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Vehicular traffic plays an important role in atmospheric pollution and can be used as one of the key predictors in air-quality
forecasting models. The models that can account for the role of traffic are especially valuable in urban areas, where high pollutant
concentrations are often observed during particular times of day (rush hour) and year (winter). In this paper, we develop a
generalized additive models approach to analyze the behavior of concentrations of nitrogen dioxide (NO,), and particulate matter
(PMyy), collected at the environmental monitoring stations distributed throughout the city of Turin, Italy, from December 2003 to
April 2005. We describe nonlinear relationships between predictors and pollutants, that are adjusted for unobserved time-varying
confounders. We examine several functional forms for the traffic variable and find that a simple form can often provide adequate
modeling power. Our analysis shows that there is a saturation effect of traffic on NO,, while such saturation is less evident in
models linking traffic to PM;, behavior, having adjusted for meteorological covariates. Moreover, we consider the proposed models
separately by seasons and highlight similarities and differences in the predictors’ partial effects. Finally, we show how forecasting

can help in evaluating traffic regulation policies.

1. Introduction

The impact of air pollution on human health and environ-
ment has been one of the central issues in environmental
public policy and decision making [1-5]. For example, Euro-
pean Union mission mandates yearly improvement of envi-
ronmental quality, lower emission standards, and support
of environmental technology and scientific research and
development [6-9] while the recent air quality directive [10]
requires that information on air quality for current day with
trend and forecast for the next days be publicly available.
Similarly, the United States policy makers and industry
leaders have recently begun instituting renewable energy and
environmental protection research programs at universities
and state agencies across the country.

Understanding the behavior of pollutants and under-
standing the components of variation in pollutant concen-
trations are arguably the most important goals of air quality

research for public policy purposes. For example, under-
standing how pollutant concentrations vary with respect to
intensity and patterns of traffic would allow policy makers
to assess the consequences of implementing certain traffic
regulation measures. However, if an intervention such as
traffic measure is being considered or evaluated, it is crucial
to also account for those processes which covary with the
outcome (pollutant) as well as with the regulatory (traffic)
variable. In the studies of traffic and air pollution such
confounding processes could include meteorological, health,
social, and other societal-level processes that affect both
pollution and traffic volume. Those confounders are unfor-
tunately often unobserved, for example, asthma, flu, or other
disease activity that makes people stay at home more and
drive less and also happens to occur in winter when smog and
air pollution are high, and thus the level of their covariation
with traffic patterns and also with the pollution is difficult to
ascertain. However, not accounting for those confounders at



all would hide the true effects of interest- and yield-biased
estimates of the regulatory effects.

In the Turin metropolitan area, where air quality is a
concern, previous analysis of pollution has examined carbon
monoxide (CO) concentrations and traffic volume in the
Turin metropolitan area, as in Bertaccini et al. [11] who
used a seasonal linear regression model for each station
monitoring CO. Subsequently, Fass6 et al. [12] studied the
same problem using a linear vectorial autoregressive model
and carried out a sensitivity analysis to describe the relative
roles of traffic and meteorology, by their respective principal
components. Instead, Kim and Guldmann [13] evaluate
the importance of wind direction in the air pollution con-
centration through land use regression models aided by geo-
graphical information systems. They analyze the pollution
related to vehicular traffic (defined as vehicle-kilometers-
traveled weighted by wind direction frequency) by fitting
linear regression models for different sizes of the buffer zone.

However, sometimes in modeling city-level processes,
(generalized) linear models are not the most adequate ones to
use. Although chemical and physical dynamics of processes
are deterministic, local behavior can be very difficult to
understand and to model properly. Therefore, it would be
advantageous to consider a statistical alternative to the deter-
ministic differential-equation-based modeling of pollution.
To that extent, generalized additive models, or GAM [14],
offer an alternative which is capable of not only flexibly
modeling relationship between pollution concentration and
predictors but also relationships between predictors. This
approach could flexibly approximate complex physical and
chemical relationships between processes covarying with
traffic and pollution. In addition, GAM can account for the
smooth time-varying processes reflecting the confounders
which vary slowly relative to the predictor of interest, by
including “time” as a flexibly (but smoothly) modeled
predictor. Thus, while there are many drivers of air pollution
in Turin (some observed and measured and some not meas-
ured), the flexibility of the GAM approach allows us to cap-
ture and quantify the role of a single driver (traffic) without
the confounding effects of the other drivers (confounders).

While generalized additive models have been widely used
as a standard method in studies of pollution and health
(see, e.g., the pioneering work [15]), they have only recently
been introduced into the air pollution modeling of impact
of traffic and meteorological covariates, as in the work of
Carslaw et al. [16]. The authors find that one of the most
important factor is the flexible interaction between wind
speed and wind direction, due to the canyon effect of the
nearby buildings. Their analysis has confirmed the important
role of wind in pollutant dispersion and in describing the
variation in pollutant concentration due to changes in
meteorological conditions. Similarly, Aldrin and Hobak Haff
[17] use generalized additive models separately for several
different pollutants in different locations over the Oslo urban
area, using traffic- and meteorological-observed data. Then
they apply GAM to evaluate the effect of salting the street
with magnesium chloride (for ice condition in winter) on
particulate matter concentrations [18], showing that it is a
potentially useful measure to reduce PM in a road tunnel.
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More recently, ultrafine particle concentration in Helsinki
and Finland temporal trends were examined in the light of
their relationship with rainfall and other meteorological
variables in Clifford et al. [5] and Mlgaard et al. [4].

In this paper we focus specifically on quantifying the role
of traffic on air pollution in Turin, Italy, in a way that
could be useful to environmental policy makers. Air quality
in Turin area is critical with respect to particulate matter,
nitrogen dioxide, and ozone; in fact, air quality standards
set by European directives are often exceeded for these
three pollutants (in particular PM;g), whereas most other
pollutant concentrations are below the limit values. We
present a set of models that are able to realistically explain
much of the variation in the pollutant concentration, while
still yielding precise estimates of the effects of meteorology
and traffic on pollution concentration. More specifically,
building on the work in Bertaccini et al. [19, 20], we
propose the use of generalized additive models to analyze
the space-averaged air pollutant concentration over Turin
metropolitan area as a function of vehicular traffic, while
adjusting for potential meteorological and other possibly
unobserved confounders. Our goal is to quantify the effect of
traffic and evaluate potential interventions (traffic reduc-
tions) specifically for Turin. While we cannot generalize
the estimated magnitude of the effects in Turin to other
geographic areas, we hope that our analysis contributes to
the urban air quality research in three ways: (1) the results
for Turin present additional information for completing the
pollution picture for European cities; (2) provides a good
reference for environmental policy for cities with similar
geographic surroundings; (3) methodologically, provides
evidence that a simple form of the traffic variable can often
describe the behavior of pollutants sufficiently well.

The paper is organized as follows. Section 2 is devoted
to data description related to traffic, pollution, and mete-
orology. In Section3 we describe the basic theory and
some advantages of using the generalized additive models
and then discuss the selection of the best model and the
predictor subset for pollutant concentration, aiming to
balance complexity and goodness of fit. Specific models are
proposed and results analyzed for two critical pollutants,
NO; and PM;q (Sections 3.1 and 3.2), both for the whole
period December 2003—April 2005 and separately by season
in a year. Moreover, we carry out a forecasting application
of the proposed model for NO; in order to show how it can
be used for traffic regulation policy assessment (Section 3.3).
Conclusions are discussed in Section 4.

2. Data

2.1. Traffic. The traffic data are provided by 5T s.r.l., a com-
pany working in the Turin city area with a widely distributed
set of 500 “inductive loop” sensors (i.e., flow counting
points), embedded in the surface of the roads. Inductive
loops work by a simple principle of sensing the change in
inductance, when a car (or another large metal object) passes
over a loop, the car’s presence changes the total inductance,
and the loop sensor count goes up by one. Loop network
is a part of the monitoring system UTOPIA/SPOT (Urban
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FiGurg 1: Turin vehicle traffic, air, and meteorology monitoring
network: green disk are the 107 traffic counters, red and black disks
are the pollution stations, and blue flags are the meteorological
stations.

Traffic Optimization by Integrated Automation/System for
Priority and Optimization of Traffic), designed to serve as an
urban traffic control system as described in Kronborg and
Davidsson [21] and Wood [22]. Such a system operates
as a framework implemented to improve both private and
public transportation efficiency in the Turin metropolitan
area. The network of available sensors is set up to monitor
the vehicular traffic at the main intersections of the city road
graph (Figure 1).

This extensive network allows us to observe the behavior
of traffic over time at multiple points throughout the city.
However, having so many measuring devices also means that
many of the individual time series will have a nontrivial
fraction of missing data, sometimes over large continuous
periods of time. These “gaps” in the measurement series are
most often due to road maintenance or to the repair of the
sensors themselves. In such cases, the missingness can be
treated as missing at random (independent of the pollutant
levels).

Our traffic data, the number of vehicles that passs over a
certain monitor within 5-minute intervals have been aggre-
gated into hourly counts. Specific subsets of all traffic time
series have been chosen so that they all correspond to the
outflow of traffic at any given crossroads (which also equal
to the influx of traffic to the same crossroads), in order to
avoid double counting of the vehicles. The availability of
meteorological and chemical data constrains furthers our
study period from December 19th, 2003, to April 27th,
2005, and the final dataset is thus composed of 107 hourly
measurement time series.

In the analyses in this paper we use hourly city-wide
averaged variables, focusing on the average traffic behavior
of the city, as shown in Figure 2. The boxplots show typical
features of the traffic trend at three different time scales:
daily, weekly, and yearly. In the daily scale we can see the

TaBLE 1: Available chemical sensors at the sites: Consolata (Con.),
Rivoli (Riv.), Rebaudengo (Reb.), Cristina (Cri.), Gaidano (Gai.),
Lingotto (Ling.), and Grassi (Gra.).

Con Riv Reb Cri Gai Lin Gra
NO, X X X X X X
PMiq X X X X

strong difference in traffic magnitude between day time
and night-time; as well as high traffic intensity due to the
morning and evening rush hour. The weekly scale shows the
differences between weekdays and weekends: Saturday and
Sunday traffic differs both in the total number of vehicles
and the timings of the peak volume hours. Observing the
yearly representation we can see that traffic is almost constant
during the year except for the month of August where a sharp
reduction is due to the summer holidays.

2.2. Pollution. Pollution data have been provided by ARPA
Piemonte and Regione Piemonte. In this paper we focus on
NO, and PM;y, which are measured on an hourly and
daily scales, respectively. The measurements were recorded
at a subset of the total of seven environmental stations
across Turin (Grassi, Rebaudengo, Rivoli, Consolata, Cristina,
Gaidano, and Lingotto stations are located as shown in
Figure 1), while NO, and PM,(, measurement sensors are
distributed as in Table 1. All the measurement stations are
traffic ones, except Lingotto that is a background site; in
order to have an average representative of all Torino area, we
consider Lingotto data too.

In order to provide an example of NO, behavior over
time, we summarize the NO, concentration measured at the
“Consolata” station (Figure 3). As can be seen in Figure 3(a),
the lowest values happen during the middle of the month
of August, while the highest are during the two winters
(recall that the study period is December 2003 through April
2005). The hourly box plots of the concentration shown in
Figure 3(b) allow us to see that the concentration decreases
during the night and has two peaks: one in the morning and
one in the evening, related to commuter behavior. Note that
this shape is pretty similar to the one observed for vehicular
traffic (Figure 2(a)), motivating the importance of using the
hourly time scale. As can be seen from the boxplots by day of
the week (Figure 3(c)) the concentration seems to increase
in the first few weekdays and decrease during the weekend.
The box plots by month (Figure 3(c)) confirm that the lowest
values happen in August, while the highest happen in the
winter.

Also for PMo we show, as an example, the concentration
measured at the “Consolata” station in Figure 4. The weekly
representation in Figure 4(b) shows, as usual with other
pollutants, an increase in concentration during the first
days of the week, followed by a decrease till the Sunday’s
lowest values. The whole period time series (Figure 4(a)) and
the box plots by month (Figure 4(c)) point out the large
difference of concentration observed over the seasons of the
year (cold and warm ones), despite the relative constancy of
traffic. For further explorative analysis on pollution features
see [20, Chapter 1].
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FIGURE 2: Box plots of the city-wide average traffic volume for different time scale.

2.3. Meteorology. Meteorological data are collected by four
different stations by ARPA Piemonte and Regione Piemonte,
shown in Table 2. The locations of the meteorological sta-
tions are shown in Figure 1, marked with the blue flags.
For each variable we generally have at least three locations
providing data at any given time. Hence, we have a rather
reliable description of the meteorological conditions around
the city. In addition, pressure generally differs very little
across the entire Turin metropolitan area, so we can basically
use the value measured by a single (ReissRomoli (CSELT'))
station as representative of the city-wide pressure level.
Meteorology is reduced to the city-wide vector (ME)
containing wind speed (wsp, in m/s), solar radiation (sun,
in W/m?), relative humidity (rh, in percentage), temperature
(tmp, in degree Celsius), and pressure (press, in hPa).

TABLE 2: Available meteorological variables.

RRom Cons Alenia Vall
(North) (Center) (West) (South)
Press. X
Temp. X X X X
Rel. Hum. X X X
Wind Sp. X X X
Wind Dir. X X X
Solar Rad. X X X
Rain X X X

Precipitation has not been included due to being composed
of relatively rare and localized events and to having a rather
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FIGURE 3: Time series and box plots for NO, concentration measured at Consolata Station.

limited impact on our results of interest (the sensitivity
analysis was examined separately and is not shown in this
paper). Moreover, wind direction has been omitted from
the model due to the lack of a meaningful single “average”
direction for the whole city and the negligible effect observed
on the model results (again examined separately and not
shown). Finally in our models we also consider the lagged
(delayed) effects of some of the crucial meteorological
variables, to account for the amount time it takes for certain
chemical and physical processes to realize and have an
impact.

In Figure 5 we present the time series of the averaged
collected meteorological variables. Pressure generally shows
variability over time which seems to have a shorter range
during the summer. Wind speed is generally low, with
some strong events that will turn out to be important in
influencing the quality of air. Temperature as well as solar
radiation shows the typical seasonal behavior with high
values during the summer and low values during the winter.

Relative humidity is generally conditioned by rainfall or wind
events.

3. GAM Models for Turin-Wide Pollution

In modeling of air pollution, we will assume that trans-
formed average outcome is additive in predictors and can
be appropriately modeled using Generalized Additive Models
(GAMs). GAMs have the advantage that they are able to
describe nonlinear effects over time and still be easily inter-
pretable due to their additive structure. Moreover, GAMs
provide some flexibility via nonlinear or nonparametric
terms but do not suffer from the curse of dimensionality
like some other nonparametric methods such as kernel
smoothing or polynomial modeling. For the outcome (e.g.,
logarithm of pollutant, Y = log(Pollutant)), we assume
that it is additive in its predictors and normally distributed
with mean y, and variance o2. The systematic part y; could
include linear and nonlinear components, as well as potential
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FiGUrEe 4: Time series and box plots for PM;, concentration measured at Consolata Station.

confounders. A general model with additive components
would then be

~ Gaussian (yy, 0%),

1 m
pe=a+ Zﬁfxfﬂ + 2 Z Ng.hZg,t—h

g=1heH,

q
klta)L Z Z (]t—haAj>>

—_

M”c’\

i=1

where « is the intercept, X; are the current-time predictors,

B are their (linear) effects, zy, 1, is the value of variable z.h
hours prior to the current time (with lag times taking values
in set H,), with the linear effects #, . Nonlinear effects of
covariates k; (or their lagged version with lag times in Hy)
are modeled nonparametrically trough smooth functions
s(+,Ai), where the smoothness is controlled by the scalar
parameter A;.

In this study we model the aforementioned pollutants
as time series representing the average level of pollution
measured hourly or daily, where averaging is done over
the available stations (the number of stations at each time
changes depending on the pollutant under observation,
Table 1). For each pollutant we consider the time series of

the logarithm of the average pollutant concentration over
Turin. Given that we wish to estimate the effect on pollution
solely due to traffic, we pay special attention to potential con-
founders, which are related to both the concentration of the
pollutant in the atmosphere and to the traffic volume itself.
Meteorological variables are the typical confounders and are
routinely adjusted for in the pollution analyses. In GAM, we
have the added flexibility of considering smooth functions of
the meteorological variables, s(ME, A e ). However, there are
also potential unmeasured confounders which we have not
observed, such as for example health and behavior patterns
related to weather (and therefore pollution) and to traffic
volume. Though these confounders are unobserved, we can
assume that they are varying rather smoothly over time or
at least more smoothly than the predictor of interest (in this
case traffic). In cases where such assumption is appropriate,
we can proxy these unobserved confounders via a smooth
function of time.

On the one hand, not adjusting for these unmeasured
confounders will result in bias in the estimates of the effect
of traffic. On the other, if we adjust too much (using a
highly varying function of time), the effect of traffic may be
conditioned away. Thus, a sensible model selection criterion
which is capable of balancing goodness of fit with penalty due
to complexity and high variability of confounder functions is
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FiGure 5: Time series of the averaged meteorological variables.

crucial in choosing the optimal GAM model. To that extent,
we use the Bayesian information criterion (BIC) [23]. The
BIC is like the AIC [24] but with more severe penalization
related to the complexity of the model. It takes the form of
the penalized log-likelihood where the penalty is equal to the
logarithm of the sample size # times the number of estimated
parameters 6 : BIC = —2€n(§) + log(n)length(0).

The main goal of this paper is to assess the effective
role of vehicular traffic on two different pollution species. In
order to do that thoroughly, we propose two approaches to
represent traffic: the first approach is to model the nonlinear
effect of traffic using splines, while the second one models a
linear effect of simply transformed traffic variables. We select

the most appropriate functional form for each pollutant
and the selection of the suitable models is based on the
information criterion BIC. We use this criterion to select the
most important variables as well as the optimal number of
spline basis for each covariate in the model.

Another important issue is related to cross-correlation
between pollutants and some meteorological variables. This
cross-correlation, when strong, suggests possible use of
lagged variables in the model. In fact, this often allows a
substantial improvement of fit. Lagged variables have been
dealt with in two ways: (a) using a spline of the average
of up to twelve previous values (lags 1-12) and (b) using
splines only for those individual lagged variables that have



been selected based on the highest correlation with the
pollutant. Since the latter procedure always yielded a better
BIC score, we will only present results based on it for
modeling pollution in our study.

All computation was done in the R package mgcv [25, 26]
that allows to estimate penalized generalized additive mod-
els, based on penalized regression splines with automatic
smoothness estimation [27].

3.1. Modeling Hourly NO,. We now describe the global
model for the behavior of hourly NO, (averaged over the city
of Turin), during the period of December 2003 through April
2005. We show how to select the predictors to use in models,
which are related to the chemical and physical dynamics
of the measured pollutant. This theory-based approach to
selecting variables may not necessarily result in a better fit,
but it will help incorporate scientific reasoning, physics, and
chemistry, behind the behavior of the pollutants.

First, given the hourly scale, lagged values of wind speed
and solar radiation are expected to play an important role
in the chemistry and physical transport of the pollution
throughout the city. Following Carslaw et al. [16], the wind
direction was considered in the preliminary phases of this
analysis, but no important effects on pollutant concentration
have been observed. This result is likely related to the fact
that we are working with the average of the variables over
the whole city, which may cancel out any directional effects.
Moreover, a dummy for rush hour was not found significant
when all other variables, including traffic and lagged traffic,
were in the model.

Then the proposed model for the average hourly log
concentration of NO; is given as follows:

My: p, = a+s(t,A) + BDoW + s(tr, Ac) + s(lag(tr, 1), Ac)
+s(wsp,Ac) + s(lag(wsp, 1),Ac)
+s(lag(wsp, 2),Ac) + s(sun, Ac)
+ s(lag(sun, 1), Ac) + s(lag(sun, 12),Ac)

+ s(rh, Ac) + s(tmp, Ac) + s(press, Ac).
(2)

Here, social and generally unmeasured confounders are
recognized with the smooth function of time s(#,A;) and to
some extent also with the vector of variables indicating the
days of the week DoW which turn out to contribute greatly
to quality of fit. The other covariates are vehicular traffic (tr)
and its lagged version lag(tr, 1) that is traffic at the previous
hour; wind speed (wsp) and the lagged values at one hour
(lag(wsp, 1)) and two hours (lag(wsp,2)); solar radiation
(sun) and the lagged values at one hour (lag(sun,1)) and
twelve hours (lag(sun, 12)); relative humidity (rh); temper-
ature (tmp) and pressure (press).

To select the best model supported by the available data,
we first choose the suitable number of basis for the covariate
smooth functions according to the BIC. The actual degrees
of freedom (the penalties A; and A¢) are estimated using the
generalized cross validation (GCV). Since time has a quite
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TasLE 3: Coefficients of the parametric part of the additive model
for NO, (bold indicates 5% significance).

Est. Std. Er.
(Interc.) 4.157781 0.008705
Mon. 0.131553 0.008831
Tue. 0.122523 0.013177
Wed. 0.108691 0.015761
Thu. 0.112780 0.015928
Fri. 0.112615 0.013356
Sat. 0.072378 0.008766

different trend with respect to the other covariates, we fit
several models, each with a different number of knots and
select the functional form for the time predictor and for
the other covariates separately. The resulting smallest BIC is
equal to —7085.848 and is obtained in correspondence of 248
and 6 spline basis for time and for meteorological covariates,
respectively. Although we do not advocate using the coef-
ficients of determination statistic for assessing goodness of
fit, we report for consistency with previous published work
that the coefficient of determination in our model is 0.825,
in agreement with those reported in Aldrin and Hobak Haff
[17] and Carslaw et al. [16].

Table 3 and Figure 6 summarize the main effects of
the predictors under consideration, where linear effects are
described with the estimated coefficient values, and the
main nonlinear effects are presented graphically as smooth
functions.

The estimated function of time and the days of week
(DoW) are, as mentioned above, supposed to capture the
adjusted effect of unobserved confounders on the pollutant.
The first plot shows the estimated spline of time with around
6 knots per week. This relative large number of knots could
explain the daily and weekly cyclical social behaviour (i.e.,
heat during the day or heavy traffic in specific hours of the
day or the week) that is related to traffic and pollution. It is
reasonable to expect that the number of knots should have
some influence on BIC and on the importance we attribute
to the unmeasured variables, and that it should have an effect
on the other estimates. However, comparing this model with
others with smaller number of knots, we observe that this
model is still better with respect to the BIC criterion, while
the other predictors’ estimated spline coefficients change
only negligibly.

The smooth effect of time is more pronounced during
wintertime (winter 2003-04), see Figure 6(a). Concentra-
tions are generally lower and more stable otherwise, reflect-
ing the usual seasonal behaviour normally associated with
the atmospheric boundary layer. Days of week (DOW)
always have positive effects with respect to the baseline
(Sunday), see Table 3, with Saturdays having the lowest con-
tribution among the six days.

We can observe that fraffic is, as expected, an important
factor (see Figure 6(b) for partial traffic effect with relative
standard error), being one of the most important atmo-
spheric nitric oxides generator. Nitric oxides seem to be
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FIGURE 6: Estimated effects of traffic and meteorological variables for NO,.

especially related to traffic as the average log concentrations
keep increasing rapidly with the number of vehicles at lower
counts (below the median), ultimately almost leveling off
to a saturation level after about 700 vehicles per hour. We
can highlight a threshold between 200 and 300 vehicles,
corresponding to the night-versus-day time traffic (see
Figure 2(a)). Below this threshold the relationship between

the average log concentration and traffic is generally steeper
than above it.

On the other hand, the effect of lagged traffic seems close
to the zero line, see Figure 6(c). For that reason, we assess the
utility of a simpler model for NO, with log of traffic with
a linear effect and no lagged traffic in the model. All other
predictors are kept in the same form. This simpler model
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with logarithmic transformation of traffic can be used for
policy evaluation and fast prediction. The estimated linear
effect of log(traffic) was 0.26 (se = 0.003). The BIC of the
simpler model was —6596.97, while the BIC of the spline
model was —7085.85. This yields support for the model with
splines over the model with simpler forms of traffic, but we
nonetheless emphasize the potential utility of the simpler
model.

Having a model with a linear effect of log-transformed
traffic is greatly appealing from the policy evaluation stand-
point. The GAM framework allows us to estimate the net
effect of traffic, without other confounders, and therefore,
having a linear effect facilitates direct estimation of the
overall pollutant reduction as a result of a reduction in traffic.
For example, our estimated effect of the log of traffic on log
NO; was 0.26. From the policy point of view, this means that
a 10% decrease in traffic would result in approximately 3%
reduction in NO, concentration, on average.

At low temperatures the average log concentration tends
to be higher and almost constant below the 10 degree Celsius
(Figure 6(d)). After that it slightly decreases at higher temp-
eratures, levelling off above a temperature around 20 degree
Celsius. In fact, the pollutant does not seem to be really
conditioned by the temperature and shows an almost linear
trend at two different levels. The higher values at low tem-
peratures are apparently related to the seasonal atmospheric
situation: generally low temperatures are during the winter,
when the solar radiation and boundary layer are reduced too.

The estimated solar radiation splines, shown in Figures
6(e)—6(g), suggest that the partial effect of this variable has
a generally different behavior in influencing the average
concentration depending on the lag of the effect observed: in
fact, high values of solar radiation cause a little increasing in
the concentration at the same hour, but the lagged variables
show negative effects, particularly for the first lag. The
persistent effect after many hours is likely explained by the
fact that a strong radiation tends to delay a new rise in
pollution concentration.

Wind speed has an important effect, given other variables
in the model, persistent at different lags, and—as expected—
it generally reduces the concentrations considerably as it
increases. Lagged variables show that a strong wind may
influence NO, pollution for many hours (Figures 6(h)—6(j)).
The pollutant reduces its concentration for wind speed above
2 m/s suddenly, but lower wind speed could have some effect
after one hour or more. The stronger effect of the wind is
recognized as a delayed effect, and the lagged covariates have
an increase of the effect between 2 and 6 m/s levelling off
above that intensity.

Peculiar decrease observed in the partial effect of relative
humidity (Figure 6(k)) at high values could be associated
to rainfall events that usually accompany it. In fact, during
rainfall events the humidity that goes to saturation and
precipitation is generally effective in pollution reduction.
The behaviour at low values could be associated with the
increase of wind intensity, when pollution and humidity are
normally blown away.

The variation observed in pressure (Figure 6(1)) is very
small, this is unusual since high pressure is normally related
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to atmospheric stability, except in the event of atmospheric
inversion, and it could be due to the use of hourly scale for a
variable that usually changes more slowly in time.

3.1.1. Modeling NO, Separately by Season. We further esti-
mate model M, separately by season, to examine whether
there are any seasonal differences. The four seasons are de-
fined as follows:

(i) Winter: 19th December 2003 to 18th March 2004,
(ii) Spring: 19th March 2004 to 18th June 2004,
(iii) Summer: 19th June 2004 to 18th September 2004,
(iv) Fall: 19th September 2004 to 18th December 2004.

As with the global model, the estimated function of time
and the days of week (DoW) capture the adjusted effect of
unobserved confounders on the pollutant. The day-of-the-
week effects appear significant mainly during winter and less
so for the other seasons.

Also in separate seasons traffic shows important effects
on pollution (see Figure7(a)) but in two very different
ways. During springtime and summertime, the traffic partial
effect sharply increases for small traffic volumes, till 200-300
vehicles per hours, while it does not vary a lot for higher
volumes. For winter and autumn, we observe a traffic
partial effect that is almost constant when traffic volume
changes and this suggests that the reduction of pollution
concentration during wintertime is hard, even through deep
traffic regulations. This result is also supported by the traffic
role in the conjunction with the industry or domestic heater
emissions. In fact, during the cold seasons the effect of
typical atmospheric stability on pollutant emissions makes
traffic be just one of the agents determining accumulation
of pollution (so that high concentrations occur even with
low traffic). To the contrary, during warm seasons traffic
becomes the most important source of pollution and
NO, concentration, anyway below limit values, and steeply
increases with traffic values until it reaches the saturation
condition. The partial effect of the previous hour traffic
differs, when comparing cold and warm seasons, only for
small traffic volumes (see Figure 7(b)). For volumes higher
than 200-300 vehicles per hour, for all seasons the estimated
spline is close to the zero line although it is significant.

The seasonal analysis of the meteorological covariates
allows us to highlight the sensible differences that char-
acterize the role of a variable in more homogeneous environ-
mental conditions. In fact fitting the model M, to any single
season allows us to separate the effect of the meteorological
variation during the cold seasons or the warm seasons, when
pollutants could behave very differently in relation to the
meteorological variables. These differences are particularly
evident for temperature, the solar radiation, the wind speed
(with special attention for the delayed effects), and pressure.

Starting with temperature (Figure 7(c)), we can see that
during the warm seasons its contribution to NO, concen-
tration is low (anyway NO, concentration has low values in
these seasons). Instead during winter and fall seasons, we
can observe that at low temperatures the average log
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FiGure 7: Estimated effects of traffic and meteorological variables for NO, during different seasons. Blue is Winter, red is Spring, orange is

Summer, and violet is Fall.

concentration tends to increase with temperature until 10
degree Celsius. After that value, it slightly decreases at higher
temperatures during the autumn, while it keeps to increase
during the winter. In this last case, the model shows the same
result observed in other studies (e.g., [16, 17]) and it could
be explained with the activation of photochemical reactions
due to higher radiation (coherently the same situation is
presented by the partial effect due to direct solar radiation in
Figure 7(d)). Temperature effect during the autumn shows
two apparently contrasting behaviours: the concentration

increases for low values of temperature and it decreases for
high values. This result can be interpreted by considering that
the autumn is a transition season moving from summer to
winter, so that for a period the partial effect is similar to the
winter one and for another period to the summer one.

The estimated solar radiation splines shown in Figures
7(d)-7(f) suggest that the partial effect of this variable has
generally a reducing effect on the average log concentration
of nitrogen dioxide. The effect is stronger one hour after
the exposition and also 12 hours after during the warm
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seasons; this persistency is likely explained by the fact that
a strong radiation tends to delay a new rise in pollution con-
centration. The steep increase of the direct radiation effect
during wintertime can be connected with the activation of
photochemical reactions due to higher radiation that acts on
a large amount of pollutant generally present in the winter
metropolitan atmosphere such as nitric monoxide.

Observing the estimated wind speed splines for different
seasons and lags in Figures 7(g)—7(i), we can see that wind
speed generally keeps its important effect in reducing NO,
concentrations, considerably when it increases: a strong wind
may influence the pollution for many hours. In particular,
during winter and summer the decreasing effect is clear and
it starts even at small wind speed intensity; moreover, during
the winter we observe the higher wind intensities. In the
other two intermediate seasons the wind effect is smaller and
for the 2 hours lagged variable seems to have a positive effect
that probably needs further analysis.

The partial effect of relative humidity (Figure 7(j)) main-
tains a very similar behaviour during all the seasons that
looks like the observed one for the global model. In this case
we can highlight that higher values of humidity cause an
increase in the average NO; log concentration.

As for the pressure (Figure 7(k)) we can see that the main
effects are visible during the cold season, coherently with
the fact that the concentration increases when the pressure
increases too. Instead, the positive effect of low pressure
values during the fall season needs further study to be
explained.

3.2. Modeling Daily PM;,. In order to understand the extent
to which the behavior of daily PM;, (after the logarithm
transformation) depends on traffic intensity, we began with
a flexible model that incorporates splines to capture the
effects of average daily traffic, as well as the average daily
traffic during the previous day, in addition to meteorological
predictors. The initial model was thus as follows:

Mo:pr = a+s(t, M) +§(D0W)

+ s(tr, Ac) + s(wsp, A¢c) 3)
3
+ s(lag(wsp, 1), Ac) + s(lag(wsp,2),Ac)

+ s(rh,Ac) + s(press, A¢),

where p; is the average daily log PM, at day t, and tr is the
total traffic during day ¢ in the city of Turin. Furthermore,
wsp denotes average daily wind speed, lag(wsp,1) and
lag(wsp, 2) are the lagged versions of the average daily wind
speed from one and two days prior to day t, respectively.
These lagged variables have been chosen based on their high
pairwise correlation with the pollutant. Similarly, rh and
press denote the average daily relative humidity and pressure,
respectively. Note that given that PM,, data are daily, we will
use daily averages for all the covariates in the model aside
from traffic.

However, upon examination of the results from the above
model, we see that the estimated effects of traffic appear
nearly linear (see Figure 8). In fact, the role of traffic appears
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FiGure 8: Estimated effects of traffic for PM;, (model M,).

TaBLE 4: Estimated coefficients and standard errors of the para-
metric part of the additive predictors for PM;, (bold indicates 5%
significance).

PM

Est. Std. Er.
(Intercept) 3.05 0.100
Daily traffic 0.00008 0.00001
Monday -0.01 0.059
Tuesday 0.09 0.062
Wednesday 0.11 0.060
Thursday 0.08 0.060
Friday 0.05 0.066
Saturday 0.06 0.053

to be purely linear, without any saturation effects like those
observed in the case of NO,. This is expected to some degree,
since particulate matter can be produced in large quantities
through tire ablation and black carbon smoke, implying
that increased traffic leads to increased PM;y production.
Motivated by this observation, we opted to also fit a simpler
model with a simple linear effects of traffic and lagged traffic.
Thus, the proposed simpler model is as follows:

Ms: p, = a+s(t, Ae) + B(DoW)

+ ptr+s(wsp,Ac)
(4)
+ s(lag(wsp, 1), Ac) + s(lag(wsp,2),Ac)

+ s(rh, Ac) + s(press, A¢).

The simpler model’s BIC was almost identical to the BIC
of the model with the splines, motivating us to present the
estimated linear effects of the simpler model only in Table 4.
The visual results are shown in Figure 9. We can observe that
the coefficient of the traffic variable is positive, indicating a
positive linear relationship between traffic and daily PM, log
concentration.

Figure 9(a) shows a strong relative increase of PM;
during wintertime, reflecting confounders like social (e.g.,
heating) or meteorological (e.g., boundary layer thickness
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FIGURE 9: Estimated effects of meteorological variables for PM;.

variation) processes. Increase in temperature seems to be
associated with an almost linear increase in average PM;g
log concentration (Figure 9(b)). Increase in wind speed is
related to reduced PM( concentration, both for current time
(Figure 9(c)) and its one-day-lagged values (Figure 9(d)).
Increase in relative humidity is associated with a reduction
in average PM;, log concentration at high values and with
an increase in average PM;y log concentration at low values
(Figure 9(e)). This could be due to rain (high values) or
strong wind (low values), although at low values the data
are more sparse. Finally an increase in pressure is related in
an almost linear way to the increase in the average PM log
concentration (Figure 9(f)).

The linear effects of traffic are good news from the
policy point of view, implying that simpler models with
linear effects of traffic could be used to replace the more
complex ones. In fact, the estimated linear effect of 0.00008
per day implies that a reduction in traffic of 1,300 cars
each day would lead to an approximate reduction in average
concentration of Turin’s PMq of about 10%. Note that 1,300
cars are approximately 10% of the average daily traffic in
Turin, so effectively a reduction of 10% in traffic intensity
would result in the reduction of 10% in Turin’s PMio. This
is a remarkable result, which could allow for simple and fast
implementation and evaluations of policy decisions.

3.2.1. Modeling PM,o Separately by Seasons. The analysis
stratified by season for log concentration of PM;o shows

similar predictor effects and reveals few difference between
seasons, as shown in Figure 10. Most predictors show similar
behavior across the four seasons. The only exception is
summer, with several notable differences. Traffic seems to
have a roughly linear effect in all seasons, except in the
summer where a slight saturation effect is observed at very
high values. Analogously, relative humidity effects are similar
in all seasons except for the summer: in all seasons, PMjj
log-concentration relationship to relative humidity seems
quadratic, rising at first and then declining after a certain
threshold is passed. This is expected, as relative humidity
would be related to precipitation that tends to happen at
high relative humidity values and has suppressing effect on
particolate matter in the air. However, in the summer, relative
humidity seems to have a purely linear effect on PM;, log
concentration. This too is expected, as relative humidity in
the summer tends not to be related to rain but to “hot and
humid” days with little wind.

3.3. Forecasting for Traffic Regulation Assessment. Traffic
regulation is one of the most important action to reduce the
pollution concentrations. The city of Turin lays in one of
the most polluted area of Europe. This condition is basically
due to the orographic shape of the plain surrounded by
mountains and the high density of industry and population.
A very common traffic regulation relies on imposing a
general reduction of the number of vehicles selecting them
by the European pollution category (Euro stages) or by the
numbers of the plate (even or odd for “alternate plates”).
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In this section we assess the effect of a traffic regulation
scenario using GAM prediction. We consider the model
M, for NO, concentration that was fitted on the whole
available data (starting on the 19th December 2003 and
ending the 27th April 2005 that is about 11904 hours) and
was found to generally fit well, with R* = 0.83 (Section 3.1).
To make prediction on a new dataset, we consider a week
during the winter time starting on Tuesday 18th January
2005 and ending on Monday 24th January 2005; we choose
this part of the week in order to check possible delayed
effect on traffic regulation on the next days. To have a new
scenario, we choose to evaluate the type of traffic regulation
common in Turin, which controls the movement of cars
based on whether the last number of their license plate is
odd or even. This policy is generally applied during the most
polluted days of the week (i.e., Wednesday and Thursday)
and is meant to reduce the circulation of around 50% of
the vehicles. Figure 11(a) illustrates what a 50% reduction
on two days would look like in the week January 18-24,
2005. When we predict NO, concentration with the original
dataset, we observe in Figure 11(b) that our GAM model is
able to describe the variation of the concentration of NO,
(blue line) with respect of the original data (black line),
generally following the hourly variation of the measured
concentration. Then we use the “new” traffic values, under
the reduction scenario, and it is clearly possible to see the
short-term effect of this reduction during the two days in the
red line in Figure 11. The numerical impact in reduction of
pollution concentration, on a weekly basis, is around the 6%
of NO,, according to the prediction of the model. During the
two regulated days alone, the reduction is around 12%.

4. Conclusions

In this paper we have presented a study of air pollution in the
city of Turin through the framework of generalized additive
models. We have used the generalized additive models
(GAMs) to model the behavior of two species of pollutants
(NO; and PM) averaged over the city of Turin as a function
of traffic, while controlling for the main meteorological
variables as well as an unobserved confounding process.
GAMs allow flexible modeling of pollution processes which
has traditionally been done in a classical style of differential-
equation-based models. In our study, the GAMs have been
able to capture the relationship between pollutants and pre-
dictors flexibly, using semiparametric components modeled
with penalized cubic regression splines, where the penalty
(the smoothing parameter) is estimated using generalized
cross validation (GCV). One of the main advantages of
GAM is perhaps their ability to extend this flexibility to
unobserved confounders, by allowing “time” to act as a proxy
for them. Including a smoothly varying function of time to
capture the behavior of relatively slowly varying unobserved
confounders helps address the bias in estimates of the effects
of interest, such as traffic.

We have used the Bayesian Information Criterion (BIC)
to select the optimal number of knots for the splines and
choose among several different models. The results show that
for NO,, traffic, in its log-transformed form, is adequate for
explaining the log-pollution concentration, while for PM;,
traffic, in its linear form, turns out to be adequate. We also
estimate the relationships between other covariates and the
pollutants. An increase in traffic volume is clearly associated
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FIGURE 11: (a) Traffic volume in January, 18-24, 2005; original data
in grey, policy scenario traffic volume in red. (b) NO, concentration
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without (blue) and with (red) traffic policy scenario.

with increase in the pollutants adjusted for other factors,
while temperature, solar radiation, and wind speed have
positive partial effects in the pollution reduction, especially
in the winter. The nonlinearities found in other estimated
effects confirm that the generalized additive models are a
useful framework to estimate and interpret the relations
between pollution, traffic, and meteorology.

A seasonal analysis provides a detailed description of
the predictors’ partial effects, where traffic, temperature,
pressure, and solar radiation show the more interesting varia-
tions. In particular with respect to traffic that is the covariate
that can be controlled, our result shows that the variation
of the number of vehicles during the cold seasons (and
especially in winter) is less effective than within the warm
ones. This behavior can be explained by the general higher
presence of pollution during cold seasons and by the
presence of other sources of emissions, particularly building
heaters that during warm seasons disappear. Hence during
the winter, an hypothetical traffic regulation certainly helps
to reduce the pollution concentration, but an effective
reduction of pollution can be reached only working on all
the other sources.
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Although forecasting in near future time is possible,
we suggest to use our proposed models to evaluate traffic
reduction policies by predicting pollutant concentrations
with policy-modified traffic data, taking into account the
meteorological information.

Moreover, during the last year in Turin a progressive
increase of the district heating has been undertaken that
should reduce the heating-related pollution problem afore-
mentioned. When new data will be available, the models we
propose can be useful to obtain new insights and evaluate the
effect of this intervention in the city.
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