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Pyrrole-Based Hydroxamates and 2-Aminoanilides: Histone Deacetylase
Inhibition and Cellular Activities

Sergio Valente,[a] Mariarosaria Conte,[b] Maria Tardugno,[a] Silvio Massa,[c] Angela Nebbioso,[b] Lucia Altucci,*[b]

and Antonello Mai*[a]

Histone acetylation/deacetylation is essential for chromatin re-
modeling and epigenetic regulation of gene transcription in
eukaryotic cells. The acetylation level of the histone lysine resi-
dues is controlled by two enzyme superfamilies with opposite
actions, histone acetyltransferases (HATs) and histone deacety-
lases (HDACs), and a shift in the balance of chromatin acetyla-
tion may result in changes in the regulation of patterns of
gene expression.[1] HDACs have been implicated in several pro-
cesses such as neoplasias, cardiac hypertrophy, T-cell differen-
tiation and neuronal survival.[2, 3] In cancer cells, HDAC inhibi-
tion causes histone hyperacetylation and leads to transcrip-
tional activation of genes associated with growth arrest, termi-
nal differentiation and/or apoptosis, both in vitro and
in vivo.[2, 4–6]

At the present there are 18 known human HDACs grouped
into four classes based on the structure of their accessory do-
mains. Classes I (HDAC1–3, 8), II (HDAC4–7, 9, and 10, of which
HDAC4, 5 , 7, and 9 form the class II a, and HDAC6 and 10 are
considered as belonging to class II b), and IV (HDAC11) en-
zymes are zinc(II)-dependent enzymes, while class III enzymes
(also known as sirtuins) are defined by their dependency on
NAD+ for catalytic action. In addition to histones, HDACs have
been shown to deacetylate a growing number of nonhistone
proteins such as transcriptional activators, basal transcription
factors (i.e. , p53), and structural proteins (i.e. , a-tubulin). While
class I HDACs are ubiquitously expressed in tissues, located
mainly in the nucleus of the cells, and often act as transcrip-
tional corepressors, class II HDACs are present both in nucleus
and cytoplasm with or without the shuttling system, have a
tissue-specific expression, and appear to target selected cell
physiological programs.

Generally, elevated class I (HDAC1–3) and more specifically
HDAC1 expression is associated with poor prognosis and en-
hanced proliferation of gastric,[7, 8] pancreatic,[9, 10] colorectal,[11, 12]

prostate,[13] hepatocellular,[14] lung[15] and breast[16, 17] cancer,
and chemotherapy-resistant neuroblastoma in vitro.[18] The role
of class II HDACs in cancer is less clear. Indeed, class II HDACs
tended to be down ACHTUNGTRENNUNGregulated in human tumors, and high ex-
pression in some tumors has been linked to improved progno-
sis.[19, 20] On the other hand, HDAC4 expression has been shown
to be up ACHTUNGTRENNUNGregulated in breast cancer compared with renal, blad-
der, and colorectal cancer,[11] and in acute promyelocytic leuke-
mia (APL) cells HDAC4 interacts with the PLZF-RARa fusion
protein to repress differentiation.[21] HDAC5 and HDAC7 were
highly expressed in colorectal cancer in contrast to bladder,
renal, and breast cancer.[11] HDAC6 was up ACHTUNGTRENNUNGregulated in oral
squamous cell carcinoma,[22] and its inhibition depleted the
Bcr-Abl oncoprotein in K562 leukemia cells through acetylation
of heat shock protein 90 (Hsp90) and subsequent disruption of
its chaperone function.[23] HDAC6 inhibition also caused antian-
giogenic effects through the regulation (with HDAC4) of HIF-
1a transcriptional activity,[24] and Hsp90-mediated proteasomal
degradation of vascular endothelial growth factor receptors.[25]

HDAC6 inhibition by the selective inhibitor tubacin[26, 27] causes
growth inhibition of multiple myeloma cells,[28] activation of
the caspases and apoptosis. Moreover, a-tubulin hyper-ACHTUNGTRENNUNGacetylation has been reported to increase vesicular transport
of brain-derived neurotrophic factor (BDNF).[29]

A number of small-molecule HDAC inhibitors (HDACi), in-
cluding the hydroxamates suberoylanilide hydroxamic acid
(SAHA, vorinostat),[30] recently approved by the FDA for the
treatment of advanced cutaneous T-cell lymphoma (CTCL),[31]

and LBH-589 (panobinostat),[32] the benzamides MS-275[33] and
MGCD0103,[34] and the depsipeptide FK-228 (romidepsin),[35]
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displayed in vivo antitumor efficacy and are in various phases
of clinical trials for anticancer therapy.

In 2005, we identified MC1568 (1) as a class II a-selective
HDACi.[36, 37] In immunoprecipitation (IP) assays, MC1568 (5 mm)

displayed 54.9 % inhibitory activity against HDAC4 (ZR-75.1
cells) and 0 % against HDAC1 (U937 cells). It was subsequently
shown to increase the level of a-tubulin acetylation (functional
test for HDAC6 inhibition) in Jurkat, K562, chronic lymphocytic
leukemia (CLL), and MCF-7 cells.[38, 39] Therefore, MC1568 can be
considered a pan-class II-selective HDACi. In 2007, Itoh et al. re-
ported a series of HDAC6-selective inhibitors, including com-
pound 16 b, which showed growth inhibition in MCF-7 breast
cancer cells after estrogen stimulation.[40] The structural motifs
of such inhibitors, in particular the cyclo ACHTUNGTRENNUNGalkyl ACHTUNGTRENNUNGamino moiety and
the tert-butoxy ACHTUNGTRENNUNGcarbonyl portion at the CAP group attracted
our attention. Thus, also considering the important biological
effects shown by compound 1,[38, 39, 41–43] we designed and syn-
thesized a series of analogues of 1 belonging to both the hy-
droxamate (compounds 3 a–g) and 2-aminoanilide (com-
pounds 4 a–g) series, in addition to the N-(2-aminophenyl)-3-
(4-(3-(3-fluorophenyl)-3-oxoprop-1-enyl)-1-methyl-1H-pyrrol-2-
yl)acrylamide 2. In particular, herein we report the effects of
the introduction of several bulky cycloalkylamino groups into
the CAP moiety (at the benzene C4 position) of compounds 1
and 2.

Lead compound 1 and derivatives 2–4 were tested at 5 mm

against human recombinant (hr) HDAC1, HDAC4 and HDAC6
enzymes. These compounds were also subjected to functional
tests at 5 mm to ascertain their effects on histone H3 and a-tu-
bulin acetylation levels in human leukemia U937 cells. Finally,

in the U937 cell line their effects on cell cycle and apoptosis in-
duction at 5 mm were determined.

Compounds 3 a–g and 4 a–g were synthesized from the 3,4-
difluoroacetophenone. The starting material was reacted with
the corresponding cyclo ACHTUNGTRENNUNGalkyl ACHTUNGTRENNUNGamine in the presence of K2CO3 to
obtain the intermediate 5 a–g. Further condensation of 5 a–g
with the ethyl 3-(4-formyl-1-methyl-1H-pyrrol-2-yl)-2-prope-
noate[36] under basic conditions furnished the ethyl 3-(4-(3-(4-
(cycloalkylamino)-3-fluorophenyl)-3-oxoprop-1-enyl)-1-methyl-
1H-pyrrol-2-yl)acrylates 6 a–g, which underwent alkaline hydrol-
ysis to yield the corresponding acrylic acids 7 a–g, key inter-
mediate for the synthesis of the final compounds. Reaction of
these key intermediates 7 a–g with ethyl chloroformate, fol-
lowed by addition of O-(2-methoxy-2-propyl)hydroxylamine[44]

and further cleavage in the presence of the Amberlyst 15 ion-
exchange resin furnished the desired 3-(4-(3-(4-(cycloalkyl-ACHTUNGTRENNUNGamino)-3-fluorophenyl)-3-oxoprop-1-enyl)-1-methyl-1H-pyrrol-2-
yl)-N-hydroxyacrylamides 3 a–g. The 2-aminoanilide derivatives
2 and 4 a–g were synthesized from the 3-(4-(3-(3-fluorophen-
yl)-3-oxoprop-1-enyl)-1-methyl-1H-pyrrol-2-yl)acrylic acid[36] and
7 a–g, respectively, by treatment with benzotriazole-1-yloxy-
tris(dimethylamino)phosphonium hexafluorophosphate (Bop)
and the o-phenylendiamine in the presence of triethylamine
(Scheme 1).

Compounds 2–4 were tested at 5 mm against hr HDAC1,
HDAC4 and HDAC6. Compound 1 and SAHA were used as ref-
erence drugs. The results showed that the hydroxamate deriva-
tives 3, in contrast to the lead compound 1, showed moderate
to high inhibition (22–80 %) of HDAC1 (Table 1). Conversely,
the same compounds were weakly active or inactive against
HDAC4, with the exception of 3 f that showed 30 % inhibition
of HDAC4 at 5 mm. Against HDAC6, compound 1 displayed
35 % of inhibition at 5 mm, and the hydroxamates 3 were
equally or more active, with the exception of 3 d that was less
effective against this isoform (21 %). Compounds 3 a and 3 b,
carrying a cyclopropylamino and a cyclobutylamino moiety at
the C4 position of the benzene ring, respectively, displayed the
highest inhibitory activity against both HDAC1 and HDAC6
(60–80 %) among the tested derivatives. When compared with
SAHA, they showed slightly lower or similar activities against
HDAC1, and were more efficient against HDAC6. 2-Aminoani-
lides 2 and 4 failed to effectively inhibit HDAC1, with the ex-
ception of 4 f, that displayed appreciable (40 %) HDAC1 inhibi-
tion at 5 mm. Additionally, compounds 2 and 4 a–g displayed
no or weak activity against HDAC4, with the exception of 4 e
that inhibited the enzyme by 38 % at 5 mm. Conversely, com-
pounds 2 and 4 a–g inhibited hrHDAC6 to varying extents. To
clarify the isozyme selectivity of unique HDAC1/HDAC6 inhibi-
tors, such as 3 a, 3 b, and 3 g, the IC50 values of these com-
pounds against HDAC1 and HDAC6 were determined (Table 2).
Compounds 3 a and 3 b showed nanomolar inhibition of
HDAC1 and (sub)micromolar inhibition of HDAC6. The replace-
ment of the cyclopropyl/cyclobutylamino moieties of 3 a and
3 b with the bulkier 1-adamantylamino substituent (3 g) led to
a decrease in both the HDAC1 and HDAC6 inhibitory activities,
to different degrees (307–460 fold and 6–8 fold decrease for
HDAC1 and HDAC6, respectively).
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The effects of compounds 2–4 (5 mm, 24 h) on histone H3
and a-tubulin acetylation levels, taken as markers of class I
HDACs and HDAC6 inhibition, respectively, were determined in
the human leukemia U937 cell line (Figure 1). SAHA, MS-275

and compound 1 were used as
reference compounds. As seen
by Western blot analysis, the hy-
droxamates 3 a–g typically in-
creased the acetyl-H3 levels, 3 a
and 3 b being the most potent
in this test. Conversely, the 2-
aminoanilides 4 a–g seem to be
less efficient than the corre-
sponding hydroxamates (Fig-
ure 1 a). In the a-tubulin acetyla-
tion assay (Figure 1 b), the major-
ity of the tested hydroxamates
3, as well as the 2-aminoanilides
4, produced high acetyl-a-tubu-
lin levels, with the exception of
3 g, which showed lower activity
possibly due to poor cell perme-

ability or differences in the kinetics of induction. These data
confirmed the capability of such compounds to inhibit the
HDAC6 activity.

The pyrrole-based derivatives 2–4 were tested in the U937
cell line (5 or 1 mm, 30 h), to evaluate their effects on cell cycle
and apoptosis induction. Compound 1 and SAHA were used as
reference drugs. Among the tested compounds, the hydroxa-

Scheme 1. Reagents and conditions : a) RNH2, anhyd K2CO3, DMF, 90 8C, overnight, 59–78 %; b) Na, C2H5OH, RT, 5 h,
62–76 %; c) KOH, C2H5OH, 80 8C, 2 h, 77–87 %; d) 1) ClCOOC2H5, (C2H5)3N, anhyd THF, 0 8C; 2) CH3OC ACHTUNGTRENNUNG(CH3)2ONH2,
anhyd THF, 0 8C; 3) Amberlyst 15, CH3OH, RT, 1.5 h, 55–66 %; e) 1) (C2H5)3N, BOP, anhyd DMF, N2 atmosphere, RT;
2) o-phenylendiamine, anhyd DMF, N2 atmosphere, RT, 1 h, 64–74 %.

Table 1. Human recombinant HDAC1, HDAC4, and HDAC6 inhibitory ac-
tivities of compounds 1–4.

Compd Inhibition at 5 mm [%][a]

HDAC1 HDAC4 HDAC6

1 5 45 35
2 0 8 30
3 a 80 0 62
3 b 78 0 60
3 c 30 17 30
3 d 22 16 21
3 e 32 0 32
3 f 30 30 43
3 g 38 0 40
4 a 2 0 15
4 b 5 0 20
4 c 15 0 25
4 d 0 13 25
4 e 0 38 30
4 f 40 19 25
4 g 0 0 15
SAHA 88 49 53

[a] Data represent mean values of at least three separate experiments.

Table 2. IC50 values of selected derivatives 3 a, 3 b, and 3 g against
human recombinant HDAC1 and HDAC6.

Compd IC50 [mm][a]

HDAC1 HDAC6

3 a 0.02 1.1
3 b 0.03 0.8
3 g 9.2 6.7

[a] Data represent mean values of at least three separate experiments.

Figure 1. Western blot analysis on human leukemia U937 cells performed
with derivatives 2–4 (at 5 mm) to determine their effects on a) histone H3
and b) a-tubulin acetylation. SAHA, MS-275 and compound 1 were tested
for a direct comparison.
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mates 3 f and 3 g blocked cell cycle in the S phase; this was
more evident with the 2-aminoanilides 4 c–e (Figure 2). Deriva-
tives 3 a and 3 b had to be tested at 1 mm because cell death
at 5 mm was too great. The induction of apoptosis was mea-
sured using the caspase 3–7 method (Figure 3). The results re-
vealed that 3 a and 3 b, tested at 1 mm, gave high apoptosis in-
duction (28.8 and 28.3 %, respectively) in the U937 cell line,
higher than SAHA (16.3 %), which was tested at 5 mm. Among
the remaining derivatives, only the 2-aminoanilide 4 a gave ap-

preciable apoptosis induction (14.5 %) in our assay, though this
effect seems to be unrelated to HDAC inhibition.

In conclusion, a series of pyrrole-containing HDACi 2–4,
based on the lead compound 1 (MC1568), bearing cycloalkyla-
mino substituents of varying sizes at the C4 position of the
benzene ring, and the hydroxamate or 2-aminoanilide moiety
as the enzyme inhibiting group, have been reported. Generally,
these compounds were more potent than 1 at inhibiting
hrHDAC1 and hrHDAC6, whereas they displayed lower activi-
ties than 1 against hrHDAC4. In HDAC functional assays, the
tested compounds increased the levels of both acetyl-H3 and
acetyl-a-tubulin (compounds 3) or only acetyl-a-tubulin (com-
pounds 2, 4) in U937 cells. Notably, the cyclopropylamino and
cyclobutylamino hydroxamates 3 a and 3 b showed the highest
HDAC1/HDAC6 inhibitory activities, with IC50 values of 0.02 and
0.03 mm (against HDAC1) and 1.1 and 0.8 mm (HDAC6), respec-
tively. When tested in U937 leukemia cells (caspase 3–7
method, 1 mm, 30 h), 3 a and 3 b induced apoptosis (28.8 and
28.3 %, respectively) more effective than SAHA (16.3 % at 5 mm)
under the assay conditions. Further studies are in progress to
optimize these pyrrole-based inhibitors.
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