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Pyrrole-Based Hydroxamates and 2-Aminoanilides: Histone Deacetylase

Inhibition and Cellular Activities

Sergio Valente,® Mariarosaria Conte,™ Maria Tardugno,” Silvio Massa,’ Angela Nebbioso,” Lucia Altucci,*®’

and Antonello Mai*®

Histone acetylation/deacetylation is essential for chromatin re-
modeling and epigenetic regulation of gene transcription in
eukaryotic cells. The acetylation level of the histone lysine resi-
dues is controlled by two enzyme superfamilies with opposite
actions, histone acetyltransferases (HATs) and histone deacety-
lases (HDACs), and a shift in the balance of chromatin acetyla-
tion may result in changes in the regulation of patterns of
gene expression."” HDACs have been implicated in several pro-
cesses such as neoplasias, cardiac hypertrophy, T-cell differen-
tiation and neuronal survival.>® In cancer cells, HDAC inhibi-
tion causes histone hyperacetylation and leads to transcrip-
tional activation of genes associated with growth arrest, termi-
nal differentiation and/or apoptosis, both invitro and
in vivo.2+®

At the present there are 18 known human HDACs grouped
into four classes based on the structure of their accessory do-
mains. Classes | (HDAC1-3, 8), Il (HDAC4-7, 9, and 10, of which
HDAC4, 5, 7, and 9 form the class lla, and HDAC6 and 10 are
considered as belonging to classllb), and IV (HDAC11) en-
zymes are zinc(ll)-dependent enzymes, while class lll enzymes
(also known as sirtuins) are defined by their dependency on
NAD™ for catalytic action. In addition to histones, HDACs have
been shown to deacetylate a growing number of nonhistone
proteins such as transcriptional activators, basal transcription
factors (i.e., p53), and structural proteins (i.e., a-tubulin). While
class | HDACs are ubiquitously expressed in tissues, located
mainly in the nucleus of the cells, and often act as transcrip-
tional corepressors, class Il HDACs are present both in nucleus
and cytoplasm with or without the shuttling system, have a
tissue-specific expression, and appear to target selected cell
physiological programs.

Generally, elevated class| (HDAC1-3) and more specifically
HDAC1 expression is associated with poor prognosis and en-

hanced proliferation of gastric,”® pancreatic,”'” colorectal,!"'?

[a] Dr. S. Valente, Dr. M. Tardugno, Prof. A. Mai

Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e

Tecnologie del Farmaco, Sapienza Universita di Roma

P. le A. Moro 5, 00185 Roma (Italy)

Fax: (+39) 06491491

E-mail: antonello.mai@uniromal.it

Dr. M. Conte, Dr. A. Nebbioso, Prof. L. Altucci

Dipartimento di Patologia Generale, Seconda Universita degli Studi di

Napoli, Vico L. De Crecchio 7, 80138 Napoli (Italy)

Fax: (4 39) 081-2144840

E-mail: lucia.altucci®unina2.it

Prof. S. Massa

Dipartimento Farmaco Chimico Tecnologico, Universita degli Studi di Siena

Via A. Moro, 53100 Siena (lItaly)

Supporting information for this article is available on the WWW under
http://dx.doi.org/10.1002/cmdc.200900082.

[b

(a)

ChemMedChem 2009, 4, 1411 - 1415

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim .

[14] ] t[16, 171

prostate,”® hepatocellular,™ lung™ and breas cancer,
and chemotherapy-resistant neuroblastoma in vitro.'® The role
of class Il HDACs in cancer is less clear. Indeed, class Il HDACs
tended to be downregulated in human tumors, and high ex-
pression in some tumors has been linked to improved progno-
sis."*2% On the other hand, HDAC4 expression has been shown
to be upregulated in breast cancer compared with renal, blad-
der, and colorectal cancer,"” and in acute promyelocytic leuke-
mia (APL) cells HDAC4 interacts with the PLZF-RARa fusion
protein to repress differentiation.””’ HDAC5 and HDAC7 were
highly expressed in colorectal cancer in contrast to bladder,
renal, and breast cancer™ HDAC6 was upregulated in oral
squamous cell carcinoma,?? and its inhibition depleted the
Bcr-Abl oncoprotein in K562 leukemia cells through acetylation
of heat shock protein 90 (Hsp90) and subsequent disruption of
its chaperone function.”®» HDAC6 inhibition also caused antian-
giogenic effects through the regulation (with HDAC4) of HIF-
10, transcriptional activity,* and Hsp90-mediated proteasomal
degradation of vascular endothelial growth factor receptors.”®
HDAC6 inhibition by the selective inhibitor tubacin®?” causes
growth inhibition of multiple myeloma cells,”® activation of
the caspases and apoptosis. Moreover, o-tubulin hyper-
acetylation has been reported to increase vesicular transport
of brain-derived neurotrophic factor (BDNF).?

A number of small-molecule HDAC inhibitors (HDACI), in-
cluding the hydroxamates suberoylanilide hydroxamic acid
(SAHA, vorinostat),®” recently approved by the FDA for the
treatment of advanced cutaneous T-cell lymphoma (CTCL),"
and LBH-589 (panobinostat),*? the benzamides MS-2755% and
MGCD0103,%¥ and the depsipeptide FK-228 (romidepsin),®”
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displayed in vivo antitumor efficacy and are in various phases
of clinical trials for anticancer therapy.

In 2005, we identified MC1568 (1) as a class lla-selective
HDACi.®%*" In immunoprecipitation (IP) assays, MC1568 (5 um)
displayed 54.9% inhibitory activity against HDAC4 (ZR-75.1
cells) and 0% against HDAC1 (U937 cells). It was subsequently
shown to increase the level of a-tubulin acetylation (functional
test for HDACG inhibition) in Jurkat, K562, chronic lymphocytic
leukemia (CLL), and MCF-7 cells.*®3¥ Therefore, MC1568 can be
considered a pan-class ll-selective HDACi. In 2007, Itoh et al. re-
ported a series of HDAC6-selective inhibitors, including com-
pound 16b, which showed growth inhibition in MCF-7 breast
cancer cells after estrogen stimulation.”” The structural motifs
of such inhibitors, in particular the cycloalkylamino moiety and
the tert-butoxycarbonyl portion at the CAP group attracted
our attention. Thus, also considering the important biological
effects shown by compound 1,583*-*3 we designed and syn-
thesized a series of analogues of 1 belonging to both the hy-
droxamate (compounds 3a-g) and 2-aminoanilide (com-
pounds 4a-g) series, in addition to the N-(2-aminophenyl)-3-
(4-(3-(3-fluorophenyl)-3-oxoprop-1-enyl)-1-methyl-1H-pyrrol-2-
yl)acrylamide 2. In particular, herein we report the effects of
the introduction of several bulky cycloalkylamino groups into
the CAP moiety (at the benzene C4 position) of compounds 1
and 2.
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Lead compound 1 and derivatives 2-4 were tested at 5 um
against human recombinant (hr) HDAC1, HDAC4 and HDAC6
enzymes. These compounds were also subjected to functional
tests at 5 um to ascertain their effects on histone H3 and a-tu-
bulin acetylation levels in human leukemia U937 cells. Finally,
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in the U937 cell line their effects on cell cycle and apoptosis in-
duction at 5 pm were determined.

Compounds 3a-g and 4a-g were synthesized from the 3,4-
difluoroacetophenone. The starting material was reacted with
the corresponding cycloalkylamine in the presence of K,CO; to
obtain the intermediate 5a-g. Further condensation of 5a-g
with the ethyl 3-(4-formyl-1-methyl-1H-pyrrol-2-yl)-2-prope-
noate® under basic conditions furnished the ethyl 3-(4-(3-(4-
(cycloalkylamino)-3-fluorophenyl)-3-oxoprop-1-enyl)-1-methyl-
1H-pyrrol-2-yl)acrylates 6 a—g, which underwent alkaline hydrol-
ysis to yield the corresponding acrylic acids 7a-g, key inter-
mediate for the synthesis of the final compounds. Reaction of
these key intermediates 7a-g with ethyl chloroformate, fol-
lowed by addition of O-(2-methoxy-2-propyl)hydroxylamine™?
and further cleavage in the presence of the Amberlyst 15 ion-
exchange resin furnished the desired 3-(4-(3-(4-(cycloalkyl-
amino)-3-fluorophenyl)-3-oxoprop-1-enyl)-1-methyl-1H-pyrrol-2-
yl)-N-hydroxyacrylamides 3a-g. The 2-aminoanilide derivatives
2 and 4a-g were synthesized from the 3-(4-(3-(3-fluorophen-
yl)-3-oxoprop-1-enyl)-1-methyl-1H-pyrrol-2-yl)acrylic acid®® and
7 a-g, respectively, by treatment with benzotriazole-1-yloxy-
tris(dimethylamino)phosphonium hexafluorophosphate (Bop)
and the o-phenylendiamine in the presence of triethylamine
(Scheme 1).

Compounds 2-4 were tested at 5um against hr HDAC1,
HDAC4 and HDAC6. Compound 1 and SAHA were used as ref-
erence drugs. The results showed that the hydroxamate deriva-
tives 3, in contrast to the lead compound 1, showed moderate
to high inhibition (22-80%) of HDAC1 (Table 1). Conversely,
the same compounds were weakly active or inactive against
HDAC4, with the exception of 3 f that showed 30% inhibition
of HDAC4 at 5 pum. Against HDAC6, compound 1 displayed
35% of inhibition at 5pum, and the hydroxamates 3 were
equally or more active, with the exception of 3d that was less
effective against this isoform (219%). Compounds 3a and 3b,
carrying a cyclopropylamino and a cyclobutylamino moiety at
the C4 position of the benzene ring, respectively, displayed the
highest inhibitory activity against both HDAC1 and HDAC6
(60-80%) among the tested derivatives. When compared with
SAHA, they showed slightly lower or similar activities against
HDAC1, and were more efficient against HDAC6. 2-Aminoani-
lides 2 and 4 failed to effectively inhibit HDACT1, with the ex-
ception of 4f, that displayed appreciable (40%) HDAC1 inhibi-
tion at 5 um. Additionally, compounds 2 and 4a-g displayed
no or weak activity against HDAC4, with the exception of 4e
that inhibited the enzyme by 38% at 5 um. Conversely, com-
pounds 2 and 4a-g inhibited hrHDAC6 to varying extents. To
clarify the isozyme selectivity of unique HDAC1/HDAC6 inhibi-
tors, such as 3a, 3b, and 3g, the IC;, values of these com-
pounds against HDAC1 and HDAC6 were determined (Table 2).
Compounds 3a and 3b showed nanomolar inhibition of
HDAC1 and (sub)micromolar inhibition of HDAC6. The replace-
ment of the cyclopropyl/cyclobutylamino moieties of 3a and
3b with the bulkier 1-adamantylamino substituent (3g) led to
a decrease in both the HDAC1 and HDAC6 inhibitory activities,
to different degrees (307-460 fold and 6-8 fold decrease for
HDAC1 and HDACS, respectively).
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COMMUNICATIONS

and compound 1 were used as
reference compounds. As seen
by Western blot analysis, the hy-
droxamates 3a-g typically in-

O creased the acetyl-H3 levels, 3a
F N/ NHOH and 3b being the most potent

N o) in this test. Conversely, the 2-

3a—g ‘CH3 aminoanilides 4a-g seem to be

less efficient than the corre-
sponding hydroxamates (Fig-
ure 1a). In the a-tubulin acetyla-
tion assay (Figure 1b), the major-
ity of the tested hydroxamates
3, as well as the 2-aminoanilides

Scheme 1. Reagents and conditions: a) RNH,, anhyd K,CO;, DMF, 90°C, overnight, 59-78 %; b) Na, C,H;OH, RT, 5 h,

62-76%; c) KOH, C,H;OH, 80°C, 2 h, 77-87 %; d) 1) CICOOC,Hs, (C,Hs);N, anhyd THF, 0°C; 2) CH,OC(CH;),0NH,,
anhyd THF, 0°C; 3) Amberlyst 15, CH;OH, RT, 1.5 h, 55-66 %; €) 1) (C,H;);N, BOP, anhyd DMF, N, atmosphere, RT;

2) o-phenylendiamine, anhyd DMF, N, atmosphere, RT, 1 h, 64-74 %.

Table 1. Human recombinant HDAC1, HDAC4, and HDAC6 inhibitory ac-
tivities of compounds 1-4.

Compd Inhibition at 5 pm [%]®
HDAC1 HDAC4 HDAC6

1 5 45 35
2 0 8 30
3a 80 0 62
3b 78 0 60
3c 30 17 30
3d 22 16 21
3e 32 0 32
3f 30 30 43
3g 38 0 40
4a 2 0 15
4b 5 0 20
4c 15 0 25
4d 0 13 25
4e 0 38 30
4f 40 19 25
49 0 0 15
SAHA 88 49 53

[a] Data represent mean values of at least three separate experiments.

Table 2. IC;, values of selected derivatives 3a, 3b, and 3g against
human recombinant HDAC1 and HDAC6.

Compd ICso [um]®

HDAC1 HDAC6
3a 0.02 1.1
3b 0.03 0.8
3g 9.2 67

[a] Data represent mean values of at least three separate experiments.

The effects of compounds 2-4 (5 um, 24 h) on histone H3
and o-tubulin acetylation levels, taken as markers of class |
HDACs and HDACG inhibition, respectively, were determined in
the human leukemia U937 cell line (Figure 1). SAHA, MS-275
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4, produced high acetyl-a-tubu-
lin levels, with the exception of
39, which showed lower activity
possibly due to poor cell perme-

a) U937 24 h

AcH3
H4

ctr MS-275S8AHA 1 3a 3b 3c 3d 3e 3f 3g
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Figure 1. Western blot analysis on human leukemia U937 cells performed
with derivatives 2-4 (at 5 um) to determine their effects on a) histone H3
and b) a-tubulin acetylation. SAHA, MS-275 and compound 1 were tested
for a direct comparison.

ability or differences in the kinetics of induction. These data
confirmed the capability of such compounds to inhibit the
HDAC6 activity.

The pyrrole-based derivatives 2-4 were tested in the U937
cell line (5 or 1 pm, 30 h), to evaluate their effects on cell cycle
and apoptosis induction. Compound 1 and SAHA were used as
reference drugs. Among the tested compounds, the hydroxa-
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mates 3f and 3g blocked cell cycle in the S phase; this was
more evident with the 2-aminoanilides 4 c-e (Figure 2). Deriva-
tives 3a and 3b had to be tested at 1 um because cell death
at 5 uM was too great. The induction of apoptosis was mea-
sured using the caspase 3-7 method (Figure 3). The results re-
vealed that 3a and 3 b, tested at 1 um, gave high apoptosis in-
duction (28.8 and 28.3%, respectively) in the U937 cell line,
higher than SAHA (16.3%), which was tested at 5 pm. Among
the remaining derivatives, only the 2-aminoanilide 4a gave ap-

80 U937 30h

Cells in cycle / %

0
CSA1 2 abcdefgabcdef g

3 4

Figure 2. Effects of compounds 2-4 on cell-cycle phases in the human leu-
kemia U937 cell line over 30 h. Compounds were used at 5 um except for
compounds 3a and 3b, which were tested at 1 um.

30~ U937 30 h

Apoptosis / %

10

0
CSA12abcdefgabcdefg

3 4

Figure 3. Effects of compounds 2-4 on apoptosis induction in the human
leukemia U937 cell line over 30 h. Compounds were used at 5 pm except for
compounds 3a and 3b, which were tested at 1 pum.

1414

www.chemmedchem.org

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

preciable apoptosis induction (14.5%) in our assay, though this
effect seems to be unrelated to HDAC inhibition.

In conclusion, a series of pyrrole-containing HDACi 2-4,
based on the lead compound 1 (MC1568), bearing cycloalkyla-
mino substituents of varying sizes at the C4 position of the
benzene ring, and the hydroxamate or 2-aminoanilide moiety
as the enzyme inhibiting group, have been reported. Generally,
these compounds were more potent than 1 at inhibiting
hrHDAC1 and hrHDAC6, whereas they displayed lower activi-
ties than 1 against hrHDAC4. In HDAC functional assays, the
tested compounds increased the levels of both acetyl-H3 and
acetyl-a-tubulin (compounds 3) or only acetyl-a-tubulin (com-
pounds 2, 4) in U937 cells. Notably, the cyclopropylamino and
cyclobutylamino hydroxamates 3a and 3 b showed the highest
HDAC1/HDACS inhibitory activities, with 1Cs, values of 0.02 and
0.03 pm (against HDAC1) and 1.1 and 0.8 um (HDACS), respec-
tively. When tested in U937 leukemia cells (caspase 3-7
method, 1 pum, 30 h), 3a and 3b induced apoptosis (28.8 and
28.3%, respectively) more effective than SAHA (16.3% at 5 um)
under the assay conditions. Further studies are in progress to
optimize these pyrrole-based inhibitors.
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