protocol phase to be used as ground truth to track user
perceived stress levels throughout the training sessions.
In the case of MCI frail older people, it is reasonable that
clinical evaluations are used to track the user stress level
during the therapy. In addition, medical specialists generally
supervise the rehabilitation activities, and to provide their
clinical feedback can be considered as a natural step to verify
and support the DSS.
In terms of physiological data analysis, features are extracted
on a time-based manner by choosing 1-minute overlapped
time windows as decision time (TD), but this is a configurable
choice aimed at providing a close stress tracking during the
training, while also allowing to extract meaningful features
within a short time period, especially for stress-related HRV
features.
Given the versatility of the proposed architecture, this system
can accommodate several predictive models, able to receive
as input the physiological features computed on the mobile
node and to provide as output an inferred SL. Multiple
models could also coexist and cooperate as an ensemble to
improve predictive performances. As shown in section V,
RF and AB turned out to be the best performing learning
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scheme for binary stress classification in our study. Thus,
bagged and boosted regression tree ensemble, may still be
used for predicting perceived stress scores. ANNs, such
as Long Short-Term Memory networks (LSTM), represent
another solution to work with sequence and time series data
for regression tasks. However, loss of interpretability is a
drawback when applying ANNs or ensemble learning and
this can make knowledge representation very difficult to
obtain an intelligible model structure in order to understand
the rationale behind a given prediction.
Adaptive Neuro Fuzzy Inference Systems (ANFISs) may
simplify the process of knowledge representation through
the intrinsic explanatory nature of fuzzy rules [85], [86].
ANFIS provides a method for the fuzzy modeling proce-
dure which shares learning and computational capabilities
typical of deep ANNs to build a FIS, whose structure and
parameters (MFs and rule base) are automatically learned
and tuned to create a model upon input/output data. Instead
of defining FIS structure based on a trial and error strategy
or gaining a knowledge base from domain experts, ANFIS
computes MF parameters and define rules that best allow the
associated fuzzy inference engine to learn from the data it
is modeling. Parameter tuning can be performed by applying
back propagation gradient descent (BPGD) method or other
hybrid optimizations. By exploiting MFs and fuzzy rules,
ANFIS maintains explanatory power and is able to reveal the
functionalities stored into the learned model and used in the
decision process, especially if the system has been designed
with a limited number of input variables. Feature selection
and reduction techniques reported in section IV, as well as
genetic algorithms and other heuristic search approaches,
may be exploited for input selection. Moreover, a reduced
input set can be a key point when extracting input features
and training models in mobile settings.
Since all the aforementioned approaches are data-driven
techniques for modeling or model-following, a system cold

start is needed to train each model. The training set can be
built by collecting physiological data, along with clinical-
reported stress scores, for a first training session for each of
the involved subjects. This system can be used to define a user
personalised model by using only individual data, whereas a
generalized model can be built collecting data from different
subjects.
Finally, to evaluate the generalization capabilities of the
proposed system, we intend to apply it to new unseen training
sessions by extending the pilot study and including additional
monitoring sessions for each subject by modifying the reha-
bilitation sessions, both in terms of cognitive and physical
activities. This will allow us to further investigate the effect
of different training procedure on MCI frail older subjects
and provide a performance analysis of the proposed DSS for
online stress monitoring.

VII. CONCLUSIONS

Cognitive training, as well as other rehabilitation activities,
are fundamental for MCI frail older adults to maintain their
abilities and a good quality of life. However, this subject
category is also usually affected by a chronic stress condition,
which can be further worsened by the requested activity. Our
study focuses on the analysis of the impact of a specific
training protocol on the cognitive performances and the stress
response of a group of MCI frail older adults through a
m-health solution and wearable physiological sensors. The
results of the pilot study show an evident improvement of the
cognitive outcomes after the proposed physical and cognitive
training, and the subjects present an adaptive stress response
to the requested activity. In addition, we used the collected
dataset to evaluate the performances of a stress detection
system based on 6 different ML algorithms, showing promis-
ing results with respect to the performances obtained in
laboratory settings with predefined stimuli. This analysis in-
troduces our proposal of a novel technological solution aimed
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at supporting the medical specialist to define personalised
training sessions based on online stress monitoring. Since the
subjects and the LTC facility demonstrated a great interest
in the proposed solution and they agreed to participate to
new monitoring sessions on a periodic time basis, we are
integrating the new DSS system for online stress monitoring
in the m-health solution in order to: (i) study the impact
of the training sessions on an individual basis, (ii) validate
the proposed solutions in terms of accuracy of the detected
stress level, and (iii) effectively analyse the personalisation
benefits on the final user on a long-term basis. The active
collaboration with the LTC facility will also allow us to
enlarge the study and further support the presented results.
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