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Abstract

We present a novel biometric solution which exploits hand gestures, tracked by the Microsoft Kinect sensor, performed in response to a circle
randomly appearing in five predefined screen positions. Features of both hand and screen pointer are used for classification purposes, considering
both the whole 20-path trajectory and shorter routes. In particular, we search for the “optimal” trajectory length which assures a good trade-off
between precision and user effort. For identification, the approach achieves classification accuracies ranging from 0.748 to 0.942. For verification,
accuracy is still satisfactory (always higher than 0.962), despite moderate specificity values.
c⃝ 2018 The Korean Institute of Communications and Information Sciences (KICS). Publishing Services by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Soft biometrics; Gestures; Visual stimuli

1. Introduction

Body gestures are an essential part of non-verbal commu-
nication, and probably also one of the most natural compo-
nents of human–human interaction. In several circumstances,
gestural languages can be more effective than oral statements
(e.g., when the communication occurs at a distance). Therefore,
it is not surprising that body gestures are increasingly being
considered for biometric applications, both for identification
(i.e., recognizing an individual) and for verification (i.e., con-
firming or denying the claimed identity of an individual).

Among the different kinds of body gestures, those involv-
ing the hands are probably the most widespread. Explicit
identification and verification based on hand gestures seem
therefore viable approaches, either as additional verification
mechanisms (besides more traditional techniques such as those
exploiting PINs) or when the identity check must take place at
a distance (e.g., in environments in which touchless procedures
are mandatory).
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Gesture-based methods have advantages over other common
identification and authentication techniques, as gestures may
require lower attention and precision compared to other solu-
tions — while a wrongly entered text password is automatically
rejected, some inaccuracy may be tolerated in a gesture code.

Vision-based hand gesture recognition has recently become
a relatively easy task thanks to cheap devices such as Microsoft
Kinect [1] and Leap Motion [2]. These tools can merge 2D
and 3D data, thus allowing to work in the “RGBZ” (color +
distance) space.

In this paper, we present a biometric approach based on
hand gestures in which the user must “follow” a circle moving
on the screen, that acts as a visual stimulus. The circle shifts
randomly between pairs of positions – paths – within a set of
five possible locations; 20 paths are therefore possible. In a
preliminary study [3], we considered all 20 paths performed
consecutively. The obtained classification results were good
for both identification and verification, with success rates
above 90%. However, we found that executing all 20 paths
was tiring for the user (for example, ATM PINs are usually
formed of no more than six digits). Therefore, we decided
to carry out a further analysis with the aim to find shorter
trajectory lengths that can provide satisfying identification and
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verification rates while allowing a better user experience in real-
case applications. In other words, we tried to find a trade-off
between the length of the circle’s trajectory and the precision
of the identification and verification processes. The obtained
results are overall satisfactory and indicate that the proposed
method can be a viable biometric solution (especially for soft
biometric applications, where extremely high identification and
verification rates are not required). To our knowledge, the
described approach has never been proposed in prior biometric
research.

2. Related work

This section provides a brief overview of relevant works
exploiting hand gestures for biometric purposes.

A first category of gesture-based biometric applications uses
physical devices that need to be kept in the hand or worn.
Okumura et al. [4], for example, gathered acceleration data
from 22 participants who had to shake an accelerometer. The
data were subsequently examined by means of the squared
error of Euclidean distance, Error of Angle and DP-matching.
Matsuo et al. [5], from the same research team, proposed a tem-
plate update method to solve the long-term stability problem
characterizing their previous study. Zaharis et al. [6] employed
seven features from hand-signature gestures acquired with the
Nintendo WiiMote device to verify four participants (namely,
elapsed time of gesture completion, maximum and minimum
acceleration values per axis per time segments, starting and
ending sensor positions, and maximum and minimum overall
acceleration per axis). Liu et al. [7,8] created a verification
system called uWave, which included eight predefined gestures
previously studied by Nokia [9]. The Dynamic Time Warping
(DTW) algorithm was applied on time series data (acquired
through Nintendo WiiMote) of each of the three axes. Similarly,
Guna et al. [10] exploited Nintendo WiiMote to create an
identification system based on three gestures, namely making
a signature in the air, picking up the device, and shaking the
device. The data obtained from 10 participants were processed
through the DTW algorithm.

An unusual gesture detection approach, based on proximity
sensing and developed for biometric applications, was created
by Reddy and Mashetty [11], who studied the distortion of an
electric field produced by hand movements.

Reliable biometric methods exploiting computer vision to
recognize gestures are more recent and usually pose less con-
straints on the user, who does not need to hold any physi-
cal device. For example, Kratz and Aumi [12] implemented
AirAuth, a biometric authentication technique based on in-air
hand gestures. The user’s fingertip locations and hand center,
together with an analysis of the hand movement, were tracked
by means of a short-range depth sensor.

In the context of vision-based techniques, Microsoft Kinect
was employed in several implementations. For instance, it was
used by Tian et al. [13] to develop an authentication system
called Kin-Write. Eighteen testers performed hand signatures
in the air, and features such as hand position and position
differences between frames, velocity, acceleration, slope angle,

path angle, and log radius of curvature were analyzed using
the DTW algorithm. Similarly, Cuevas et al. [14] used the
Kinect to distinguish persons through a short sequence of in-
air gestures. The system architecture was based on the ‘model-
view-controller’. Ducray et al. [15] presented a biometric
authentication system in which gestures can be changed by the
user. Six skeleton points, acquired by means of the Kinect,
were analyzed through the DTW algorithm to find the best
alignment between gestures. The Kinect was also exploited
by Lee et al. [16] for their skeleton and gesture-based user
authentication system, which showed that the joint use of
skeleton and behavioral data can enhance the precision of user
authentication.

Leap Motion is another vision-based sensor that can be
used for biometric purposes. For example, Aslan et al. [17]
employed this device to explore the potential of mid-air authen-
tication gestures, through many data collected during a three-
day science event organized in a shopping mall. Analogously,
Chan et al. [18] exploited Leap Motion to perform login and
continuous authentication, using both static and dynamic data.

Other techniques (e.g., [19]) are based on measurements of
the user’s hand pose (i.e., static gestures) in hand sign language.
There are also biometric systems not specifically based on hand
movements, but which use the Kinect, or similar devices, as a
source of data. For instance, Lai et al. [20] focused on the body
silhouette, while Wu et al. [21] and Ball et al. [22] exploited the
body skeleton. In [23], Wu et al. compared silhouette features
to skeletal attributes in terms of authentication performance.
The same authors, in [24] proposed a framework to decom-
pose a gesture into three parts, namely initial posture, limb
proportions, and gesture dynamics. Lastly, to make up for the
limited publicly available databases developed as benchmark
data to standardize the research on hand tracking areas, Asaari
et al. [25] developed a hand gesture tracking database consisting
of 60 video sequences (captured in different situations), which
can be also exploited for biometric purposes.

3. Experiment design

3.1. Devices, participants, and experimental procedure

In our studies, hand movements were detected by means of
the Microsoft Kinect v1 sensor, whose RGB camera works at 30
frames per second. Visual stimuli were displayed on a 30-inch
(2048 × 1536 pixels) monitor.

For both the first (Section 4) and second (Section 5) studies,
we used the same test data obtained from 20 testers (8 males,
12 females), aged between 14 and 50. In the second study,
however, we substituted five testers (two males, three females),
whose intervals between successive sessions were less than 24 h
(unlike the other testers), with five new participants (still two
males and three females) whose minimum session distance was
24 h. This way, more reliable results could be obtained. In both
cases, since each tester participated in 20 sessions, we obtained
a dataset coming from a total of 400 sessions.

In each test session, the tester stood at about 150 cm from
the monitor. The Kinect was positioned on top of it, at about
120 cm from the floor (Fig. 1).
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Fig. 1. Experimental setting.

The visual stimulus was a blue circle appearing (randomly
and sequentially) in five predefined positions of a blank white
screen — the four corners and the center, as shown in Fig. 2.
The tester had to follow the circle with the screen pointer
controlled by the hand, keeping it always inside the circle. The
350-pixel diameter circle was displayed in each position for
3.8 s. This time was chosen, after some trials, as a compromise
between task duration and significance of the acquired data.

As shown in Fig. 2 (bottom), all 20 paths between all couples
of positions were covered by each tester — i.e., the permutation
of two circles in five positions. In total, the circle was therefore
displayed four times in each location. The trajectory was “con-
tinuous”, which means that the last position was the starting
point for the next destination.

3.2. Acquired data and selected features

The Kinect provided two kinds of raw data: the 2D pointer
position on the screen and the hand position in the 3D space. For
each sample of each path (1–20) in these raw data, we exploited
some features from both data categories.

Given a path AB (where the circle appears first in position
A and then in position B), the employed features are the
following:

f1. The average position (in the 2D space) of the screen
pointer within the destination circle, i.e. the average x and
y coordinates (features f1a and f1b) of the pointer when it is
inside the circle in position B;

f2. The average position (in the 3D space) of the hand when
the screen pointer is within the destination circle, i.e. the
average value of the hand’s x , y, and z coordinates (features
f2a, f2b, and f2c) when the pointer is inside the circle in
position B;

f3. The total time spent by the pointer inside the circle in
position B;

f4. The user’s reaction time, i.e. the interval between the
disappearance of the circle in position A and the instant
when the hand starts moving towards the circle in position B;

f5. The pointer travel time, i.e. the interval between the
disappearance of the circle from position A and the instant
when the pointer enters the circle in the new position B;

Fig. 2. Circle positions and possible paths.

f6. The pointer average speed when traveling from the circle
in position A to the circle in position B;

f7. The hand average speed when the pointer travels from the
circle in position A to the circle in position B.

We did not consider two features used in the first study [3],
namely the highest and lowest vertical positions reached by the
hand, as they are directly connected with physical characteris-
tics of testers (while the other features are related only to the
way gestures are performed).

Since each tester performed all possible 20 paths in each
session, a row vector of 200 columns (features f1a, f1b, f2a, f2b,
f2c, and f3 to f7 for each session) was built. A feature matrix of
400 rows (20 testers × 20 sessions) became the input to the
classification process.

4. First study

In a first, preliminary study [3], for the classification process
we used only feature vectors obtained from 20 paths. We em-
ployed the k-Nearest Neighbors, Naive Bayes, Support Vector
Machine, Classification Tree, Neural Network, and Random
Forest classifiers. Data division occurred through random sam-
pling (70%:30% and 50%:50%) and 10- and 20-fold cross-
validation.

Results were satisfying for both identification and verifica-
tion. For identification, in the 70%:30% case, we found success
rates between 0.73 (Classification Tree) and 0.94 (Support Vec-
tor Machines). Verification results were good too, with accuracy
values ranging (still with 70%:30% random sampling) from
0.88 (Naı̈ve Bayes) to more 0.99 (the other five classifiers).

The good classification results obtained from this prelim-
inary study suggested that hand gesture driven by a visual
stimulus can be exploited for biometric purposes. However,
these outcomes were obtained supposing identification and
verification processes in which the user performs all the 20
possible paths, which is a rather long and tiring procedure,
not suitable for real applications. Therefore, we carried out a
further, more in-depth study to find a trade-off between trajec-
tory length and accuracy of the identification and verification
processes.
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Table 1
Classification accuracy thresholds.

Trajectory length CA threshold

1 0.7
2–4 0.8
5–20 0.9

5. Second study

In this second investigation, we aimed to find “optimal”
trajectory lengths for both identification and verification, con-
sidering all possible continuous trajectories.

Since the visual stimulus is a circle traveling along a tra-
jectory composed of consecutive paths, we considered only
the continuous cases within the set of all possible path length
combinations C(20,1), C(20,2), . . . , C(20,20). As a result, we
obtained 683,052 continuous trajectories, arranged in 20 groups
(one for each trajectory length).

To deal with such a high number of cases, we selected
the Neural Network classifier. The choice was suggested by
a comparison among the six classifiers used in our previous
study [3]: Neural Network was, indeed, the only classifier
characterized by a good tradeoff between performance and
computation time — which is an important factor, due to the
very high number of possible continuous trajectories. The em-
ployed Neural Network is a multilayer perceptron minimizing
an L2-regularized cost function with L-BFGS (normalized data,
10 hidden layer nodes, 1 as a regularization factor and no more
than 300 iterations). We used 70% of the dataset for training
and 30% for testing.

Both identification and verification were considered, with
top-down sub-path selection. First, we processed all the
683,052 continuous sub-paths for the identification case. Then,
from the identification results, we selected the combinations
whose average Classification Accuracies (CAs) were above
certain thresholds (Table 1).

These thresholds were chosen by considering the maximum
accuracy and the number of combinations in each group.

When the number of combinations within a group (1–20)
was higher than 1000, we chose the 1000 combinations with
the highest CA. The selected combinations were then used
in the verification process. Since every combination can be
permutated in different path arrangements, we think that 1000 is
a sufficiently high number to avoid a “learning effect” in testers.

5.1. Identification results

As explained, classification accuracy was calculated for all
trajectory lengths, from 1 to 20. Fig. 3 shows that the general
trend of the average CA is an increase with the trajectory length
(with a couple of small exceptions in correspondence with
lengths 12 and 16).

As shown in Table 2, the average CA ranges from 0.747
for the 1-path trajectory to 0.9425 for the 20-path trajectory.
Although the classification accuracy may be even acceptable
with only one path, a significant improvement can be noticed

Fig. 3. Identification results: average classification accuracy for the different
trajectory lengths.

starting from the 5-path trajectory. We think that an identifica-
tion procedure with a trajectory composed of five or six paths
can be considered a good trade-off between satisfactory “user
experience” and acceptable classification accuracy (0.9050 and
0.9053, respectively).

5.2. Verification results

The structure of feature vectors for verification was the
same as for identification, but, in this case, the classification
process was performed by considering two classes, namely the
specific tester and “the others”. The procedure was repeated for
each tester. Stratified random sampling was applied to select
effective samples.

Table 3 shows the verification results for the consecutive
paths selected from the identification outcomes (Table 2),
according to the defined thresholds (Table 1).

As can be seen, results are very good in terms of Accuracy,
Sensitivity, and Area Under Curve (AUC), but less for what
concerns Specificity. In the worst case, for the 1-path trajectory,
the Specificity is only 0.3191. This means that the system is
good for detecting true positive instances, but less in the case
of true negative occurrences. However, the plot of results on the
ROC plane (Fig. 4) shows that they are all above the random
guess line (the straight 45◦ line): any point below it would mean
that the classifier is useless, because it is able to determine
whether the claimed identity is true or false in less than 50%
of cases.

Given the overall low Specificity, we think that a verification
procedure composed of nine paths can be considered a suitable
compromise between accuracy and acceptable user experience.

6. Discussion and conclusions

In this paper, we have presented a biometric approach, based
on hand gestures, in which a moving circle is used as a visual
stimulus.

While considering all 20 possible paths between the five
predefined circle positions allows to achieve the best results,
performing many gestures in a real identification or verification
scenario would be too demanding for a user (in terms of task
duration and consequent tiredness). Reducing the number of
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Table 2
Identification results.

Traj. length Number of consecutive paths Consecutive paths above threshold Average CA Average CA above threshold

1 20 19 0.7470 0.7497
2 70 53 0.8120 0.8209
3 260 251 0.8395 0.8412
4 1,035 1,034 0.8581 0.8581
5 3,884 163 0.8718 0.9050
6 11,880 1,128 0.8791 0.9053
7 29,000 6,806 0.8890 0.9067
8 56,590 24,809 0.8968 0.9082
9 91,060 58,617 0.9032 0.9101

10 120,836 97,435 0.9086 0.9124
11 128,839 114,008 0.9087 0.9152
12 108,540 93,745 0.9013 0.9181
13 71,980 71,363 0.9207 0.9209
14 37,560 37,188 0.9215 0.9224
15 15,312 15,263 0.9251 0.9256
16 4,835 4,708 0.9239 0.9280
17 1,140 1,140 0.9296 0.9296
18 190 187 0.9308 0.9322
19 20 20 0.9346 0.9346
20 1 1 0.9425 0.9425

Table 3
Verification results.

Trajectory length Accuracy Sensitivity Specificity AUC

1 0.9626 0.9965 0.3191 0.9356
2 0.9696 0.9946 0.4943 0.9637
3 0.9724 0.9930 0.5812 0.9704
4 0.9749 0.9933 0.6265 0.9742
5 0.9770 0.9935 0.6648 0.9810
6 0.9781 0.9939 0.6780 0.9818
7 0.9789 0.9942 0.6889 0.9836
8 0.9791 0.9940 0.6962 0.9848
9 0.9799 0.9946 0.7009 0.9858

10 0.9802 0.9947 0.7048 0.9867
11 0.9804 0.9949 0.7065 0.9871
12 0.9804 0.9947 0.7095 0.9878
13 0.9808 0.9951 0.7098 0.9885
14 0.9812 0.9954 0.7124 0.9892
15 0.9818 0.9956 0.7198 0.9897
16 0.9818 0.9957 0.7184 0.9900
17 0.9823 0.9959 0.7226 0.9904
18 0.9825 0.9960 0.7254 0.9909
19 0.9826 0.9961 0.7273 0.9916
20 0.9828 0.9963 0.7264 0.9920

positions in which the circle appears decreases the user’s effort,
making the proposed approach a much more viable solution.

Hand gestures are usually intuitive and easy to perform. Of
course, the biometric technique we propose falls in the so-called
“soft biometrics” category, as it can only provide a probability
that specific features are associated to a certain person rather
than finding a one-to-one matching between certain character-
istics and a subject. For identification purposes, this means that
the method can be only employed when 100% precision is not
necessary. For verification aims, however, the approach can be
used in addition to traditional authentication techniques, as a
further confirmation of the user’s claimed identity. Moreover,
gesture-based biometrics can be very useful in those cases

Fig. 4. ROC plane for verification.

in which touchless procedures are mandatory (e.g., when the
identity check must occur at a distance, such as in sterilized
environments or semiconductor factories, as explained in [17]).

Overall, the achieved results are in line with those pro-
vided by the vision-based techniques presented in Section 2
[12–18]. What is different, however, is the way hand gestures
are performed. Unlike “unconstrained” hand movements (such
as writing a signature in the air), in the proposed approach the
user’s task is very simple, and simple is also the visual cue
that guides it: a moving circle displayed on the screen. In our
experiments, all testers achieved this goal correctly since the
very beginning of the first test sessions.

Regarding identification, we have obtained an average clas-
sification accuracy ranging from 0.747 (one path) to 0.9425
(20 paths). Of course, the longer the trajectory the higher
the accuracy, since more data are involved in the recognition
process. However, a major improvement can be observed start-
ing from the 5-path trajectory (0.905). This suggests that five
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paths are enough to carry out reasonably reliable identification
procedures, with more than 90% of correct recognitions.

Accuracy is fairly good for verification too, always greater
than 0.962. Sensitivity is very good as well, higher than 0.99
even for 1-path trajectories — i.e., the genuinely claimed
identity is correctly recognized in more than 99% of cases. On
the other hand, specificity is moderately low (although results
on the ROC plane are all above the random guess line). A 9-path
trajectory (less than half of the full trajectory length) is however
enough to achieve a specificity value of 0.7009 — i.e., a falsely
claimed identity is detected in 70% of cases. Even if this is not
adequate for high-security applications, it may be acceptable in
soft biometric scenarios or when multibiometric systems are
employed. Compared to the first study [3], the reduction in
specificity that can be observed for length 20 is due to the five
different testers introduced and (especially) to the exclusion, as
features, of the highest and lowest vertical positions reached by
the hand.

Future work will study the integration of the proposed
method with other solutions, such as facial recognition (e.g.
[26]) or general body movements, to implement multimodal
biometric systems. Moreover, to increase the precision of ges-
ture detection, the joint use of two Kinect devices, in parallel,
will be considered.

While several biometric systems have been developed to
date which exploit data coming from hand movement, none of
them uses a visual stimulus as a guiding cue. To the best of our
knowledge, a biometric approach based on hand gestures driven
by visual stimuli has never been proposed in prior biometric
research. We therefore think that this work can be a starting
point for deeper and more focused investigations, stimulating
further studies on the subject.
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