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The technique of double exposure electron holography, which is based on the superposition of two off-
axis electron holograms, was originally introduced before the availability of digital image processing to
allow differences between electron-optical phases encoded in two electron holograms to be visualised
directly without the need for holographic reconstruction. Here, we review the original method and show
how it can now be extended to permit quantitative studies of phase shifts that oscillate in time. We begin
with a description of the theory of off-axis electron hologram formation for a time-dependent electron
wave that results from the excitation of a specimen using an external stimulus with a square, sinusoidal,
triangular or other temporal dependence. We refer to the more general method as continuous exposure
electron holography, present preliminary experimental measurements and discuss how the technique
can be used to image electrostatic potentials and magnetic fields during high frequency switching ex-
periments.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The double exposure method in off-axis image plane electron
holography was introduced by Wahl [1] as an electron-optical
analogue of holographic interferometry, which involves the in-
terference of wavefronts that have been reconstructed from two
holograms on the same photographic plate [2,3]. Wahl realised
that it is convenient to make a separate recording of the inter-
ference fringe system without the specimen present [4] because
the processing of the object and vacuum holograms on an optical
bench (whether of the in-line or Mach-Zehnder type) allowed
more versatility in the reconstruction step.

The re-introduction of double exposure electron holography
(DEEH) by Matteucci and co-workers [5,6] was prompted by the
increasing application of off-axis electron holography to the in-
vestigation of long-range electromagnetic fields, which can extend
from a specimen to influence the vacuum reference wave [7]. The
moiré fringes that are visible when an object hologram and a va-
cuum reference hologram are superimposed [8] provide a faithful
representation of the phase difference between the object wave
and the reference wave (see [9] for a review). Similar moiré
nov).

al., Prospects for quantitat
16), http://dx.doi.org/10.101
patterns have been obtained by the interference of three electron
waves using a two biprism holographic setup in an electron mi-
croscope [10].

The use of charge-coupled device (CCD) cameras now allows
the recording of successive off-axis electron holograms in perfect
registry and their a posteriori analysis (see e.g., [11]). Digital pro-
cessing of superposed electron holograms to remove the carrier
frequency can be used to increase the contrast of the equiphase
fringes, while the superposition of two holograms taken with the
object in opposite positions with respect to the biprism can be
used to visualise electromagnetic fields with two-times phase
amplification [12]. However, to date DEEH has only been used to
study a small number of time-varying phenomena, such as ballistic
emission from biased nanowires [13] and dynamic charge-related
effects around biological specimens [14,15].

Temporal resolution in off-axis electron holography has tradi-
tionally been determined by the speed of the detection system.
Video-rate electron holography was realised in the early 1990s by
the Tonomura group and used for the real-time observation of
fluxon dynamics [16]. Although modern detector technology is
able to improve temporal resolution to the ms or sub-ms level,
phase errors (due to the low signal) then start to play a negative
role [17]. A temporal resolution in the sub-μs range would permit
studies of fast switching phenomena, such as magnetisation dy-
namics, with the nm spatial resolution that is offered by electron
ive and time-resolved double and continuous exposure off-axis
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500 nm

Fig. 1. Bright-field TEM micrograph of the ends of two metallic needles mounted in
a Nanofactory specimen holder, overlaid with a schematic circuit diagram showing
how a voltage is applied between them in situ in the TEM.

V. Migunov et al. / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎2
holography. Recently, DEEH was used to study the magnetic field
of the writing head of a hard disk drive, showing its potential for
high frequency applications [18]. As we describe below, the tech-
nique offers further interesting prospects for ultrafast applications
through the continuous acquisition of electron holograms of time-
oscillating objects.

We begin by reviewing the original form of DEEH. We then
extend the method to applications that involve exposing a de-
tector continuously while the phase shift in the specimen changes,
for example as a result of the time-dependent response of the
specimen to an external electromagnetic stimulus.

This paper is organised in five sections. In Section 2, we in-
troduce DEEH, providing examples and justifying the method that
was developed in the past. Section 3 summarises the underlying
theory. To the best of our knowledge, this is the first time that the
theory of DEEH has been addressed for electron waves in detail,
including equations for the phase of the superimposed waves. We
consider the noise figure for the method, compare it to that of
traditional electron holography and extend the double exposure
method to time-dependent object waves in dynamic experiments.
We refer to this more general technique as continuous exposure
electron holography. In Section 4, we present possible approaches
for extending DEEH using digital analysis. We address the effects
of absorption inside the specimen and discuss approaches for the
amplification and unwrapping of the recorded phase contour
maps. In Section 5, we discuss experimental aspects of studying
time-varying phase objects, including proposals for high frequency
experiments that involve using different pulse shapes to excite
specimens. Conclusions and an outlook are provided in the final
section.
200 nm

Fig. 2. Example of a continuously exposed electron hologram, which captures the
projected electrostatic potential between the two metallic needles introduced in
Fig. 1 (dark areas at the upper left and lower right corners). An electrical bias
voltage of 5 V was applied between the needles in the form of a square wave with a
frequency of 10 Hz. The hologram was acquired in an FEI Titan TEM operated at
300 kV in Lorentz mode with the objective lens switched off (in order to achieve an
increased field of view). A voltage of 96 V was applied to a biprism wire positioned
above the selected area aperture plane. The exposure time was 8 s. An enlargement
of the moiré fringes is shown at the top right.
2. Basis of double exposure electron holography

Although DEEH was originally realised by exposing the same
recording medium (e.g., a photographic plate) to two different
electron holograms, the continuous exposure of a detector by an
electron hologram while an object switches between two states
(without going through any intermediate states) is directly ana-
logous. In both cases, moiré fringes are formed at the positions of
equiphase contours that represent the phase difference between
the two states.

If a detector is exposed continuously, then DEEH can be realised
most easily by recording an electron hologram while applying a
time-varying stimulus to the specimen that oscillates between two
states. If the stimulus takes the form of a square wave (with a
period that is much greater than the time constant of the system),
then the result is equivalent to a superposition of two holograms
corresponding to the two states, i.e., to the original DEEH method.
In this manuscript, we use DEEH to refer to the specific case of a
square wave stimulus and the more general term continuous ex-
posure electron holography to describe experiments that involve
other oscillatory phase changes.

Fig. 1 shows a schematic representation of the experimental
setup that we use to demonstrate the application of a square wave
excitation (i.e., for a two level system) using two electrically biased
metallic needles mounted in a nanopositioning specimen holder
supplied by Nanofactory Instruments AB (Göteborg, Sweden).
When a bias voltage is applied between the needles in the form of
a square wave, the electric field between the needles oscillates
between the two states during acquisition of the hologram. The
superposition of holograms corresponding to the two states re-
sults in the formation of moiré fringes (see Fig. 2). Regions where
the two sets of interference fringes are superimposed in antiphase
lose contrast when compared to regions where the two fringe
systems interfere in phase, resulting in the appearance of coarse
Please cite this article as: V. Migunov, et al., Prospects for quantitat
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fringes. So long as the position of the specimen remains constant
when the voltage is changed, the coarse fringes correspond to a
phase difference of 2π between the two states and are imprinted
on the amplitude of the total electron wave.

Fig. 3 shows the amplitude of the resulting electron wave, re-
constructed using a standard fast Fourier transform based method
[19] from the electron hologram shown in Fig. 2. The phase dif-
ference now takes the form of dark equiphase lines on an ampli-
tude image of the needles and corresponds to a projection of the
electrostatic potential in the electron beam direction, including
the influence of the perturbed reference wave [6,20]. As the phase
contours correspond to a difference between the two holograms,
all contributions from imperfections in the imaging system of the
microscope, such as those associated with the projector lenses of
the microscope and the detector, are automatically removed.

3. Theory and discussion

This section provides details about the formation of double and
continuous exposure electron holograms, by considering
ive and time-resolved double and continuous exposure off-axis
6/j.ultramic.2016.08.010i
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200 nm

Fig. 3. Amplitude of the electron wave digitally recovered from the continuously
exposed electron hologram shown in Fig. 2 using Fourier-transform-based digital
reconstruction. The short range intensity variations at the top and bottom are due
to Fresnel fringes from the edges of the biprism wire.
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theoretical aspects and presenting comparisons with conventional
off-axis electron holography.

3.1. Theory

In an idealised, conventional off-axis electron holographic
setup, the object and reference waves interfere in the detector
plane and give rise to an intensity distribution of the form

ϕ

( ) = | + ( ) |

= [ + ( ) + ( ) ( + ( ))] ( )

ϕ− ( )I x N e N a x e

N
a x a x k x x

/2 /2

2
1 2 cos , 1

ik x i x 2

2
0

0

where −N e/2 ik x0 is the reference wave with transverse wave vector

k0 and ( ) ϕ( )N a x e/2 i x is the object wave. The object wave experiences
a position-dependent relative phase shift ϕ( )x and a position-de-
pendent change in relative amplitude a(x). N is the average number
of electrons per pixel in the interference region in the absence of a
specimen. The less-than-perfect degree of coherence between the
reference and object waves can be taken into account by inserting a
visibility factor V (e.g., [21]). We do not consider at this stage loss of
coherence due to the electron scattering within the specimen, which
requires a more sophisticated statistical analysis to evaluate the local
visibility [22]. The former equation then becomes

ϕ( ) = [ + ( ) + ( ) ( + ( ))] ( )I x
N

a x Va x k x x
2

1 2 cos . 2
2

0

The intensity distribution in the final electron hologram is
therefore a set of cosinusoidal fringes, whose positions are
modulated by the object phase ϕ( )x . Conventional electron holo-
graphic reconstruction proceeds by taking the Fourier transform of
the intensity distribution, masking the sideband at +k0, shifting
this masked sideband back to the origin of Fourier space and then
performing an inverse Fourier transform. This procedure is used to
obtain the reconstructed wavefunction

ψ ( ) = ( ) ( )
ϕ( )x

NV
a x e

2
. 3

i x

When an electromagnetic fringing field extends into the va-
cuum region outside the object and perturbs the reference wave,
Please cite this article as: V. Migunov, et al., Prospects for quantitat
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which is then no longer a plane wave, its effect can be described in
terms of a phase shift given by ϕ ϕ( )− ( + )x x D , where D is the in-
terference distance [9]. In the following treatment, in order to
simplify the notation, it is assumed that the perturbed reference
wave is already included in the phase ϕ( )x .

In the simplest form of DEEH, the intensity distribution is a
sum of two intensity distributions I1 and I2, each corresponding to
its own object wave. Here, we assume that these object waves
differ only in their phases, i.e., the corresponding object waves are
( ) ϕ ( )a x ei x1 and ( ) ϕ ( )a x ei x2 (omitting normalisation factors). The re-
corded intensity distribution then takes the form

⎡
⎣⎢

⎤
⎦⎥ ( )

ϕ ϕ
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= + ( ) + ( ) ( + ( ))+ ( ) ( + ( ))
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and the wavefunction obtained from the reconstruction procedure
described above is just the sum of the corresponding wavefunc-
tions, i.e.,

ψ ψ ψ( ) = ( ) + ( ) = ( )( + ) ( )
ϕ ϕ( ) ( )x x x

NV
a x e e

4
. 5

i x i x
1 2

1 2

If the object phases are rewritten in the form

ϕ ϕ ϕ ϕ ϕ ϕ( ) = ( ) + ( ) ( ) = ( )− ( ) ( )x x x x x x, , 61 0 2 0

then the reconstructed wavefunction is

ψ ϕ ϕ( ) = ( ) ( ( )) = ( ) ( ( )) ( )
ϕ ϕ( ) ( )x

NV
a x x e A x x e

2
cos cos , 7

i x i x0 0

where the overall amplitude ( ) = ( )A x NVa x /2. Taking the modulus
of this wavefunction results in the expression

ψ ϕ| ( )| = ( )| ( ( ))| ( )x A x xcos . 8

Apart from the influence of the overall amplitude A(x), ψ| ( )|x
therefore corresponds to the (modulus of the) cosine of the DEEH
phase ϕ ϕ ϕ( ) = ( ( )− ( ))x x x1

2 1 2 . Moreover, the average phase

ϕ ϕ ϕ( ) = ( ( ) + ( ))x x x0
1
2 1 2 , which is common to both object waves, is

eliminated entirely.
Finally, if A(x) is known, then the DEEH phase, modulo π/2, can

in principle be recovered directly from the ratio ψ| ( )| ( )x A x/ ac-
cording to the expression

ϕ ψ( ) = (| ( )| ( )) ( )x x A xarccos / . 9

3.2. Noise

For the purpose of examining statistical errors in DEEH re-
constructions, we assume for simplicity that the relative ampli-
tude ( ) =a x 1, i.e., we consider reconstruction in vacuum.

In conventional off-axis electron holography, shot noise, less-
than-perfect beam coherence and detector noise all contribute to a
statistical error in the phase of the reconstructed wavefunction,
whose standard deviation is given by the expression [23] (see also
Ref. [24])

σ ≃
( )

ϕ
r

NV
2
DQE

,
100

20

where N is defined above, V0 is the holographic fringe visibility
that would be observed using an ideal pixelated detector, DQE is
the detective quantum efficiency at the holographic interference
fringe spacing and ro1 is the ratio between the area enclosed by
the sideband mask and the total area of Fourier space. This phase
error applies to each pixel in the reconstructed wavefunction,
where the pixel size matches that in the original electron
hologram.
ive and time-resolved double and continuous exposure off-axis
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3 V

5 V

DEEH amplitude Wrapped phase
from static holograms

Fig. 4. Comparison between DEEH and conventional off-axis electron holography. The left column shows the amplitudes of double-exposed electron holograms for square
wave bias voltages of 3 V (top) and 5 V (bottom) and a frequency of 100 kHz applied between the two needles. The right column shows wrapped phase images reconstructed
from static off-axis electron holograms recorded using the same, but now constant, bias voltages. It should be noted that an offset of πwas added to each of the phase images.
All of the original holograms were acquired at the same microscope conditions as in Fig. 2. The scale bar is 200 nm.
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In DEEH, in order to obtain an expression for the error in the
phase ϕ ϕ ϕ= ( − )1

2 1 2 , we consider the propagation of errors asso-
ciated with Eq. (9) in the form

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠σ ϕ

ψ
σ ϕ σ≈ ∂

∂
+ ∂

∂ ( )ϕ ψ A
,

11
A

2
2

2
2

2

where σ ψ| |
2 and σA

2 are the variances in ψ| | and A, respectively. If A can
be estimated (for example, by averaging over a large area of the
reconstructed wavefunction), then the contribution from the error
in A will be negligible. By using Eq. (9), we then obtain the ex-
pression

σ
ψ

σ
≈

−(| | ) ( )
ϕ

ψ| |

A A
1

1 /
.

122

The error given by Eq. (12) diverges when ψ| | =A/ 1, which
corresponds to points where ϕ π= n and the error is amplified.
This behaviour of the DEEH phase results from the form of the
Please cite this article as: V. Migunov, et al., Prospects for quantitat
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arccosine function. On the other hand, at points where ψ| | =A/ 0,
i.e., ϕ π= ( + )n2 1 /2 where n is an integer, the error in the DEEH
phase becomes

σ
σ

≈ ( )ϕ
ψ| |

A
, 13

which is well-behaved and linearly proportional to σ ψ| |. The points
ψ| | =A/ 0 correspond to zeros in contour maps produced by the
method. Eq. (13) shows that well-behaved errors in the DEEH
phase can be obtained in the vicinity of such points.

3.3. Comparison with standard off-axis electron holography

It follows from Eq. (8) that the amplitude of a double-exposed
electron hologram contains phase information, whose error is in-
fluenced by the modulus operation. A direct comparison can be
made with the wrapped phase of a standard off-axis electron
hologram on the assumption that ϕ = 01 (i.e., ϕ ϕ= /22 ). According
to Eq. (6), minima in the DEEH amplitude then occur when
ive and time-resolved double and continuous exposure off-axis
6/j.ultramic.2016.08.010i
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1 More precisely, strong fields produce beam tilts. Together with aberrations or
as a result of other artefacts, they may then cause image shifts.
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ϕ π= ( + )n2 12 . If ϕ2 is measured using both techniques (from the
DEEH amplitude and using standard off-axis electron holography),
then the phase wraps in standard electron holography, which are
located every 2π, will have a direct correspondence with DEEH
amplitude minima with an offset of π.

In order to demonstrate this point experimentally, the two
metallic needles described in Fig. 1 (see also Ref. [20]) were sub-
jected to either a static or an alternating voltage difference. Fig. 4
shows the projected electrostatic potential between the needles
imaged both “dynamically” by applying square pulses between the
needles while recording a hologram using an exposure time that is
much longer than the pulse length (DEEH) and “statically” using
conventional off-axis electron holography. The zeros, in both cases
representing projected equipotential lines, coincide with each
other.

The following points outline the primary similarities and dif-
ferences between the two approaches:

� As discussed above, both DEEH and conventional electron ho-
lographic phase maps can be used to observe equiphase lines of
the electron wave. Nevertheless, standard off-axis electron ho-
lography measures the phase shift relative to a reference wave,
whereas the DEEH amplitude contains information about the
phase difference between two exposures (i.e., ϕ1 and ϕ2), both
relative to their reference waves. Assuming that one of the
DEEH phases is zero, standard electron holography and DEEH
will give a measure of the same quantity. Also, DEEH can be
used when the phase difference between the two exposures
(i.e., ϕ1�ϕ2) is of interest.

� The DEEH amplitude contains quantitative phase information,
which is sampled by the modulus of the cosine function,
meaning that the direction of the phase gradient cannot be
determined using DEEH alone. This point is discussed further in
Sections 4.3 and 5.2 below.

� Both methods suffer from rapidly changing phase variations, i.e.,
more than 2π per holographic fringe. Such rapid phase changes
result in spatial under-sampling of the phase shift and hence
aliasing. The difference between the two techniques is again
related to the fact that DEEH measures the phase difference
between two temporally separated waves. Therefore, aliasing
problems apply only to the phase difference ϕ1�ϕ2 for DEEH. If
one of the phase shifts in DEEH is constant, then the aliasing
effect will be the same for both methods. Further information
can be found elsewhere [25].

� Since both DEEH and conventional off-axis electron holography
use Fourier-space reconstruction, the spatial resolution of both
methods is limited by the size of the side-band filter used for
reconstruction and the resolving power of the electron-optical
system.

� Phase errors in DEEH depend on the value of the phase that is
being measured (see Eqs. (12) and (13)). Well-behaved phase
errors occur in the vicinity of zeros in a DEEH map and can be
much greater away from such points.

� The phase sensitivity (smallest detectable phase shift) of DEEH
is ultimately limited by the noise in the amplitude. Inside the
specimen, since the amplitude is attenuated by absorption,
there will be a further degradation of the phase sensitivity of
DEEH. The same considerations will apply to spatial resolution,
which is linked to phase sensitivity.

� The fact that DEEH records phase contours separated by π in the
form of moiré fringes initially appears to suggest that the
minimum detectable phase change required to form a single
fringe is π. However, this is not the case, since the measured
phase (independent of its value) is related to the DEEH ampli-
tude by Eq. (9). This relationship results in possibilities for
reconstructing the phase from the DEEH amplitude, as well as
Please cite this article as: V. Migunov, et al., Prospects for quantitat
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digital signal amplification, as discussed in Sections 4.2 and 4.3
below.

� Strong electric and magnetic fields may introduce image shifts,1

which will result in artefacts in DEEH. In the case of conven-
tional off-axis electron holography, such image shifts can be
corrected by image alignment.

Although it may at first appear that DEEH offers no advantages
over standard off-axis electron holography, the applicability of
DEEH for measuring phases that oscillate in time provides sig-
nificant benefits beyond traditional static or quasi-static cases. The
basis of using double or continuous exposure electron holography
for studies of time-dependent phase objects is presented in the
following section.

3.4. Time-dependent object waves

In continuous exposure electron holography, a general scenario
describes an object wave whose properties change during the
exposure time T of an electron hologram. Once again, we limit
ourselves to the case where only the object phase varies with time.
We also assume that the object varies so slowly in time that the
scattering problem can be treated quasi-statically (rather than
explicitly considering it as a time-dependent problem). The re-
corded intensity distribution can now be written in the form of a
time average integral

∫ ∫

∫

ϕ

ϕ

( ) = ( ) = ( ) [ + ( + ( ))]

= ( ) + ( ) ( + ( )) ( )

I x
T

t I x t
Na x

T
t V k x x t

Na x
NVa x

T
t k x x t

1
d , d 1 cos ,

d cos , . 14

T T

T
0 0

0

0
0

The reconstruction procedure described above then yields the
wavefunction

∫ψ ( ) = ( )
( )

ϕ( )x
A x

T
t ed . 15

T
i x t

0

,

For illustrative purposes, we consider object phases that have
three specific time dependencies: (1) square wave, (2) sine wave
and (3) triangle wave. The use of square and sine waves in dy-
namic experiments is discussed in Section 5.3. In each case, we
assume that the period π ω2 / with which the object phase oscil-
lates in time is much shorter than the exposure time, i.e., π ω⪡T2 / .

(1) Square wave – in this case (the only one that corresponds
strictly to DEEH), the object phase alternates between two values,
which, as above, we denote ϕ ϕ−0 and ϕ ϕ+0 . As a result of the
rapidity of the oscillation period, the total times for which the
phase equals ϕ ϕ−0 and ϕ ϕ+0 are both very nearly equal to T/2.
Hence, we obtain the same result as before, i.e., the reconstructed
wavefunction takes the form

ψ ϕ( ) = ( ) ( ( )) ( )
ϕ ( )x A x x ecos 16

i x
square

0

and all quantities are defined as above.
(2) Sine wave – in this case, the time integral can be split into

ω πT/2 periods, during each of which the phase varies sinusoidally
between its extreme values of ϕ ϕ−0 and ϕ ϕ+0 . The integral is now

∫ ∫ω
π

ω
π

π
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=

= ( ( )) = ( ( )) ( )
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where J0 is the zeroth-order Bessel function. The wavefunction
ive and time-resolved double and continuous exposure off-axis
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(top) to correct for the amplitude change in the DEEH image (middle), as described in the text. The line profiles on the right show the intensity along the red boxes marked in
each image on the left. The integration widths correspond to the dimensions of the boxes. The scale bar is 200 nm. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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now takes the form

ψ ϕ( ) = ( ) ( ( )) ( )ϕ ( )x A x J x e 18
i x

sine 0
0

and exhibits a Bessel-function dependence on the phase ϕ( )x .
(3) Triangle wave – in this case, the time integral can be split

into ω πT/ half-periods, during each of which the phase varies
linearly between ϕ ϕ−0 or ϕ ϕ+0 . We now obtain the expression

∫ ∫ω
π

ω
π

π
ω

ϕ
ϕ

ϕ

=

= ( ( ))
( )

= ( ( ))
( )

ϕ

π ω

π ω
ϕ ϕ ω π

ϕ ϕ

( )

−

( ( )+ ( ) )

( )

T
t e

T
T

t e

T
T

e
x

x
e x

1
d

1
d

1 sin
sinc .

19

T
i x t i x x t

i x i

0

,

/2

/2
2 /0

0 0

Hence, the wavefunction takes the form
Please cite this article as: V. Migunov, et al., Prospects for quantitat
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ψ ϕ( ) = ( ) ( ( )) ( )
ϕ ( )x A x x esinc 20

i x
triangle

0

and exhibits a sinc-function dependence on the phase ϕ( )x .
The above three time dependencies are ordered hierarchically,

in the sense that they result in an increasingly rapid decay of the
wavefunction's envelope with ϕ| |. More specifically, the envelope
of ϕ( )cos (for the square wave) does not decay, that of ϕ( )J0 (for the

sine wave) decays as ϕ| |−1/2 and that of ϕ( )sinc (for the triangle
wave) decays as ϕ| |−1. Physically, this behaviour is linked to the
different ways in which the electron holographic fringes move
during the exposure time.

(4) Arbitrary periodic wave – if no assumptions are made about
the time dependence of the object phase, other than it being
ive and time-resolved double and continuous exposure off-axis
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(i) independent of position and (ii) periodic with period π ω⪡T2 / ,
then it can be written in the form

ϕ ϕ ϕ( ) = ( ) + ( ) ( ) ( )x t x x f t, , 210

where f(t) is an arbitrary periodic function with an average value
of zero. In this general case, the time integral is

∫ ∫ ϕ= = [ ]( ( )) ( )
ϕ

ϕ
ϕ ϕ( )

( )
( ) ( ) ( )

T
t e

e
T

t e e Z f x
1

d d , 22
T

i x t
i x T

i x f t i x

0

,

0

0
0

where the functional ϕ[ ]( ( ))Z f x is a non-trivial complex function of
ϕ( )x , whose form depends on that of f(t). This situation is distinctly
different from the cases above, for which Z[f] was real. Here, the
consequence is that the reconstructed wavefunction will contain,
in addition to the average phase ϕ ( )x0 , a non-trivial phase

ϕ[ ]( ( ))Z f xarg . However, some simplifications are again possible for
special cases. By expanding f(t) in the form of a Fourier series

∑ ∑ω ω( ) = ( ) + ( )
( )=

∞

=

∞

f t f n t f n tcos sin ,
23n

n
c

n
n
s

1 1
a)  1x b

c)  4x d
Fig. 6. Illustration of phase amplification in vacuum in DEEH. (a) Original reconstructed
applied between them. The original hologram was acquired at the same microscope con
using Eqs. (27a), (27b) and (27d), respectively. The influence of absorption on the phase r
references to color in this figure, the reader is referred to the web version of this articl
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it can be shown that Z[f] is real if f(t) is an odd function (that is, if
=f 0n

c for all n) or if f(t) contains only odd harmonics (that is, if
= =f f 0n

c
n
s for n even). (These conditions also hold when a time

translation is necessary for f(t) to possess one of these properties.
For example, it holds for a cosine wave, which is an even function
that is rendered odd upon a quarter-period translation.). In all such
cases, the reconstructed wavefunction takes the form

ψ ϕ( ) = ( ) [ ]( ( )) ( )ϕ ( )x A x R f x e , 24i x0

where the functional ϕ[ ]( ( ))R f x is real.
4. Extension of the technique through digital analysis

4.1. Approaches for removing absorption

As mentioned above, in vacuum DEEH will produce very similar
results to conventional electron holographic phase images, albeit
initially displayed in the form of the absolute value of the cosine of
)  2x

)  8x
DEEH amplitude of two metallic needles with a square wave bias of amplitude 1 V
ditions as in Fig. 2. b–d) 2, 4 and 8 times amplified phase contour maps calculated
ecorded inside the needle was not taken into account here. (For interpretation of the
e.)

ive and time-resolved double and continuous exposure off-axis
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the phase. In contrast, in the presence of a specimen the amplitude
of a DEEH can be described in terms of a combination of absorp-
tion A(x) and the phase difference term ϕ| ( ( ))|xcos (see Eq. (8)). In
principle, if the absorption inside the specimen A(x) is known,
then it is possible to recover the phase from the amplitude of the
reconstructed electron wave. This separation can be performed
digitally by division of the amplitude of the double-exposed
1

1

1

1

1

1

1

1

200nm

Wrapped phase, 0V
single exposure

Wrapped phase, 5V
single exposure

Unwrapped phase, 5V
single exposure

Double exposure

Wrapped phase
double exposure

Unwrapped phase
double exposure

Please cite this article as: V. Migunov, et al., Prospects for quantitat
electron holography, Ultramicroscopy (2016), http://dx.doi.org/10.101
hologram by the amplitude recovered from a conventional elec-
tron hologram of the same object recorded without changing the
illumination conditions (including the tilt of the sample with re-
spect to the electron beam).

Fig. 5 illustrates the application of this approach to recover the
phase term for an electrically biased needle. In this example, the
DEEH amplitude (acquired by using a bias switched between 5 and
0 V, as shown in the middle panel of Fig. 5) was divided by the
amplitude of the needle acquired at zero bias (top panel). The
resulting amplitude, which contains the pure modulus of the co-
sine of the phase difference between biases of 0 and 5 V, is shown
in the bottom panel. This image now shows the effect of the bias
inside the needle. It does, however, have increased noise inside the
needle and contains some artefacts, both at its edge and in the
regions where the specimen thickness is highest.

The removal of absorption improves the applicability of DEEH
for imaging electrostatic potentials and magnetic fields inside
specimens, as well as in vacuum. Significantly, the type of time
dependence of the object wave in double or continuous exposure
electron holography does not matter if the amplitude of the wave
remains constant, meaning that the method can be applied to any
oscillatory phase change (including sinusoidal and triangle waves)
inside the specimen.

4.2. Phase amplification

In DEEH, phase shifts that are smaller than π2 cannot be vi-
sualised directly since they result in either no moiré fringes or only
one moiré fringe. Amplification of the phase is then required and
can be useful for live visualisation of measured equiphase surfaces.
Although one of the original papers on DEEH suggested that two-
times phase amplification can be achieved by superimposing two
holograms taken with the object in opposite positions with respect
to the biprism [12], the discussion here is dedicated to phase
amplification approaches that can be applied to any double or
continuous exposure electron holograms using digital processing.

The method that we describe below is based on the trigono-
metric expansion of the cosine of multiples of an argument, i.e.,

( )nxcos , where n is an integer amplification factor [26]. For any
positive integer n, ( )nxcos can be expanded by using Chebyshev
polynomials Tn(y) as follows [27]:

⎜ ⎟⎛
⎝

⎞
⎠∑( ) = ( ( )) ( ) = ( − )

( )=

⌊ ⌋
−nx T x T y

n
k

y ycos cos ,
2

1 .
25

n n
k

n
k n k

0

/2
2 2

Given that the phase depends on the reconstructed amplitude
and can be written as ψ| | = ( )| ( )|ϕ( )A x cos x

2
(see Eq. (8)), Eq. (25) can
Fig. 7. Illustration of reconstruction of the phase from a DEEH using the Argand
diagram method described in the text. a) Phase and b) Argand diagram determined
from the complex wave reconstructed from a single exposure off-axis electron
hologram recorded using a bias of 0 V between two metallic needles. The bright
area in the centre of the Argand diagram (i.e., at + i0 0 ) represents areas where
there is little intensity (e.g., at the positions of the needles themselves). The bright
spot at the left represents the mostly constant amplitude and phase between the
needles. The arc extending from this bright spot results from a small variation in
phase in vacuum. c) Phase and d) Argand diagram determined from a similar single
exposure off-axis electron hologram recorded using a bias of 5 V between the
needles. e) Argand plot of the DEEH complex wave reconstructed from Fig. 2 after
normalisation using the complex wave reconstructed from a single exposure off-
axis electron hologram recorded at 0 V bias. f) The same Argand plot now after
subtracting the complex value at the centre of the circle − i0.354 0.354 from the
complex wave reconstructed from Fig. 2. g) Unwrapped phase reconstructed from
the single exposure off-axis electron hologram recorded at 5 V bias, overlaid with
the corresponding TEM bright-field image and phase contours. h) Wrapped phase
and j) unwrapped phase determined from the shifted complex wave corresponding
to the shifted Argand plot in (f). The phase (j) is overlaid with a TEM bright-field
image and phase contours.

ive and time-resolved double and continuous exposure off-axis
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Fig. 8. Illustration of recovery of the one-dimensional phase ϕ( )x from the DEEH
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variants of its recovery (circles and crosses). The bottom panel shows the ampli-
tude signal (black crosses) and variants of its inversion (blue and red solid lines).
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provide a match (cyan circles and crosses). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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be rewritten in the form

⎜ ⎟⎛
⎝

⎞
⎠
⎛
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⎞
⎠⎟

⎛
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− | |
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⌊ ⌋ −

A n
n
k A x A x
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Since the phase is wrapped by the absolute value of a cosine
function and not just a cosine, phase amplification should be
performed using ψ2 rather than ψ| | itself. As a result, the amplifi-
cation factor n is restricted to even positive integers. For example:

( )ϕ ϕ( ( )) = ( ) − ( )x cos xcos 2 2 1 27a
2

( ) ( )ϕ ϕ ϕ( ( )) = ( ) − ( ) + ( )x x xcos 4 8cos 8cos 1 27b
4 2

( ) ( )ϕ ϕ ϕ( ( )) = ( ) − ( ) + ( )x x xcos 6 32cos 48cos 27c
6 4

( ) ( )
( ) ( )

( )

ϕ ϕ ϕ

ϕ ϕ

ϕ

( ) − ( ( )) = ( )

− ( ) + ( )

− ( ) + ( )

x x x

x x

x

18cos 1cos 8 128cos

256cos 160

32cos 1. 27d

2 8

6 4

2

These formulae can be applied to a reconstructed amplitude image
to amplify a weak phase signal.

In order to demonstrate phase amplification on experimental
DEEH amplitude images, we acquired off-axis electron holograms of
the two metallic needles while applying an electrical bias between
them with an amplitude of 1 V in the form of a square wave, as
described in Section 2 and shown schematically in Fig. 1. The original
DEEH amplitude image is shown in Fig. 6a. Amplified phase contour
maps, calculated using Eqs. (27a), (27b) and (27d), are shown in
Figs. 6b–d. The approach can be seen to work successfully for am-
plification values of up to 8. Although only 8 times amplification is
demonstrated here, further amplification is possible, subject to the
influence of noise in the experimental image, which makes contours
corresponding to maxima in the original DEEH amplitude (see, e.g.,
the contour marked by the red arrow in Fig. 6) less visible after each
further amplification step. This loss of information occurs most
prominently at maxima in the DEEH amplitude as a consequence of a
significant increase in noise at these positions when compared to the
rest of the image (see Section 3.2 and Eq. (13) for a detailed de-
scription of DEEH noise). Nevertheless, all other information is pre-
served and amplification can be performed successfully in regions
that do not coincide with maxima.

An alternative to amplification is direct retrieval of the phase
difference from the amplitude, which is addressed in the following
section. Amplification has an advantage over unwrapping when
online visualisation of weak phase shifts is required. With modern
computation capacities, the reconstruction of DEEH amplitudes
and subsequent amplification can be performed effectively live. It
is worth mentioning that the phase amplification approach de-
scribed above can only be performed for the case of a square wave
dependence of the phase on time. Phase amplification can be
applied inside the specimen after removing absorption by dividing
the DEEH amplitude by the amplitude of a single off-axis electron
hologram.

4.3. Phase unwrapping from the reconstructed amplitude

In this section, we describe two approaches that can be used to
reconstruct the phase difference between two states of a system
from double-exposed electron holograms. For illustrative
Please cite this article as: V. Migunov, et al., Prospects for quantitat
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purposes, the two states in the discussion correspond to electrical
biases of 0 and 5 V applied to the two electrically biased needles
that are described in Section 3.3.

The first approach is based on Argand diagram analysis and is
described in Fig. 7. Fig. 7a–d shows reconstructed phase images
and Argand diagrams determined from complex wavefuctions
reconstructed from single exposure off-axis electron holograms
recorded with applied biases between the needles of 0 V (Fig. 7a
and b) and 5 V (Fig. 7c and d). The aim is to reconstruct the phase
difference between these two states from a DEEH recorded using a
bias that oscillates between 0 and 5 V, in this case at a frequency of
10 kHz.

As the phase at 0 V bias (Fig. 7a) is almost constant, the cor-
responding Argand diagram (Fig. 7b) consists of a bright spot on
the left representing an area of almost constant amplitude and
phase, with a short arc arising from small variations in the phase
across the field of view. These phase variations may arise from
small amounts of charging on the edges of the needles. The areas
of the needles themselves have an amplitude close to zero and
give rise to the bright spot at the origin of the Argand diagram in
Fig. 7b.

The phase at 5 V bias (Fig. 7c) consists approximately of a ramp,
which is wrapped (in phase) 5 times across the image. As a result,
its Argand diagram (Fig. 7d) takes the form of a circle that has
constant amplitude, but phases that are distributed over the full
angular range of 0– π2 . The desired phase difference between the
two biased states is therefore expected to be almost the same as
the phase for the 5 V state (Fig. 7c), since the phase at 0 V bias
(Fig. 7a) is almost constant.

The Argand plot of the electron wave reconstructed from the
double-exposed electron hologram (Fig. 7e) is also approximately
a circle, but is now offset such that it passes through the origin.
This is a result of interference between the two sets of fringes in
ive and time-resolved double and continuous exposure off-axis
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the DEEH hologram causing the fringe amplitude to be modulated
by a cosine function (see Section 3.1). However, a circle forms only
if the amplitude and phase of the double-exposed electron holo-
gram are normalised by dividing the DEEH wave by the wave re-
constructed from a static off-axis electron hologram of the same
area. In the ideal case, the circle will have a radius of 0.5. The
formation of a circle assumes that the double-exposed hologram
consists of the superposition of two single-exposed holograms and
that one of these single-exposed holograms is used for normal-
isation. Deviations from these assumptions, such as different
amounts of charging or blurring of the DEEH due to a non-square-
wave bias, will cause the position of the circle to change over the
field of view and result in blurring, such as that seen in Fig. 7e.

In order to retrieve the phase from a DEEH using the Argand
plot method, the points in the Argand diagram from the DEEH
wave (Fig. 7e) must be shifted so that the centre of the circle co-
incides with the origin of the plot, so as to give an image with
constant amplitude and varying phase. The centre of the circle has
an amplitude of 0.5, but its phase depends on the change between
the phase of the fringes in the DEEH and the phase in the static
10 Hz

200 kHz

Fig. 9. Frequency dependence of a double-exposed electron hologram for a square wave
acquired using the same microscope conditions as in Fig. 2. No signal transformation is v
intensity across the contours) is observed at 200 kHz. A decreased number of contours
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hologram used for normalisation. In Fig. 7e, the centre of the circle
is found to be at − i0.354 0.354 . Subtracting this value from the
complex wave gives the Argand diagram shown in Fig. 7f, which
consists of (approximately) a circle, now centred at the origin. The
reconstructed amplitude is now approximately constant. The
phase (Fig. 7h and j) represents the difference in phase between
the two states of the DEEH. The unwrapped phase, which is shown
with equiphase contours superimposed in Fig. 7j, is in good
agreement with the phase unwrapped from a conventional off-
axis electron hologram recorded at a constant bias of 5 V (Fig. 7g,
derived from Fig. 7c and with equiphase contours superimposed).

The second method that we propose for retrieval of the phase
from a DEEH relies on direct unwrapping of the DEEH amplitude
ψ| ( )|x , whose relationship to half of the phase difference ϕ is
known and takes the form ψ ϕ| ( )| = ( )| ( ( ))|x A x xcos . However, the
cosine function is even and wraps ϕ( )x over the interval π( ]0; 2 ,
which, as in conventional off-axis electron holography, results in a
sign ambiguity and π2 phase wrapping. The modulus of the cosine
imposes a periodicity of π( ]0; , which results in an additional π
ambiguity (i.e., ϕ ϕ ϕ π| ( ( )) = | (− ( ))| = | ( ( ) + )|x x x ncos cos cos , where n is
50 kHz

1.5 MHz

with an amplitude of 5 V applied between the needles. The original holograms were
isible for frequencies up to 50 kHz. A modulation in signal shape (i.e., a variation in
is observed at 1.5 MHz. The scale bar is 200 nm.

ive and time-resolved double and continuous exposure off-axis
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an integer). In conventional off-axis electron holography, the sign
ambiguity is resolved by choosing one or the other of the two
conjugate images (waves) [28]. This selection is usually based ei-
ther on geometrical criteria (i.e., the relative position of the bipr-
ism and the specimen) or, more pragmatically, by ensuring that
the phase shift associated with the mean inner potential (MIP) of
the specimen is positive. In DEEH, the first approach cannot be
used, since the reconstruction step is performed before de-
termining the phase from the DEEH amplitude. The MIP criterion
can be used so long as the DEEH map contains MIP information
and an area where the MIP or specimen thickness is known to
increase, for example at a specimen edge. If an external stimulus is
applied during the acquisition of a DEEH (as in Section 2), then the
MIP contribution to the phase cancels out. The sign ambiguity
0
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Fig. 10. Pulse-shape-dependence of the amplitude reconstructed from continuously exp
and a frequency of 5 Hz. The original holograms were acquired using the same microscop
Corresponding line profiles extracted along the lines marked in the images are shown o
shown as insets. The intensity of the contours decays for the sine and triangle waves. Th
scale bar is 200 nm.
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problem can then only be resolved by the use of prior knowledge.
For example, the same voltage can be applied statically and a
conventional off-axis electron hologram can be acquired and used
to determine the sign of the phase in the final DEEH
reconstruction.

In order to reconstruct the phase from the DEEH amplitude,
one can use the method proposed by Tay and co-workers, who
used the following equation to reconstruct the phase from a co-
sinusoidal fringe pattern [29]:

⎛
⎝⎜

⎞
⎠⎟ϕ( ) = (− ) − ( )

+ ( ) ( )
( )r

A r
A r

2 1 arctan
1

1
,

28
n r

where A(r) is the amplitude of the DEEH and n(r) is the maximum
100 200 300 400 500 600

Position (nm)

osed off-axis electron holograms. All of the applied waves have an amplitude of 5 V
e conditions as in Fig. 2. The reconstructed amplitude images are shown on the left.
n the right. The waves applied between the needles (square, sine and triangle) are
e strongest decay is observed for the triangle wave, as discussed in Section 3.4. The

ive and time-resolved double and continuous exposure off-axis
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detection function, which is defined to be zero in the reference
region and either n�1 across a minimum or nþ1 across a max-
imum. As an example, Fig. 8 shows the reconstruction of the phase
ϕ( ) =x x1.2 from ϕ| ( ( ))|xcos . The following steps summarise the re-
construction procedure:

1. Detection of local minima.
2. Inversion of every second region between local minima. This

step recovers ϕ( ( ))xcos from ϕ| ( ( ))|xcos . The result is shown in the
lower panel in Fig. 8. Black crosses correspond to the original
signal, while the blue solid line shows inversion of every second
region between local minima.

3. Detection of local maxima and minima in the resulting function
ϕ( ( )xcos .

4. Determination of the function n(x) by setting n(x) to 0 at e.g.,
x¼0, increasing n(x) by 1 after a local maximum is crossed
(refer to the blue line in Fig. 8) and decreasing n(x) by 1 after a
local minimum is crossed. (The details of the procedure are
described elsewhere [29].) See the green dashed line in the
lower panel of Fig. 8.

5. Calculation of the phase according to Eq. (28). The result is
shown as blue circles in the top panel of Fig. 8.

As inversion of ϕ| ( ( ))|xcos (step 2) and the definition of n(x)
(step 4) cannot be absolute, these steps impose some ambiguity on
the results of phase recovery. Inversion can result in ϕ± ( ( ))xcos and
step 4 can result in either n(x) (as shown in Fig. 28) or

′( ) = −| ( )|n x n x1 . All possible results of phase recovery are sum-
marised in the top panel of Fig. 8. In addition to the sign ambiguity
(blue and cyan circles), an additional π ambiguity is possible (red
and magenta crosses). Of the 4 possible reconstructions, only one
(blue circles) delivers the correct result. However, given that the
relative phase shift is of interest, only the sign has to be resolved
using prior knowledge.

This algorithm can be extended to two-dimensional experi-
mental images. A straightforward approach would be to imple-
ment the algorithm line-by-line. However, more sophisticated
methods, such as finding local minima and maxima by thresh-
olding combined with image processing, can be used to optimise
recovery. In addition, as a result of noise in experimental images,
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Fig. 11. Schematic representation of frequency-dependent pulse modulation. The
lower panel shows applied pulses of different frequency as a function of time t. The
traces are shifted vertically with respect to one another. The top panel shows the
possible response of the system to each applied pulse sequence. See text for details.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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renormalisation of the segments between local minima and
maxima may be required, since their values may be different from
0 and 1, respectively, as required by Eq. (28). It is also worth
mentioning that unwrapping of the amplitude in the specimen
region would require the removal of absorption, as discussed in
Section 4.1. Although phase retrieval using this approach from
experimental DEEH maps was attempted, the results were not of
sufficient quality to be presented in this paper.
5. Prospects for future experimental development

In the above sections, we presented double and continuous
exposure holography and its application to the measurement of
electrostatic fields that do not go beyond the possibilities of
standard off-axis electron holography. However, the primary ad-
vantage of DEEH is the prospect of its application to dynamic
experiments.

In off-axis electron holography, temporal resolution is often
limited by the performance of detectors. As a result of the devel-
opment of direct electron detection cameras, temporal resolution
can now be pushed to frame rates exceeding a few kHz [17]. An-
other approach is dynamic and ultrafast TEM, which involves
pulsing the electron gun with a laser to emit ultra-short electron
pulses [30]. However, such experiments cannot yet be combined
with off-axis electron holography, since the required coherence
has not been achieved using laser-induced electron emission in
the TEM.

Although DEEH does not itself offer a direct improvement in
temporal resolution, it is able to capture phase differences be-
tween two states of a system, between which the separation in
time can be as small as a few fs (or less). A limitation is that the
total exposure remains as long as in conventional off-axis electron
holography, meaning that the method is limited to fully reversible
processes that can be repeated many times during a typical ex-
posure time of between a few ms and a few tens of seconds. The
following sections describe initial experiments that have been
performed to test the technique by using different pulse shapes
and frequencies. Examples of future experiments that promise to
benefit from DEEH are then presented in Section 5.3.

5.1. High frequency experiments

In order to demonstrate that DEEH can be used for high fre-
quency experiments, we used the system of two electrically biased
ive and time-resolved double and continuous exposure off-axis
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needles that was described in Section 2 and shown schematically
in Fig. 1. A square wave was applied between the needles with an
amplitude of 5 V at frequencies of between 1 Hz and 2 MHz. At all
frequencies, holograms could be formed without any loss of co-
herence. However, the reconstructed amplitudes showed that at
higher frequencies the signal was partially lost (see Fig. 9). Fig. 9a
and b shows projected equipotential contours that are similar to
those measured using conventional off-axis electron holography
(see Section 3.3 and Fig. 4 for comparison), with no change in
signal amplitude or shape up to 50 kHz. However, in Fig. 9c, which
shows a reconstruction performed for a frequency of 200 kHz, the
intensity distribution across the contours is not even and the
contour at the apex of the right needle is brighter than the others.
Moreover, at 1.5 MHz (Fig. 9d), not only is the intensity redis-
tributed between the contours, but the total number of equiphase
contours has decreased by approximately a factor of 5. The de-
crease in the number of contours corresponds to an attenuation of
the field. The appearance of a brighter contour is a sign of trans-
formation of the signal, i.e., the square wave sent into the system
transforms into a smoother function (see the next section below).
The attenuation of the signal results from partial reflection of the
signal by the impedance mismatch between the TEM sample
holder and the pulse generator. The transformation of the signal
results either from such reflections or from the rise and fall times
of the signal generator.

5.2. Different pulse shapes

Given that continuous exposure electron holography is not
limited to square pulses, we discuss here the possibility of using
other pulse shapes. The theory for the use of different pulse shapes
was presented in Section 3.4. Fig. 10 shows the dependence of the
reconstructed amplitude on the shape of the wave applied be-
tween two metallic needles. The amplitude of each wave is 5 V and
the frequency is 5 Hz. Although the amplitude of the excitation is
the same, the positions of the equiphase contours (i.e., amplitude
minima) are different (see the line profiles in Fig. 10). For sine and
triangle waves, the global maximum in the amplitude corresponds
to zero phase difference and coincides with one of the metal
electrodes, while points that are further from this region appear
darker in the amplitude image. For dynamic experiments, the
possibility of distinguishing different wave shapes can be used to
detect a transformation of the signal in the specimen. Another
advantage of using different wave shapes is the possibility to de-
tect the region in the image where the phase difference between
two states is zero.

5.3. Future experiments and instrumental requirements

This section discusses future experiments involving pulse
modulation and resonance phenomena, as well as the possible use
of more complicated pulse shapes to facilitate quasi-static
switching experiments.

5.3.1. Dynamic experiments with pulse modulations
Consider a system that is able to switch reproducibly between

two states. Assuming that the response time of the system to the
excitation is limited, the response signal will depend on the fre-
quency of a square wave input. Fig. 11 shows a schematic diagram
of an excitation signal in the bottom graph and a possible system
response at the top. If the frequency of the exciting square wave is
increased, then a pronounced change in the shape of the response
may occur (i.e., sharp edges in the square pulse will become
curved, as shown in the red dashed line in Fig. 11). As the re-
constructed amplitude is sensitive to the pulse shape, the transi-
tion from square pulses to different pulse shapes can be detected.
Please cite this article as: V. Migunov, et al., Prospects for quantitat
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If one increases the excitation frequency further, so that the pulse
duration is shorter than the system's time constant, then the
system will not be able to switch between the two outermost
states (as shown in the form of a solid blue line in Fig. 11), resulting
in a decrease in the magnitude of the response signal in addition
to its shape modulation. By performing frequency-dependent
measurements, one can in principle therefore determine the time
constant of the system.

5.3.2. Dynamic experiments under resonance conditions
A system that is triggered with a sine wave will show an am-

plified response under a resonance condition (during a frequency
sweep), resulting in an increase in the magnitude of a signal re-
corded using continuous exposure electron holography. Re-
sonances of electromagnetic fields, including damping effects, can
therefore be studied with nm spatial resolution. For a given pulse
frequency, the hardware requirements for experiments involving
the use of sinusoidal pulse shapes are lower than those required
for square pulse shapes.

5.3.3. Quasi-static experiments using combinations of pulses
Here, we propose a quasi-static magnetic switching experi-

ment, which involves the use of combinations of square pulses to
probe different parts of hysteresis and remanent hysteresis loops
of nanoscale magnetic materials and devices. Fig. 12 (left panel)
shows (a-c) possible pulse shapes that could be sent to a magne-
tising coil to access (a) the difference between states B and D in a
hysteresis cycle (d); (b) the difference between two remanent
states and (c) the difference between two saturated states A and C.
In the first case (a), the first pulse denoted A is used to saturate the
specimen magnetically in the positive direction (point A in the
hysteresis cycle). A subsequent reduction in applied field to B
provides access to point B in the hysteresis cycle. The reversed
pulses C and D work in the opposite direction. Pulses A and C
should be short in comparison to pulses B and D. A signal recorded
using continuous exposure electron holography while sending
such pulses will record the phase difference between states B and
D. The frequency of the pulses and the precise pulse shape should
be selected according to the magnetic response of the system.
6. Conclusions

Double and continuous exposure electron holography have
been described theoretically and extended experimentally, in
particular for studies of time-varying electrostatic potentials and
magnetic fields. Following a brief comparison with conventional
off-axis electron holography (Section 3.3), the theoretical de-
scription of double and continuous exposure electron holography
was presented in Section 3. Approaches that can be used to re-
move the effects of absorption in the specimen and to unwrap
reconstructed phase difference images have been proposed (Sec-
tion 4.1) and the use of different pulse shapes to access time-re-
solved experiments has been discussed (Sections 5.2 and 5.3). It
has been shown that the method can be used to perform fre-
quency-dependent measurements of resonance phenomena and
switching process with nm spatial resolution. The full application
of the technique requires the development of dedicated high fre-
quency TEM specimen holders that allow complicated pulse
shapes to be used.
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been submitted by Gatel et al. at almost the same time as the
present paper. Reference to the work of Gatel et al. was therefore
included in the present manuscript during revision as Ref. [18].
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