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Abstract 

When subject to earthquakes, some objects and structures, such as statues, obelisks, storage systems, and transformers, 
show a dynamic behavior that can be modeled considering the object/structure as a rigid block. Several papers have 
studied the dynamic behavior of both stand-alone rigid blocks and systems where rigid blocks have been paired with 
safety devices to prevent or delay the overturning of the blocks. Although the safety devices have generally been 
proven to be effective, their effectiveness changes substantially varying the parameters that characterize the system 
and the seismic input. This paper compares the seismic responses of stand along rigid blocks with those of blocks 
coupled with two candidate safety devices: an isolating base and a pendulum mass damper. To account for the relevant 
uncertainties, probabilistic seismic demand models are developed using a Bayesian approach. The probabilistic 
models are then used along with the overturning capacities of the blocks to construct fragility curves that give a 
prediction of the probability of overturning occurrence as a function of some characteristics of the blocks, of the safety 
devices, as well as of the seismic excitation, i.e. the slenderness of the body and the peak ground acceleration. The 
data needed to develop the probabilistic model are obtained integrating the nonlinear equations of motion of the two 
systems subject to selected ground motions. In the end, some numerical examples are proposed. 
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1. Introduction 

The dynamic behavior under seismic excitation exhibited by rigid block-like elements, such as statues, obelisks, 
storage systems, transformers and generally slender objects that are not anchored to the ground, can be approximated 
considering rigid block models [1, 3, 4, 9]. Previous papers analyzed the seismic response of systems constituted by 
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one or more rigid blocks [12, 16]. To prevent or delay the overturn of this rigid block-like elements, some researchers 
considered adding some safety devices. Beside base isolation [4] with and without security stops, also tuned mass 
dampers [11] and pendulum mass dampers [3] have been proposed to improve the dynamic behavior of rigid blocks. 
Although the majority of the papers deals with passive control systems, some researchers suggested the use of active 
control systems [2]. In most real cases the choice of the safety system to be used is constrained by the nature and 
characteristics of the rigid block-like element that has to be protected. Assuming that this choice is only aimed to 
obtain the best seismic performance, since the effectiveness of each safety system depends on the characteristics of 
the rigid block, it is not possible to determine a priori which device will result in the best performance. One possibility 
is to use probabilistic seismic demand models as in [1] and [8] dependent on the characteristics of the rigid block, of 
the isolating device and the ground motion. 

This paper compares the seismic performance of three systems: stand-alone rigid blocks, rigid blocks with 
pendulum mass damper and rigid blocks with base isolation. A probabilistic seismic demand model is constructed for 
each system to estimate the maximum angle of rotation for the blocks.  The models are developed by logistic 
regression.  The data used to model the probabilistic seismic demand models are obtained via direct integration of the 
equations of motion of the three systems presented in [4] and [3]. The characteristics of the rigid blocks and the safety 
devices are chosen using the experimental design methodology proposed in [15]. A large set of ground motion records 
is used to take into account earthquakes with different characteristics.                       

2. Failure mechanisms 

For rigid block-like elements, and especially for the slenderer ones, the most common failure mechanism is 
overturning. Other failure mechanisms include the impact against surrounding objects and the fall from the support if 
the element is positioned on a base. In the majority of real cases, however, the horizontal movement is prevented by 
either a high friction coefficient between element and support or the existence of specific restraints.  We assume that 
the body is prevented from moving horizontally and consequently the overturn is the only possible failure mechanism. 
The overturning occurrence is typically described as the rotation angle   (angle between the base of the block element 
and either the ground or the isolating base) exceeding a critical angle defined by the geometry of the block [1, 16]. In 
our case, to account for the dynamic effects that may restore the block-like element in a safe position, we consider 
that the element overturns when / 2  . 

3. Failure probability estimation 

The overturning occurrence is modeled as a categorical response variable y = {0,1}, where y=1 if the rigid body 
overturns and 0 otherwise. The overturn probability P[y=1] = p is described with a logistic regression model as 
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Terms hi define a set of explanatory functions (for i=1…n) of the regressors. The regressors may be geometrical and 
mechanical characteristic of the system, x, and earthquake characteristics, S. The model parameters  0 n θ   are 
unknown and may be estimated with different approaches such as Maximum Likelihood estimation or Bayesian 
estimation. This kind of model has the advantages to be robust to noise, and efficient for large amounts of data. 
Moreover, it is can be used as baseline for more complex approaches. 

4. Bayesian parameter estimation and model selection 

The distributions of the model parameters θ  are obtained by a Bayesian estimation because the regressors are not 
categorical functions and consequently there is no closed form solution for the logistic regression. With this approach, 
the posterior distribution of the parameters  "f θ  can be obtained as 
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4. Bayesian parameter estimation and model selection 

The distributions of the model parameters θ  are obtained by a Bayesian estimation because the regressors are not 
categorical functions and consequently there is no closed form solution for the logistic regression. With this approach, 
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function is defined as     

 

   1
1

1 jj
m yy

j j
j

L p p




     θ    (3) 

 
where n is the number of available observations; and pj is the probability of the jth outcome of overturning observation, 
yj. Using as point estimate of the parameters the mode of the posterior distribution, the obtained estimator θ is the 
same that would be found using the Maximum Likelihood estimation. After computing the posterior statistics of the 
model parameters, the explanatory functions associated with the parameters with the largest coefficient of variations 
can be dropped from the model in a stepwise fashion. The details of these stepwise deletion procedure can be found 
in [5, 6]. 

5. Virtual data for model calibration  

5.1. Physical systems 

The three systems considered in the numerical simulations are constituted by the same rigid block of dimensions 
31 2 2b h m    and mass density 31800 /kg m   shown in Figure 1. The first system is the stand-alone rigid block 

(Figure1a). In the second system, the rigid block is placed on an oscillating base connected to the ground by a 
viscoelastic device with damping coefficient c and stiffness k (Figure1b). In the third system, the block is coupled 
with a pendulum of length l and mass m, acting as a mass damper (Figure1c). Although all the considered models of 
rigid block-like elements used in this study [3,4] can take into account the eccentricity of the center of mass of the 
rigid block, this study is focused on symmetric rigid blocks. For each system, the dynamics is described by a set of 
equations of motion and a set of equations that define the impact of the rigid block and either its support (in the base 
isolation case) or the ground (for the others two models). These equations can be found in [4] for the stand-alone and 
the base isolated rigid block-like elements and in [3] for the block-pendulum system. 

  

 

Fig. 1. (a) stand-alone rigid block; (b) rigid block on an oscillating base; (c) rigid block with pendulum mass damper. 

5.2. Ground motion selection and simulation design 

To investigate the entire space of the design variables with the minimum number of time history analysis, this paper 
uses two different methods for the choice of the design variable related to the physical systems and the ground motions. 
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Different realizations of the mechanical systems are sampled with a version of the Latin Hypercube Sampling (LHS) 
technique with control on the samples’ correlation [14, 15]. This procedure uses the simulated annealing method to 
solve the problem of optimal sample ordering. The output consists of realistic system configurations where the design 
variables respect the prescribed correlations and, at the same time, the introduction of spurious correlations is 
prevented. This study is focused on only three design variables for the systems. Two are related to the rigid block: the 
width of its base b and its slenderness  . The third is the characteristic period of the safety device T (for the pendulum 
it is the period obtained from the linearized equation of motion.) The distributions of these three design variable are 
assumed to be uniform within assigned ranges. The range of values for the base of the block, 2b, goes from 0.40 m to 
0.80 m while the slenderness ,  varies between 3 and 7. It is assumed that the safety devices are designed to have a 
characteristic period between 0.5 s and 3.0 s. The sampling process leads to 60 different configurations for the three 
systems, all of which are coupled with all the selected ground motions. 
The ground motion selection is based on the bin approach [7, 10, 13]. This method allows to include in the analyses 
both the effects of the ground motions and the site condition. For the present study, ground motions are sorted in two 
site classes representing rock and soil sites. Each class includes five bins that are the same as in [13]. To the first four 
bins (Bins 1-4) belong ground motions with specific combinations of moment magnitude M and site-to-source distance 
R (Bin 1 with M=6 and R=10Km, Bin 2 with M=6 and R=25Km, Bin 3 with M=7 and R=10Km and Bin 4 with M=7 
and R=25Km). Instead, to take into account sites that experience rupture directivity effects, a 5th bin (Bin 5) containing 
20 unscaled near-fault ground motions characterized by strong velocity pulses of varying periods in their strike-normal 
components are considered. In the analyses, five ground motions are randomly selected from each bin for a total of 
50 ground motions. The combination of ground motion selection and simulation design produces a total of 9,000 
simulations whose output are used for the failure probability estimation. 

6. Results 

For a preliminary analysis, the explanatory functions chosen are the three design variables that describe the system 
(the length of the base 2b, the slenderness  , and the characteristic period T), peak ground acceleration PGA and a 
measure of the spectral content of the registered earthquake Sa (evaluated as the integral of the acceleration spectrum 
between T=0s and T=3s). Therefore, the overturning probability can be expressed as 
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Given the high number of samples, we can expect the distribution of the model parameters to be  N , θθμ Σ ,  

          ~ N , θθθ μ Σ    (5) 
 
where the posterior mean, μ , and covariance matrix, θθΣ , (Table 1) are obtained using the approach described in 
Section 4.    

  Table 1.  Estimates of the posterior mean and variance of the model parameters  
  0  1  2  3  4  5  

Stand-alone 
block 

 E i i   15.019   0.359 6.586 1.547 2.268 2.099 

Var i     0.592 0.363 29.894 4.860 0.012 0.010 

Isolated 
block 

 E i i   10.146 0.417 1.750 1.117 1.693 1.718 

,Var ib i     0.440 0.004 0.400 0.012 0.006 0.007 

, ,E db i db i      12.213 0.725 3.395 0.163 1.837 1.794 
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0.80 m while the slenderness ,  varies between 3 and 7. It is assumed that the safety devices are designed to have a 
characteristic period between 0.5 s and 3.0 s. The sampling process leads to 60 different configurations for the three 
systems, all of which are coupled with all the selected ground motions. 
The ground motion selection is based on the bin approach [7, 10, 13]. This method allows to include in the analyses 
both the effects of the ground motions and the site condition. For the present study, ground motions are sorted in two 
site classes representing rock and soil sites. Each class includes five bins that are the same as in [13]. To the first four 
bins (Bins 1-4) belong ground motions with specific combinations of moment magnitude M and site-to-source distance 
R (Bin 1 with M=6 and R=10Km, Bin 2 with M=6 and R=25Km, Bin 3 with M=7 and R=10Km and Bin 4 with M=7 
and R=25Km). Instead, to take into account sites that experience rupture directivity effects, a 5th bin (Bin 5) containing 
20 unscaled near-fault ground motions characterized by strong velocity pulses of varying periods in their strike-normal 
components are considered. In the analyses, five ground motions are randomly selected from each bin for a total of 
50 ground motions. The combination of ground motion selection and simulation design produces a total of 9,000 
simulations whose output are used for the failure probability estimation. 

6. Results 

For a preliminary analysis, the explanatory functions chosen are the three design variables that describe the system 
(the length of the base 2b, the slenderness  , and the characteristic period T), peak ground acceleration PGA and a 
measure of the spectral content of the registered earthquake Sa (evaluated as the integral of the acceleration spectrum 
between T=0s and T=3s). Therefore, the overturning probability can be expressed as 
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Given the high number of samples, we can expect the distribution of the model parameters to be  N , θθμ Σ ,  

          ~ N , θθθ μ Σ    (5) 
 
where the posterior mean, μ , and covariance matrix, θθΣ , (Table 1) are obtained using the approach described in 
Section 4.    

  Table 1.  Estimates of the posterior mean and variance of the model parameters  
  0  1  2  3  4  5  

Stand-alone 
block 

 E i i   15.019   0.359 6.586 1.547 2.268 2.099 

Var i     0.592 0.363 29.894 4.860 0.012 0.010 

Isolated 
block 

 E i i   10.146 0.417 1.750 1.117 1.693 1.718 

,Var ib i     0.440 0.004 0.400 0.012 0.006 0.007 

, ,E db i db i      12.213 0.725 3.395 0.163 1.837 1.794 
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Block with 
mass 

damper 
,Var db i     0.458 0.004 0.330 0.008 0.007 0.007 

 
For the three systems, the correlation matrices are (presented counter-clock wise for stand-alone block, isolated 

block, and block with mass damper) 
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To compare the behavior of three different systems, it is possible to compare the corresponding probabilities of 

failure Pf conditioned on one or more explanatory function. Figures 2a and 2b show the fragilities obtained using PGA 
as intensity measures. The solid blue line refers to the stand-alone block, the pointed red one to the isolated block and 
the dashed black line to the damped block. The difference between the systems in Figures 2a and 2b is the length of 
the base 2b, which is equal to 0.4 m for the systems in Figure 2a and 0.6 m for the systems in Figure 2b. The other 
parameters are kept constant in the two case, T=2s, 2  , and Sa=3.7. 

 

Figure 2. Probability of failure of  a block-like elements conditioned on PGA and .   

As it is possible to see, for the two cases shown, the system with base isolation is the least probable to overturn, 
except in a small range of low PGAs in the case with a larger base. Moreover, in this latter case, the pendulum mass 
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damper seems to be effective only for higher values of PGA. Similar comparisons can be made by varying the 
mechanic characteristics of the systems. Figures 2c and 2d show the probability of failure for systems under excitations 
with different PGAs, PGA=0.25g for Figure 2c and PGA=0.5g for Figure 2d. The other parameters are kept constant 
in the two case, T=2s, 2b=0.4m, and Sa=3.7. Also in this case, while the system with base isolation seems to have a 
safer behavior in all the range of slenderness considered in the analysis, the rigid block-like element with pendulum 
mass damper has a lower probability of failure compared to the stand alone block only as the slenderness of the block 
increases.          

7. Conclusions 

The presented research proposes seismic probability models that can be used to compare the effectiveness of base 
isolation and tuned mass damper as safety devices for rocking rigid block-like elements. For the unprotected and the 
protected block, the probability of failure is obtained with a logistic regression on mechanical characteristics (the 
length of the base, 2b, the slenderness,   and the characteristic period, T) and earthquake characteristics (the  peak 
ground acceleration, PGA, and a measure proportional to the spectral acceleration, Sa). This kind of model provides 
a handy tool to help the preliminary design of protection devices for rigid block–like elements focused on the 
overturning occurrence and not on the description of the motion. The authors use the simulated annealing technique 
to reduce the number of simulation needed to identify the parameters of the models and follow the bin approach for 
the choice of the seismic input. As most probabilistic models, their use should be limited to elements whose 
characteristics fall within the ranges of values used in the simulations.   

Although a larger number of analyses is needed to fully characterize the behavior of the two system with protective 
devices, preliminary results show that the effectiveness of both base isolation and pendulum mass damper vary along 
the range of the mechanical parameters. However, base isolation seems more efficient, especially for lower PGAs and 
less slender bodies.      
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damper seems to be effective only for higher values of PGA. Similar comparisons can be made by varying the 
mechanic characteristics of the systems. Figures 2c and 2d show the probability of failure for systems under excitations 
with different PGAs, PGA=0.25g for Figure 2c and PGA=0.5g for Figure 2d. The other parameters are kept constant 
in the two case, T=2s, 2b=0.4m, and Sa=3.7. Also in this case, while the system with base isolation seems to have a 
safer behavior in all the range of slenderness considered in the analysis, the rigid block-like element with pendulum 
mass damper has a lower probability of failure compared to the stand alone block only as the slenderness of the block 
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The presented research proposes seismic probability models that can be used to compare the effectiveness of base 
isolation and tuned mass damper as safety devices for rocking rigid block-like elements. For the unprotected and the 
protected block, the probability of failure is obtained with a logistic regression on mechanical characteristics (the 
length of the base, 2b, the slenderness,   and the characteristic period, T) and earthquake characteristics (the  peak 
ground acceleration, PGA, and a measure proportional to the spectral acceleration, Sa). This kind of model provides 
a handy tool to help the preliminary design of protection devices for rigid block–like elements focused on the 
overturning occurrence and not on the description of the motion. The authors use the simulated annealing technique 
to reduce the number of simulation needed to identify the parameters of the models and follow the bin approach for 
the choice of the seismic input. As most probabilistic models, their use should be limited to elements whose 
characteristics fall within the ranges of values used in the simulations.   

Although a larger number of analyses is needed to fully characterize the behavior of the two system with protective 
devices, preliminary results show that the effectiveness of both base isolation and pendulum mass damper vary along 
the range of the mechanical parameters. However, base isolation seems more efficient, especially for lower PGAs and 
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