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Surface cracks represent a frequent cause of damage and even failure in rolling contacts, observed in gears, cams, rails, and so on. In
the literature, different approaches have been applied to describe the crack behaviour by means of Fracture Mechanics parameters,
such as the stress intensity factors (SIFs) and the 𝐽-integral. In this paper, a general procedure for dealing with plane problems is
presented, which is based on Linear Elastic FractureMechanics hypotheses. It combines theWeight FunctionMethod for evaluating
the SIFs in a loading cycle with the Kolosov-Muskhelishvili complex variable approach for estimating the nominal stress field.
In this way, a completely analytical procedure can be applied for a general loading condition, assuming that the real geometry
can be simplified in a half-plane with an oblique edge crack. As test case, a travelling load has been considered representing a
combination of three contributions: Hertzian pressure distribution, traction force due to friction, and pressurization of the crack
faces. A comparison with literature results proved that the proposed approach can be an efficient tool for SIFs estimation and crack
growth description.

1. Introduction

It is well known that rolling contact fatigue may be a primary
cause of failure in many mechanical applications, such as
cams, gears, and railway tracks, as already observed by Tallian
in 1969 [1]. Damage processes as pitting, spalling, fretting [2],
or even catastrophic failures [3] are frequently attributed to
fatigue phenomena.This topic has attractedmany researchers
since the 1980s, for example, [4–7], but a renewed interest has
characterized the last decade, for example, [8–11]. In most
of the studies in the literature, the rolling contact between
two bodies is simplified as a two-dimensional problem of
a half-space with a travelling pressure distribution over its
surface. Repeated loading, that is, repeated passages of such
pressure distribution, causes initiation of fatigue cracks from
defects or inclusions below or directly from the surface.
Experimental results show cases of fatigue cracks propagating
in the load movement direction with a small angle with
respect to the surface (𝛼 ≈ 20∘–30∘) [5]. However, when only
pressure distribution is considered, crack propagation should
occur in a compressive field that does not actually explain
experimental observations. Thus, other actions have to be

taken into account, starting from a “tractive” tangential force
along the surface. Bower in [7] pointed out two additional
mechanisms influencing crack propagation in wet cases: the
lubricant action on the crack faces inducing a “hydraulic
pressuremechanism” and the presence of trapped fluid inside
the crack. All these conditions complicate the theoretical
investigation of the phenomenon.

In [8], a survey of some approaches applied to the two-
dimensional problem is presented, focused on the estimation
of the stress intensity factors (SIFs), which represent the
main parameters for describing the crack behaviour in Linear
Elastic Fracture Mechanics [12, 13]. Keer and Bryant initially
proposed the application of the dislocation method [4]
subsequently followed by Bower [7] and more recently by
Datsyshyn andMarchenko [8].Murakami andNemat-Nasser
introduced the so-called “body force method” in 1983 also
applied to a 3D case [6]. After Bogdański et al. in 1996 [14], the
finite element method has been frequently applied in these
problems, as [11, 15].

The present paper describes a procedure based on the
application of theWeight Function (WF) Method to evaluate
the SIFs in rolling contact plane problems. The approach
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Figure 1: (a) Crack fracture modes in plane; (b) left: couple of unitary forces opening the crack; right: general traction distributions on the
crack faces.

was initially applied by the author in 1999 [16] to compare
the effects of Hertzian and Elasto-Hydrodynamic pressure
distribution on the SIFs in a loading cycle. More recently, the
use of WFs has been reproposed by Beghini et al. in [9, 17].
They combined the WFs with a discretization approach to
estimate the nominal stress field while, in this study as in
[16], the Kolosov-Muskhelishvili complex variable method is
considered.

The aim of this study is to present the theoretical foun-
dations and the implementation features of the proposed
approach since it represents a powerful tool for investigating
this type of problems and can be easily extended to different
loading conditions.

2. Theoretical Background

In Linear Elastic Fracture Mechanics, it is assumed that the
behaviour of a crack is governed by the elastic stress field at
its tip, which is characterized by the stress intensity factors
(SIFs), commonly denoted as 𝐾. This means that the effect
of the loading conditions on the crack propagation may be
evaluated in terms of 𝐾.

In a general plane problem, two types of fracture modes
can be distinguished: the opening of the crack faces (mode
I) and their relative sliding (mode II), shown in Figure 1(a).
For completeness, we recall that a thirdmode is present in 3D
cases. For each mode, a SIF is defined, labelled as 𝐾I or 𝐾II,
respectively. In a loading cycle, the behaviour of a plane crack
depends on the time history of the two SIFs that represents
a measure for assessing rolling contact fatigue. Thus, SIF
evaluation is a key issue in these problems.

2.1. The Weight Functions Method. The WF Method offers a
powerful tool for evaluating the SIFs since it requires a rather
simple stress analysis and, obviously, the knowledge of the
WFs that formany cases are available in the literature [20, 21].

In order to give a brief overview of the physical meaning
of the WFs, let us consider a simple geometry shown in
Figure 1(b) (left), representing a panel with a crack of length𝑎 loaded by a couple of unitary forces 𝐹 at a distance 𝑥∗ from
the crack mouth. Since this is a symmetrical opening action
for the crack, the crack behaviour depends only on𝐾I that can
be estimated as𝐾I = ℎI(𝑥∗, 𝑎), where ℎI(𝑥, 𝑎) is theWFof this
specific case. Conversely, ℎI(𝑥, 𝑎) represents the SIF for the
geometry under examination produced by a couple of unitary
forces applied in 𝑥. Due to the linearity of the problem, the

superposition principle can be applied to evaluate the SIF for
a general distribution 𝜙(𝑥) of normal actions on the crack
faces shown in Figure 1(b) (right); that is,

𝐾I = ∫𝑎
0
ℎI (𝑥, 𝑎) 𝜙 (𝑥) 𝑑𝑥. (1)

However, the WFs Method can be applied also for a
general system of forces, not limited to tractions on the
crack faces. The idea is described in Figure 2(a), representing
a double edge cracked panel in tension (again mode I).
According to the superposition principle, the SIF produced
in the cracked panel may be considered as the sum of the
one produced in the uncracked panel by the external applied
loads (no crack implies𝐾I = 0) and the one caused by a stress
distribution acting on the crack lips. It can be observed that
such a stress distribution is opposite to the one acting in the
integer panel (nominal stress field), as the crack faces in the
cracked panel are free. Combining this result with the above
described meaning of the WFs, the SIF for the cracked panel
can be calculated as

𝐾I = ∫𝑎
0
ℎI (𝑥, 𝑎) 𝜎𝑛 (𝑥) 𝑑𝑥. (2)

In this way, once the WF is known for the geometry under
examination, it is sufficient to evaluate the nominal normal
stresses 𝜎𝑛(𝑥) in the integer body for determining the SIF.
The extension tomode II loading is straightforward,𝐾II being
connected, in a symmetrical geometry, to the nominal shear
stresses 𝜏𝑛(𝑥); that is,

𝐾II = ∫𝑎
0
ℎII (𝑥, 𝑎) 𝜏𝑛 (𝑥) 𝑑𝑥. (3)

Two points about the sign of the SIFs are worth being
underlined. Positive nominal normal stresses 𝜎𝑛(𝑥) in the
uncracked panel correspond to tensile stresses and con-
sequently to compressive actions on the crack lips, as in
Figure 2(a) (right). These compressive actions produce a
positive 𝐾I. Thus, in (2), the sign of nominal stresses (plus)
is maintained and not reversed. Conversely, compressive
nominal normal stresses mean tractive forces on the crack
faces that would close the crack causing contact between the
lips. Such contact actions guarantee that, in any case, 𝐾I ≥ 0.
Moreover, the sign of 𝐾II is arbitrary as the sign of shear
stresses 𝜏𝑛 and they are chosen coherently so that when 𝜏𝑛 > 0
also𝐾II > 0 and vice versa.
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Figure 2: (a) Superposition principle for the SIF in a cracked panel. (b) Panel with an oblique crack in tension.

When the geometry is not symmetrical as in the previous
example, for example, when the crack is oblique as in
Figure 2(b), a coupled influence of normal and shear stresses
on 𝐾I and 𝐾II has to be taken into account and the complete
SIF expressions become

𝐾I = ∫𝑎
0
[ℎI,𝜎 (𝑥, 𝑎) 𝜎𝑛 (𝑥) + ℎI,𝜏 (𝑥, 𝑎) 𝜏𝑛 (𝑥)] 𝑑𝑥,

𝐾II = ∫𝑎
0
[ℎII,𝜎 (𝑥, 𝑎) 𝜎𝑛 (𝑥) + ℎII,𝜏 (𝑥, 𝑎) 𝜏𝑛 (𝑥)] 𝑑𝑥.

(4)

It must be underlined that, for these more complex cases, the
WFs have been reported rather recently in the literature and
only for few geometries, as a cracked half-plane [18, 19].

2.2. Stress Field in a Half-Plane. Let us consider a homoge-
nous, isotropic linear elastic half-plane, lying in the part𝑦 ≤ 0 of a Cartesian 𝑥-𝑦 frame. Neglecting volume force
distributions, the stress field can be described using the so-
called Airy’s function 𝐴(𝑥, 𝑦) [22] as

𝜎𝑥𝑥 = 𝜕2𝐴 (𝑥, 𝑦)
𝜕𝑦2 ,

𝜎𝑦𝑦 = 𝜕2𝐴 (𝑥, 𝑦)
𝜕𝑥2 ,

𝜎𝑥𝑦 = 𝜕2𝐴 (𝑥, 𝑦)
𝜕𝑥𝜕𝑦

(5)

holding in both plane stress and plane strain conditions. In
these cases, the first invariant of the stress tensor must satisfy
the following relationship:

( 𝜕2𝜕𝑥2 + 𝜕2𝜕𝑦2)(𝜎𝑥𝑥 + 𝜎𝑦𝑦) = 0
or Δ (𝜎𝑥𝑥 + 𝜎𝑦𝑦) = 0

(6)

so that Airy’s function must be of class C4 and biharmonic;
that is,

ΔΔ𝐴 (𝑥, 𝑦) = 0. (7)

Introducing the complex variable 𝑧 = 𝑥 + 𝑖𝑦, with 𝑧 its
complex conjugate, 𝐴(𝑧) can be written starting from the
general expression of a biharmonic function as

ΔΔ𝐴 (𝑧) = 0 󳨀→
2𝐴 (𝑧) = Re [𝑧𝜑 (𝑧) + 𝜒 (𝑧)] , (8)

where𝜑(𝑧) and𝜒(𝑧) are holomorphic functions. Accordingly,
the stress components are related through the following
equations:

𝜎𝑥𝑥 + 𝜎𝑦𝑦 = 4Re [𝜑󸀠 (𝑧)] = 4Re [Φ (𝑧)] ,
𝜎𝑦𝑦 − 𝜎𝑥𝑥 + 2𝑖𝜎𝑥𝑦 = 2 [𝑧𝜑󸀠󸀠 (𝑧) + 𝜒󸀠 (𝑧)]

= 2 [𝑧Φ󸀠 (𝑧) + Ψ (𝑧)] ,
(9)

where Φ(𝑧) = 𝜑󸀠(𝑧) and Ψ(𝑧) = 𝜒󸀠(𝑧), known as Muskhel-
ishvili’s potential functions, are conveniently introduced [23].

Given the normal 𝑁 and shear 𝑇 load distributions on
the boundary (i.e., along the 𝑥-axis), the two potentials can
be calculated as

Φ (𝑧) = − 12𝜋𝑖 ∫
∞

−∞

𝑁(𝑙) − 𝑖𝑇 (𝑙)𝑙 − 𝑧 𝑑𝑙,
Ψ (𝑧) = − 12𝜋𝑖 ∫

∞

−∞

𝑁(𝑙) + 𝑖𝑇 (𝑙)𝑙 − 𝑧 𝑑𝑙 − Φ (𝑧) − 𝑧Φ󸀠 (𝑧) .
(10)

Both𝑁(𝑙) and 𝑇(𝑙) have to be continuous and tend to zero (at
least as 1/𝑙) when |𝑙| → ∞. When only normal actions𝑁 are
applied, the stress tensor components are

{{{{{{{{{

𝜎𝑦𝑦 = 2Re [Φ (𝑧)] + 2𝑦 Im [Φ󸀠 (𝑧)]
𝜎𝑥𝑥 = 2Re [Φ (𝑧)] − 2𝑦 Im [Φ󸀠 (𝑧)]
𝜎𝑥𝑦 = −2𝑦Re [Φ󸀠 (𝑧)]
at the boundary 𝑦=0󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ {{{

𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 2Re [Φ (𝑥 + 𝑖0)]
𝜎𝑥𝑦 = 0.

(11)
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Figure 3: (a) Scheme of the geometry: from the real problem to a cracked half-plane. (b) Reference frames and other symbols.

On the other hand, for only 𝑇 we obtain

{{{{{{{{{

𝜎𝑦𝑦 = Re [(𝑧 − 𝑧)Φ󸀠 (𝑧)]
𝜎𝑥𝑥 = Re [4Φ (𝑧) − (𝑧 − 𝑧)Φ󸀠 (𝑧)]
𝜎𝑥𝑦 = Im [(𝑧 − 𝑧)Φ󸀠 (𝑧) − 2Φ (𝑧)]
at the boundary 𝑦=0󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→

{{{{{{{{{

𝜎𝑦𝑦 = 0
𝜎𝑥𝑥 = 4Re [Φ (𝑥 + 𝑖0)]
𝜎𝑥𝑦 = −2 Im [Φ (𝑥 + 𝑖0)] .

(12)

3. Materials and Methods

3.1. Geometrical Assumptions. Rolling contact fatigue affects
many mechanical components, from gears to roller bearings.
Each case is characterized by its own geometry and working
conditions.However, with some simplifying assumptions, the
presented approach can be applied to most of them.

As far as the geometry is concerned, we will assume that
the crack length 𝑎 is much smaller than the main dimension
of the problem (e.g., radius of curvature 𝑟 ≫ 𝑎) so that
the crack region can be described as a half-plane with a
surface crack, as shown in Figure 3(a). A reference frame𝑆 on the half-plane is assumed, with origin at the crack
mouth (Figure 3(b)),𝑥-axis along the boundary, and the body
extending over 𝑦 ≤ 0, as for (10)–(12).A surface crack usually
initiates from the free surface and grows through mode I
and II mechanisms at an angle 𝛼 with respect to the surface.
Typical values of 𝛼 are in the range 20∘–30∘ with the tip of the
crack shifted towards the rolling direction with respect to its
mouth.

3.2. Weight Functions. For an oblique edge crack in a half-
plane, two sources for the WFs can be found: [18, 19]. In the
first study, a solution is provided for 20∘ ≤ 𝛼 ≤ 90∘ through
80 coefficients of power series expansions, while in the second
case 8 coefficients are given, but only for some discrete values
of 𝛼 (15∘, 30∘, 45∘, 60∘, and 90∘) (see Appendix for complete
details). Such functions are compared in Figure 4 for two
angles of interest, that is, 𝛼 = 15∘ and 𝛼 = 30∘, for a unitary
crack length. It can be observed that the four functions are
very similar apart from the mixed term ℎI,𝜏(𝑥, 𝑎) in the range

0 ≤ 𝑥/𝑎 ≤ 0.6. Actually, they are also proposed assuming a
different positive direction for the tangential actions 𝜏𝑛 (and
thus for𝐾II), as detailed in Appendix, so care should be taken
when choosing the WFs.

3.3. Loading Conditions. In this simplified geometry, fatigue
actions are described as travelling loads that move along the𝑥-axis. In rolling contact fatigue, travelling loads are usually
distinguished in

(a) normal loads (𝑁-type): contact pressures, typically
approximated with Hertzian contact formulas,

(b) tractive loads (𝑇-type): tangential actions, represent-
ing frictional forces, generally expressed as𝑓|𝑁|, with𝑓 coefficient of friction. A sign is attributed to 𝑓 to
simulate driving (i.e., in the motion direction, 𝑓 > 0)
or driven (i.e., opposite to the motion direction, 𝑓 <0) conditions.

We will assume that these loads simply translate along
the 𝑥-axis maintaining their characteristics. Thus, a second
reference frame 𝑆𝑡{Ω, 𝑥𝑡, 𝑦𝑡} is introduced where they can be
easily defined and remain constant. Accordingly, the normal
load due to Hertzian pressure can be expressed as

𝑁(𝑥𝑡) = −𝑝0√1 − ( 𝑥𝑡𝑎𝐻)
2

for − 𝑎𝐻 ≤ 𝑥𝑡 ≤ 𝑎𝐻, (13)

where 𝑝0 is the maximum pressure and 𝑎𝐻 the contact
half-width. The minus sign indicates a compressive action.
Therefore, the tangential load is

𝑇 (𝑥𝑡) = 𝑓𝑝0√1 − ( 𝑥𝑡𝑎𝐻)
2. (14)

In dry conditions, these are the external loads. Addi-
tionally, contact actions 𝜎𝑐 between the crack lips can arise
to avoid their overlapping as a consequence of compressive
forces. Actually, the crack can be totally or partially closed,
depending also on the crack size and on the load position (in
particular on the ratio 𝑎/𝑎𝐻). A correct formulation of the
problem can be found, for example, in [8, 11], and introduces
important complexities to the solution passing through the
estimation of the displacement field (not only at the crack tip).
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Figure 5: Actions on the crack faces due to the presence of fluid.

Thus, most frequently general cases are studied with finite
element analyses, as in [11]. In this paper, a simplification
proposed in [9, 16] is adopted, which can be useful for dealing
with short cracks, where the crack is mainly open or totally
closed.The simplification assumes a proportionality between
those contact actions 𝜎𝑐 on the crack lips and the nominal
normal tractions 𝜎𝑛. The scale factor between 𝜎𝑛 and 𝜎𝑐 is
calculated imposing 𝐾I = 0, as described in Section 3.4
(see (20)-(21)). Contact actions can imply further frictional
tangential tractions between the crack lips that can be in stick
or slip condition [7, 24].

In the so-called wet conditions, hydraulic loads due
to the presence of fluid (lubricant) within the crack must
also be considered. They can affect crack propagation in a
double way, as shown in Figure 5: direct “hydraulic pressure

mechanism” and entrapment of the fluid inside the crack as
stated by Bower in [7].

The description of the first effect requires an assumption
on the value of fluid pressure within the crack. Generally, it
is considered uniform and equal to the pressure at the crack
mouth (as in [7]), or varying linearly from the mouth to the
tip where it becomes zero (as in [25]). Both cases can be easily
considered with the WFs.

On the other side, fluid entrapment is quite difficult to
be evaluated even if it represents a very critical condition
for defects propagation. It takes into account the fact that
as the contact passes over the crack mouth, a local closure
of the faces may be observed in rather long cracks, that is,
with 𝑎𝐻 < 𝑎. In this case, for some time, the lubricant may
remain trapped inside the crack though the lips are closed at
themouth. A volume conservation for the lubricant is usually
considered in order to evaluate the actions at the crack tip.
As already stated, dealing with contact between the crack
lips results in important complications, particularly when
the conservation of volume must be guaranteed. However,
the condition of fluid entrapment can be considered less
dangerous than the crack pressurization as it is assumed that
pressure in the trapped fluid is lower than the external one.

3.4. Model Implementation. Themodel of the oblique surface
crack has been written in a completely symbolic form in
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Mathcad. Equations (10)–(14) have been used to estimate the
nominal stress field that, for a given load, will be written as
a function of 𝑥𝑡 and 𝑦𝑡. Then, the stress tensor components
in S are simply obtained replacing 𝑥𝑡 → 𝑥 − 𝑑 and 𝑦𝑡 = 𝑦,
obtaining the symbolic functions

𝜎𝑦𝑦 = 𝜎𝑦𝑦 (𝑥, 𝑦, 𝑑) ,
𝜎𝑥𝑥 = 𝜎𝑥𝑥 (𝑥, 𝑦, 𝑑) ,
𝜎𝑥𝑦 = 𝜎𝑥𝑦 (𝑥, 𝑦, 𝑑) .

(15)

Then, since the nominal normal and shear stresses are
required along the crack faces for applying (4), the stress
tensor T must be expressed in a rotated reference frame𝑆𝑐{𝑂, 𝑥𝑐, 𝑦𝑐}with𝑂, at the crackmouth and𝑥𝑐 along the crack
(Figure 3(b)). That can be done as

[T]𝑆𝑐 = R [T]𝑆 R𝑇, (16)

where, for positive 𝛼,
R = [cos𝛼 − sin𝛼

sin𝛼 cos𝛼 ] . (17)

Then, the nominal normal and shear stresses on the crack lip
(𝜎𝑛 and 𝜏𝑛) having normal 𝑦𝑐 can be written as a function of𝑥𝑐 and 𝑑, replacing 𝑥 = 𝑥𝑐 cos𝛼 𝑦 = −𝑥𝑐 sin𝛼, obtaining

𝜎𝑛 (𝑥, 𝑦, 𝑑)
= 𝜎𝑥𝑥 (𝑥, 𝑦, 𝑑) sin2𝛼 + 𝜎𝑦𝑦 (𝑥, 𝑦, 𝑑) cos2𝛼
+ 2𝜎𝑥𝑦 (𝑥, 𝑦, 𝑑) cos𝛼 sin𝛼

𝜎𝑛 (𝑥𝑐, 𝑑) ←→ 𝜎𝑛 (𝑥𝑐 cos𝛼, −𝑥𝑐 sin𝛼, 𝑑)
𝜏𝑛 (𝑥, 𝑦, 𝑑)

= [𝜎𝑥𝑥 (𝑥, 𝑦, 𝑑) − 𝜎𝑦𝑦 (𝑥, 𝑦, 𝑑)] cos𝛼 sin𝛼
+ 𝜎𝑥𝑦 (𝑥, 𝑦, 𝑑) (cos2𝛼 − sin2𝛼)

𝜏𝑛 (𝑥𝑐, 𝑑) ←→ 𝜏𝑛 (𝑥𝑐 cos𝛼, −𝑥𝑐 sin𝛼, 𝑑) .

(18)

It can be noticed that positive values of 𝜎𝑛 and 𝜏𝑛
mean stresses in agreement with the direction of 𝑦𝑐 and 𝑥𝑐,
respectively. At this point, the SIFs can be calculated bymeans
of (4), changing the sign of 𝜏𝑛 if the WFs from [19] are
chosen, that is, as anticipated in Section 3.2 and detailed in
the Appendix.

In order to reduce the computational time, it is conve-
nient to select some discrete values of 𝑑, for example, for−3𝑎𝐻 ≤ 𝑑 ≤ 3𝑎𝐻, and of 𝑥𝑐, for 0 ≤ 𝑥𝑐 < 𝑎. Consequently, the
integrands in (4) can be numerically estimated, fitted with a
spline in 𝑥𝑐 and integrated for every value of 𝑑.

At this point, a check of the obtained SIFs has to be done
since, as already stated, 𝐾I must be nonnegative; that is,

𝐾I (𝑑) = ∫𝑎
0
[ℎI,𝜎 (𝑥𝑐, 𝑎) 𝜎𝑛 (𝑥𝑐, 𝑑)

+ ℎI,𝜏 (𝑥𝑐, 𝑎) 𝜏𝑛 (𝑥𝑐, 𝑑)] 𝑑𝑥𝑐 ≥ 0.
(19)

When (19) is not satisfied, it means that the crack is closed
and contact actions 𝜎𝑐 on the crack lips must be introduced.
According to the simplification introduced in the previous
section, such contact actions are estimated as

𝜎𝑐 (𝑥𝑐, 𝑑) = 𝜆 (𝑑) 𝜎𝑛 (𝑥𝑐, 𝑑) , (20)

where 𝜆(𝑑) is calculated imposing𝐾I = 0; that is,
∫𝑎
0
[ℎI,𝜎 (𝑥𝑐, 𝑎) 𝜎𝑛 (𝑥𝑐, 𝑑) + ℎI,𝜏 (𝑥𝑐, 𝑎) 𝜏𝑛 (𝑥𝑐, 𝑑)] 𝑑𝑥𝑐
+ 𝜆∫𝑎
0
[ℎI,𝜎 (𝑥𝑐, 𝑎) 𝜎𝑛 (𝑥𝑐, 𝑑)] 𝑑𝑥𝑐 = 0 󳨀→

𝜆 = −∫
𝑎

0
[ℎI,𝜎 (𝑥𝑐, 𝑎) 𝜎𝑛 (𝑥𝑐, 𝑑) + ℎI,𝜏 (𝑥𝑐, 𝑎) 𝜏𝑛 (𝑥𝑐, 𝑑)] 𝑑𝑥𝑐

∫𝑎
0
[ℎI,𝜎 (𝑥𝑐, 𝑎) 𝜎𝑛 (𝑥𝑐, 𝑑)] 𝑑𝑥𝑐 .

(21)

Therefore, also 𝐾II must be recalculated as

𝐾II (𝑑) = ∫𝑎
0
[(1 + 𝜆) ℎII,𝜎 (𝑥𝑐, 𝑎) 𝜎𝑛 (𝑥𝑐, 𝑑)

+ ℎII,𝜏 (𝑥𝑐, 𝑎) 𝜏𝑛 (𝑥𝑐, 𝑑)] 𝑑𝑥.
(22)

Due to these contact actions, also frictional loads on
the crack faces can arise, whose contribution to the SIFs is
frequently negligible and thus not considered in this study.

For wet conditions, fluid pressure on the crack faces𝑝(𝑥𝑐, 𝑑) must be taken into account adding a pressurization
contribute to the SIFs 𝐾𝑝; that is,

𝐾𝑝I (𝑑) = ∫𝑎
0
[ℎI,𝜎 (𝑥𝑐, 𝑎) 𝑝 (𝑥𝑐, 𝑑)] 𝑑𝑥𝑐,

𝐾𝑝II (𝑑) = ∫𝑎
0
[ℎII,𝜎 (𝑥𝑐, 𝑎) 𝑝 (𝑥𝑐, 𝑑)] 𝑑𝑥𝑐.

(23)

As already mentioned, 𝑝(𝑥𝑐, 𝑑) may be constant 𝑜 linearly
decreasing to zero at the crack tip; that is,

𝑝 (𝑥𝑐, 𝑑) = 𝑝𝑚 (𝑑)
or 𝑝 (𝑥𝑐, 𝑑) = 𝑝𝑚 (𝑑) (1 − 𝑥𝑐𝑎 ) ,

(24)

where 𝑝𝑚 is the pressure at the crack mouth, from (13)

𝑝𝑚 (𝑑) =
{{{{{{{

0 if 𝑑 ≤ −𝑎𝐻 or 𝑑 ≥ 𝑎𝐻
𝑝0√1 − ( 𝑑𝑎𝐻)

2

otherwise. (25)

Thus,𝐾𝑝 can be easily calculated as

𝐾𝑝𝑀 (𝑑) = 𝑝𝑚 (𝑑) ∫𝑎
0
ℎ𝑀,𝜎 (𝑥𝑐, 𝑎) 𝑑𝑥𝑐

or 𝐾𝑝𝑀 (𝑑) = 𝑝𝑚 (𝑑) ∫𝑎
0
ℎ𝑀,𝜎 (𝑥𝑐, 𝑎) (1 − 𝑥𝑐𝑎 ) 𝑑𝑥𝑐

(26)

with 𝑀 = I or II, where the integrals can be estimated in
closed form, producing a scalar quantity depending on 𝑎 and𝛼 (see Appendix).
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Figure 6: (a) Dimensionless SIF for mode II, for two crack lengths. Comparison with data of Figure 8 in [8]. (b) Proportionality coefficient
for estimating lip contact actions as in (21).

3.5. Numerical Example. In order to validate the proposed
model, some comparisons with results from the literature are
discussed in Results. Unless stated otherwise, the following
numerical data taken from a case used by Datsyshyn and
Marchenko [8] has been considered: 𝛼 = 25∘, 𝑝0 = 840MPa,𝑎𝐻 = 0.22mm, and 𝑎/𝑎𝐻 = 0.5. For this value of 𝛼 only the
WF in [18] can be used.

4. Results

Results are usually presented in scaled form, with the dimen-
sionless SIFs written as

𝐹I/II = 𝐾I/II
1𝑝0√𝜋𝑎𝐻 (27)

plotted versus a dimensionless distance 𝑑/𝑎𝐻. However, other
scaling factors are used in the literature; thus comparisons can
require some adaptation.

4.1. Short and Long Crack under Hertzian Contact. At first, a
simple case with only Hertzian contact along the boundary
has been investigated, taken from [8]. No tractive force 𝑇
and no friction between the crack lips are considered but the
model is applied to compare short and long cracks, that is,𝑎/𝑎𝐻 equal to 0.552 and 1.374, respectively.

Results are shown in Figure 6. Only the dimensionless𝐹II is reported in Figure 6(a) as 𝐹I is zero. For both crack
lengths, the obtained results are in rather good agreement
with the literature. Higher errors are observed in peak values,
overestimated by the model for about 8% for the long crack.
In Figure 6(b), the values of 𝜆 estimated according to (21) are
depicted. It can be observed that, in the central phase of the
contact, that is, when the load passes over the crack mouth(−1 < 𝑑/𝑎𝐻 < 1), 𝜆 is nearly −1. This means that 𝐹II is
“produced” almost completely by nominal tangential actions,
as supposed in [16].

From a computational point of view, each curve is
obtained by estimating 25 values in the predefined range

−1.5 < 𝑑/𝑎𝐻 < 2.5 requiring about 15 minutes for all the
curves.

4.2. Tractive Loads. The role of motion direction has already
been discussed in the literature also in relation to the
presence a tractive load𝑇 due to nonnegligible friction effect.
Results obtained with the proposed approach are compared
to those obtained by finite element simulations described in
[11].

In Figure 7(a), a plot of 𝐹II is shown where a tractive
force 𝑇 is added to the normal one 𝑁 considering positive
and negative values of the friction coefficient. In order to
simplify the comparison, that is, to reproduce the given
figure, the sign of 𝐹II is modified; thus with respect to
Figure 6 curves are turned upside-down. It can be observed
that the model can reproduce satisfactorily the trend of the
literature.

Figure 7(b) shows the time history of𝐾I as the load passes
over the crack, with different values of the friction coefficient.
Tangential actions cause positive values of the first SIF when
the load is approaching the crackmouth for driven contact or
when the load is leaving for braking contacts, in agreement
with the literature (Figures 7(c) and 7(d)).

4.3. Hydraulic Pressure. The effects of fluid pressure on the
crack faces have been added, as described in (24)–(26)
and (A.3) in Appendix. A constant distribution has been
considered, in order to compare the present study with others
in the literature.

Results are shown in Figure 8, where the obtained dimen-
sionless SIFs are matched with curves from [11], obtained by
FE analyses which in turn are almost overlapped to those by
Bower [7] and Beghini and Santus [9]. The effect is obviously
limited to the range −1 < 𝑑/𝑎𝐻 < 1 when the Hertzian
pressure at the crack mouth is not zero. As expected, the
pressurization of the crack increasesmarkedly𝐹I (see Figure 6
for comparison with curve for 𝑓 = −0.05) and is considered
one of the main causes of crack propagation.
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Figure 8: Dimensionless SIFs for pressurized crack (numerical case: 𝑎/𝑎𝐻 = 0.5; 𝛼 = 25∘, 𝑓 = −0.05, constant fluid pressure on the crack
faces).

4.4. Separate Contributions to the SIFs. As final result, it is
interesting to observe an important advantage of this model
that enables splitting the single contributions of external load
to the SIFs. Figure 8 shows the separated curves of 𝐹I and 𝐹II
due to the travelling loads𝑁 and 𝑇 and to the fluid pressure,
whose sum gives plots in Figure 9. For𝑁 and 𝑇, the separate
contribution of nominal normal (𝜎) and shear stresses (𝜏) is
also detailed.

Themain contribution is produced by the normal stresses
due to Hertzian pressure (𝜎𝑁) and the fluid pressurization, as

expected. The two curves have similar magnitude, opposite
sign, and a small shift that causes their sum to be positive
and negative for 𝐹I and 𝐹II, respectively. Other contributions
are one order smaller. It is possible to appreciate the positive
contribution to𝐹I of both stress components due to𝑇 (𝜎𝑇 and𝜏𝑇) being 𝑓 = −0.05.

This “split” analysis can be useful to achieve fast indica-
tions for other cases, such as for increased friction 𝑓 = −0.1,
since the superposition principle allows simply doubling the
values of the curves due to 𝜎𝑇 and 𝜏𝑇.



Mathematical Problems in Engineering 9

−2.00

−1.50

−1.00

−0.50

0.00

0.50

−1.5 −1 −0.5 0 0.5 1 1.5

d/aH

N

1.00

1.50

2.00

p

FI

T

T
N

d/aH

FI

−0.12

−0.09

−0.06

−0.03

0.00

0.03

0.06

0.09

0.12

−1.5 −1 −0.5 0 0.5 1 1.5

(a)

−2.00

−1.50

−1.00

−0.50

0.00

0.50

1.00

1.50

2.00

−1.5 −1 −0.5 0 0.5 1 1.5

p
d/aH

FII

N

T

T
N

d/aH

FII

−0.12

−0.09

−0.06

−0.03

0.00

0.03

0.06

0.09

0.12

−1.5 −1 −0.5 0 0.5 1 1.5

(b)

Figure 9: (a)-(b) Dimensionless SIFs produced by nominal normal (𝜎) and shear stresses (𝜏), produced by external loads 𝑁 and 𝑇 and by
pressure on the crack lips (𝑝) (numerical case: 𝑎/𝑎𝐻 = 0.5; 𝛼 = 25∘, 𝑓 = −0.05, constant fluid pressure on the crack faces).

5. Conclusions

Ananalyticalmodel of a surface crack in a half-plane has been
described in detail as well as results of its application com-
pared to other studies in the literature. The model is based
on the application of Linear Elastic Fracture Mechanics, in
particular taking advantage of the Weight Function Method
for evaluating the stress intensity factors which characterize
the behaviour and propagation of the crack. The theoretical
foundations are also reported in the background.

The model is rather simple to be implemented and its
results are in satisfactory agreement with the literature. It
can be conveniently applied to investigate many problems of
rolling contact fatigue and hopefully it could help to clarify
some aspects of this complex phenomenon that are still
debated.

Appendix

Weight Function for an Oblique Crack in
a Half-Plane

The general expressions of theWFs in [18, 19] are similar and
can bewritten as functions of the coordinate𝑥 along the crack

(with origin at the crack mouth), of the crack length 𝑎, and of
the angle 𝛼:

ℎ𝑀,𝜇 (𝑥, 𝑎, 𝛼) = √ 2𝜋𝑎 [𝑐𝑀,𝜇0 (1 − 𝑥𝑎)
−0.5

+ 4∑
𝑖=1

𝑐𝑀,𝜇𝑖 (𝛼) (1 − 𝑥𝑎)
𝑖−0.5] ,

(A.1)

where

𝑐𝑀,𝜇0 = {{{
1 for 𝑀,𝜇 = I, 𝜎 or II, 𝜏
0 for 𝑀,𝜇 = II, 𝜎 or I, 𝜏 (A.2)

in both [18, 19], while 𝑐𝑀,𝜇𝑖 = 0 for 𝑖 > 2 in [19].
As already stated, the coefficients 𝑐𝑀,𝜇𝑖 are provided as

functions of the angle 𝜃 = 𝜋/2 − 𝛼 in [18] and for some
discrete values of it in [19].They are plotted in Figure 10(a). As
already remarked, the two sources assume different positive
directions for the nominal shear stresses, which consequently
results also in a different sign of 𝐾II. This should be kept in
mindwhen applying the proposed procedure. In Figure 10(b),
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Figure 10: (a) Plots of the coefficients of the WFs in Eq. (A.1) from [18, 19]. (b) Conventional positive actions on the crack lips for the
application of the WFs.

the conventions of the sign in [18, 19] are depicted for
nominal stresses and SIFs. The signs of the WFs are also
reported, which may help to eliminate the absolute values
from functions in Figure 4.

In the literature, positive values of 𝐾II are sometimes
associated with nominal stresses shown in Figure 10(b) (left),
as in [18], while in other cases they are associated with the
opposite ones, Figure 10(b) (right), as in [19].

Given the polynomial expressions in (A.1), it is pos-
sible also to calculate the integrals in (25) in closed
form

𝐾𝑝𝑀 (𝑑) = 𝑝𝑚 (𝑑) ∫𝑎
0
ℎ𝑀,𝜎 (𝑥𝑐, 𝑎) 𝑑𝑥𝑐 = √ 2𝜋𝑎𝑝𝑚 (𝑑)

⋅ ∫𝑎
0
[𝑐𝑀,𝜇0 (1 − 𝑥𝑐𝑎 )

−0.5

+ 4∑
𝑖=1

𝑐𝑀,𝜇𝑖 (𝛼) (1 − 𝑥𝑐𝑎 )
𝑖−0.5]𝑑𝑥𝑐

= 2√2𝑎𝜋 𝑝𝑚 (𝑑) [𝑐𝑀,𝜇0 + 4∑
𝑖=1

𝑐𝑀,𝜇𝑖 (𝛼)
2𝑖 + 1 ]

(A.3)
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or

𝐾𝑝𝑀 (𝑑) = 𝑝𝑚 (𝑑) ∫𝑎
0
ℎ𝑀,𝜎 (𝑥𝑐, 𝑎) (1 − 𝑥𝑐𝑎 ) 𝑑𝑥𝑐

= √ 2𝜋𝑎𝑝𝑚 (𝑑) ∫
𝑎

0
[𝑐𝑀,𝜇0 (1 − 𝑥𝑐𝑎 )

−0.5

+ 4∑
𝑖=1

𝑐𝑀,𝜇𝑖 (𝛼) (1 − 𝑥𝑐𝑎 )
𝑖−0.5](1 − 𝑥𝑐𝑎 ) 𝑑𝑥𝑐

= 2√2𝑎𝜋 𝑝𝑚 (𝑑) [𝑐
𝑀,𝜇
03 + 4∑

𝑖=1

𝑐𝑀,𝜇𝑖 (𝛼)
2𝑖 + 3 ]

(A.4)

with 𝑀 = I, II, in order to easily take into account fluid
pressure within the crack.

Symbols

𝑎: Crack length𝑎𝐻: Hertzian contact half-width𝑑: Position of the travelling load;
the originΩ of 𝑆𝑡 has
coordinates (𝑑, 0) in 𝑆𝑓: Coefficient of sliding frictionℎI: Weight Function for
calculating 𝐾IℎII: Weight Function for
calculating 𝐾IIℎI,𝜎/ℎI,𝜏: Weight Function for
calculating the contribution
of 𝜎𝑛/𝜏𝑛 to𝐾I in oblique
cracksℎII,𝜎/ℎII,𝜏: Weight Function for
calculating the contribution
of 𝜎𝑛/𝜏𝑛 to𝐾II in oblique
cracks𝑖: Imaginary unit𝑝0: Maximum Hertzian pressure
(𝑝0 > 0)𝑝𝑚: Pressure at the crack mouth𝑧: Complex variable𝐴: Airy’s function𝐹I/II = 𝐾I/II(1/𝑝0√𝜋𝑎𝐻): Dimensionless SIFs𝐾I: Stress intensity factor for the
first mode (opening)𝐾II: Stress intensity factor for the
second mode (sliding)𝐾𝑝: Contribution of pressure 𝑝 on
the crack lips to the stress
intensity factor (both for
modes I and II)𝑁: Normal actions along the
half-plane border (>0 when
directed as the 𝑦-axis)

R: Rotation matrix between 𝑆𝑐
and 𝑆

𝑆{𝑂, 𝑥, 𝑦}: Fixed reference frame, 𝑂 at
the crack mouth, 𝑥 along the
border, and half-plane in𝑦 ≤ 0𝑆𝑐{𝑂, 𝑥𝑐, 𝑦𝑐}: Fixed reference frame, 𝑂 at
the crack mouth, 𝑥𝑐 along the
crack faces towards the mouth𝑆𝑡{Ω, 𝑥𝑡, 𝑦𝑡}: Reference frame travelling
with the load, axes parallel to𝑆𝑇: Tangential actions along the
half-plane boundary (>0
when directed as the 𝑥-axis)

T: Stress tensor (2 × 2)𝛼: Angle of the crack with
respect to the surface𝜆: Corrective factor when the
crack lips are closed, ratio
between 𝜎𝑛 and 𝜎𝑐𝜎𝑐: Contact actions on the crack
lips𝜎𝑛: Nominal normal stress along
the crack lips in the
uncracked body (>0 when
tractive; 0> when
compressive)𝜏𝑛: Nominal shear stress along
the crack lips in the
uncracked body (arbitrary
positive sign)Φ/Ψ: Muskhelishvili’s potential
functions.
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