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Abstract

Java is largely used to develop distributed and concurrent systems, but testing multithreaded
systems cannot guarantee the quality of the software; in contrast, verification techniques give us
a higher confidence about the system and, among these, model checking methods automatically
establish properties of complex systems. Such techniques are usually applied to specification lan-
guages, and several environments exist to verify temporal properties of concurrent specifications.
In this paper we present an attempt to apply model checking techniques for verifying a subset of
multithreaded Java programs. In particular, we use a tool based on the selective mu-calculus logic
to check systems described through the CCS specification language.
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1 Introduction

Concurrent systems are becoming more and more interesting but such systems
are usually quite complex. Also, as modern computing applications require
highly reliable software systems, testing fails to assure an adequate level of

1 Email: {gradara, santone, villani}@unisannio.it
2 Email: g.vaglini@iet.unipi.it

Electronic Notes in Theoretical Computer Science 110 (2004) 55–74

1571-0661 © 2004 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.06.010
Open access under CC BY-NC-ND license.

mailto:gradara@unisannio.it
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


correctness. Formal verification techniques are a better choice, and, in par-
ticular, model checking is useful for automatically establishing properties of
complex systems. Verification techniques are usually applied to concurrent
specification languages, like the Calculus of Communicating Systems (CCS)
[32] and the Language Of Temporal Ordering Specification (LOTOS) [9], due
to the simplicity of their semantics. Some complete model checking envi-
ronments exist in this context, see for example the Concurrency Workbench
of the New Century (henceforth CWB-NC) [15] that performs verification of
temporal properties expressed as mu-calculus formulae [35].

In this paper, we take into account several problems bounding the use of model
checking techniques. The first problem is the lack of a formal link between the
system specification and the code representing the final product. Thus, if we
first formally specify the system behavior we can verify the correctness of the
properties on this specification. But deriving in some way the corresponding
program, we have no guarantee about its correctness. A further problem is
that models used to represent the behavior of concurrent systems, for example
transition systems, suffer of the state explosion problem, due to the represen-
tation of concurrency by interleaving; this problem curbs the effective use of
model checking techniques to complex systems. Finally, beside the system be-
havior, also the system requirements must be expressed in a formal way when
applying verification techniques: this is usually hard for ordinary developers.

In this paper we present an attempt to apply model checking techniques for
verifying a subset of multithreaded Java programs. In particular, we use a
tool based on:

• the Calculus of Communicating Systems (CCS) [32] that is a specification
language widely used for concurrent and distributed systems; and

• the temporal logic called selective mu-calculus (see [5,6,7]) for describing
system requirements. Such logic allows us to automatically reduce the CCS
specification on the basis of the formula to be verified, so obtaining a less
expensive model which is an abstraction of the system with respect to the
formula (property driven abstractions are also used in [8,10,16], even if not
syntactically deduced). Although equi-expressive to mu-calculus, the selec-
tive logic provides a more concise and intuitive way to express properties,
and so stating the system requirements will be easier; and

• CWB-NC tool: since selective formulae can be automatically translated into
mu-calculus formulae, it is possible to use the CWB-NC tool-kit for model
checking.

In order to apply the above tool, we have defined a Java-to-CCS transform
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operator. A similar approach is in [11]. Using this approach, as a result
we obtain that the gap between the specification and its implementation is
bridged.

The paper is organized as follows: in Section 2 we review the basic con-
cepts of CCS and the methodology, based on selective mu-calculus, to attack
the state explosion problem. In Section 3 we describe the transformation of
multi-threaded Java programs into CCS specifications, while in Section 4 the
usefulness of our approach in terms of the degree of the model reduction is
shown through a simple synchronization problem. Finally, considerations and
comparisons with related work are given in Section 5.

2 Background

In this section, we briefly recall the main concepts about CCS and selective
mu-calculus. CCS [32] is a specification language widely used for concurrent
and distributed systems and we assume the reader to be familiar with it.
The selective mu-calculus is a branching temporal logic to express behavioral
properties of systems, which has been introduced by the authors et al. in [6].

2.1 The Calculus of Communicating Systems

Consider the finite set of actions A = {τ, a, a, b, b, ...}. The action τ ∈ A is
called the internal action. The set of visible actions, V, ranged over by l, is
defined as A− {τ}. Each action l ∈ V (l ∈ V) has a complementary action l
(l). The following syntax defines a CCS process.

p ::= nil | x | α.p | p + p | p|p | p\L | p[f ]

where α ∈ A, L ⊆ V and the relabelling function f is a total function f :
A → A, such that the constraint f(τ) = τ is respected. Also, x is a constant

name: each constant x is defined by a constant definition x
def
= p, where p is

called the body of x.

The operational semantics of a process p is a labelled transition system, S(p),
i.e., an automaton whose states correspond to processes (the initial state cor-
responds to p), and whose arcs are labelled by actions in A and correspond
to transitions from state to state. Such structural operational semantics is
precisely defined by means of the rules shown in Table 1.
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Act
α.p

α−→ p
Sum p

α−→ p′

p + q
α−→ p′

(and symmetric)

Con p
α−→ p′

x
α−→ p′

x
def= p Par p

α−→ p′

p|q α−→ p′|q
(and symmetric)

Com p
l−→ p′, q

l−→ q′

p|q τ−→ p′|q′
Rel

p
α−→ p′

p[f ]
f(α)−→ p′[f ]

Res
p

α−→ p′

p\L α−→ p′\L
α, α �∈ L

Table 1
Operational semantics of CCS.

2.2 Model checking and selective mu-calculus

A model checker [14] accepts two inputs, a transition system and a temporal
formula, and returns “true” if the system satisfies the formula, “false” oth-
erwise; in the last case a counter-example useful to locate and correct errors
is produced. The major problem in model checking is the state explosion: in
fact, systems are often described by transition systems with a prohibitively
large number of states. The primary cause of this problem is the parallel com-
position of interacting processes. When n processes of size (number of states)
m are composed in parallel, the resulting process can be of size mn.

The selective mu-calculus, defined in [6], although equi-expressive to mu-
calculus [35], differs from it in the definition of the modal operators. Given a
set A of actions and a set Var of variables, selective mu-calculus formulae are
obtained through the following definition:

ϕ ::= tt | ff | Z | ϕ ∨ ϕ | ϕ ∧ ϕ | [K]R ϕ | 〈K〉R ϕ | νZ.ϕ | µZ.ϕ

where Z ∈ Var and K, R ⊆ A. The operators µZ.ϕ and νZ.ϕ are fixed point
operators: µZ.ϕ is the least fixed point of the recursive equation Z = ϕ, while
νZ.ϕ is the greatest one. In the formula µZ.ϕ (νZ.ϕ), µZ (νZ) binds the
occurrences of Z in ϕ. A variable occurring outside the scope of fixed point
operators is called free. A formula without free variables is called closed. From
now on we only consider closed formulae.

The state s of a transition system satisfies the selective formula ϕ, written
s |= ϕ, as follows:

• s always satisfies tt and never ff; and

• s satisfies ϕ1 ∨ ϕ2 (ϕ1 ∧ ϕ2) if it satisfies ϕ1 or (and) ϕ2; and

• s satisfies [K]R ϕ if, for every possible sequence of actions not containing

S. Gradara et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 55–7458



actions in R∪K, followed by an action in K, it will evolve to a state obeying
to ϕ; and

• s satisfies 〈K〉R ϕ if it will evolve to a state obeying to ϕ after at least a
sequence of actions not containing actions in R ∪ K, followed by an action
in K.

A transition system satisfies ϕ if and only if s |= ϕ, where s is its initial
state. A CCS process p satisfies ϕ if S(p) satisfies ϕ. The precise definition
of the satisfaction of the closed formula ϕ by the process p is given in Table
2: the transition relation =⇒I , parametric with respect to I ⊆ A, is defined
as follows and ignores all non-interesting actions (i.e., those in A− I).

Definition 2.1 [=⇒I relation] Let p be a CCS process and I ⊆ A, the relation

=⇒I is such that, for each α ∈ I, p
α

=⇒I q iff p
δα−→ q, where δ ∈ (A− I)∗.

Note that =⇒A = −→.

p 
|= ff p |= tt

p |= ϕ ∧ ψ iff p |= ϕ and p |= ψ

p |= ϕ ∨ ψ iff p |= ϕ or p |= ψ

p |= [K]R ϕ iff ∀p′.∀α ∈ K.p
α

=⇒K∪R p′ implies p′ |= ϕ

p |= 〈K〉R ϕ iff ∃p′.∃α ∈ K.p
α

=⇒K∪R p′ and p′ |= ϕ

p |= νZ.ϕ iff p |= νZn.ϕ for all n

p |= µZ.ϕ iff p |= µZn.ϕ for some n

where, for each n, νZn.ϕ and µZn.ϕ are defined as:

νZ0.ϕ = tt µZ0.ϕ = ff

νZn+1.ϕ = ϕ[νZn.ϕ/Z] µZn+1.ϕ = ϕ[µZn.ϕ/Z]

and ϕ[ψ/Z] indicates the substitution of ψ for each free occurrence of Z in ϕ.

Table 2
Satisfaction of a closed formula by a process.

Example 2.2 We give some examples of selective mu-calculus formulae to
explain the use of the selective operators.

ϕ1 = [b]{a} ff: “b cannot be performed if a has not been performed before”.
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ϕ2 = 〈b〉∅ tt: “it is possible to perform b preceded by any action”.

ϕ3 = νZ. [a]∅(Z ∧ [a]{c} ff): “it always holds that, after a has occurred, a
successive a cannot occur if c has not occurred before”.

Consider the processes: x
def
= b.c.x. + a.b.c.x y

def
= a.b.c.y z

def
= b.z + a.b.z

which transition systems are in Figure 1. It holds that:

x 
|= ϕ1 x |= ϕ2 x |= ϕ3 y |= ϕ1 y |= ϕ2 y |= ϕ3 z 
|= ϕ1 z |= ϕ2 z 
|= ϕ3 �

b

a

zx y

b a
b a

b

c
c b

Fig. 1. Three transition systems.

As shown in [6], selective formulae can be easily translated into mu-calculus
recursive formulae exploiting the following definitions.

[K]R ϕ = νZ. [K] ϕ ∧ [A− (K ∪ R)] Z 〈K〉R ϕ = µZ. 〈K〉 ϕ ∨ 〈A − (K ∪ R)〉 Z

The main point is that, contrarily to mu-calculus, the selective mu-calculus
allows us to immediately point out, from each formula, the parts of the tran-
sition system that do not alter the truth value of the formula itself. More
precisely, the result of the checking only depends on the actions explicitly
mentioned in the modal operators used in the formula (namely, occurring ac-
tions). For example, consider the process p = b.c.a.nil and suppose that we
want to verify the property “it is possible to perform an action a preceded by
any action”. The property can be expressed using the mu-calculus logic as:

ψ = µZ. 〈a〉 tt ∨ 〈b, c〉 Z

Using the selective mu-calculus logic, the above property can be equivalently
expressed as:

ψsel = 〈a〉∅ tt

It is easy to see that the property holds on S(p) (see Figure 2(a)). Note that
the same property holds also on a much smaller transition system, depicted in
Figure 2(b), and the two systems are equivalent with respect to the formula.
Such system may be obtained from S(p) by keeping only the transitions that
are labelled by the action a and collapsing the states consequently. Thus,
given a formula, the problem is to find the right set of actions that do not
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c

b

p

a

a

(a) (b)

Fig. 2. Transition systems.

alter the truth value of the formula. Now, mu-calculus formulae are not always
suitable to identify these actions. For example, the set of actions occurring
in the formula ψ is {a, b, c}, while only a, which appears alone in ψsel, is a
relevant action for preserving the truth value of the formula.

In [6] ρ-equivalence is defined to formally characterize the notion of “the same
behavior with respect to a set ρ of actions”: two transition systems are ρ-
equivalent if and only if they satisfy the same set of formulae with occurring
actions in ρ (see [8,10] for a similar equivalence). Thus, improvements in
model checking a process p can be obtained by eliminating from S(p) the
actions not in ρ. Obviously, the reduction degree mainly depends on the size
of ρ with respect to the size of A.

Example 2.3 Recall the formulae of Example 2.2 and the transition systems
in Figure 1. S(x) is {a, b}-equivalent to S(z), on the contrary S(y) is not
{a, b}-equivalent to S(z). Thus S(x) and S(z) give the same result for the
checking of the formulae with occurring actions in {a, b}; in particular, they
satisfy ϕ2, while they do not satisfy ϕ1. Note that the set of occurring actions
of ϕ1 is {a, b}, and that of ϕ2 is {b} which is a subset of {a, b}. �

In [5] a CCS process p is transformed into another process q on which the
selective formula ϕ can be equivalently checked 3 . The method is based on
a set of syntactic transformation rules, of the form p −→ q; the rules are
defined in Table 3 and consist of one action deleting rule and two compacting
rules. The first one deletes (when possible) actions not belonging to a given
set ρ, which includes the occurring actions of ϕ, from p; the actions must not
be the first action of a choice operator in the scope of a parallel composition
(this condition needs to preserve ρ-equivalence). The other two rules compact
processes by eliminating redundant branches of choices. An algorithm has

3 A similar method has been defined for LOTOS processes in [7].
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Action deleting rule: α.p −→ p, if α 
∈ ρ and α is not the first action of a
choice branch in the scope of a parallel composition

Compacting rules: C1 : α.p + p −→ α.p if α 
∈ ρ

C2 : α.p + β.p −→ α.p if α, β 
∈ ρ

Table 3
The transformation rules.

been defined for reducing p by repeatedly applying the transformation rules
until this is not possible. A prototype tool implements such algorithm, while
another tool translates selective formulae in mu-calculus formulae. These tools
have been integrated in a system named CCS Reduction Tool (see Figure
3), whose output are in the format of the CWB-NC environment, so that
this environment can be used for building the transition system modeling the
reduced CCS specification and for checking selective formulae on it.

3 Efficient Verification of Java Programs

The methodology proposed in the previous section has been applied by the
authors in the design phase of a concurrent system (see for example [30]). From
the positive results obtained there, we thought that the same methodology
could be useful in the context of multi-threaded programs verification, through
their translation into the specification language of an existing model checker,
i.e., the CWB-NC tool. This is a more challenging area, as real programs are
usually big and their abstraction to finite state models may be still intractable
by model checking techniques that suffer from the state explosion problem.
We believe that efforts to integrate reduction solutions should be made in this
respect.

Our idea is illustrated in Figure 3. Tools for abstracting Java programs,
applying data or formula-based abstraction techniques like slicing (see for
example Bandera [16]), are used to provide us with a reasonable starting point
for a translation into CCS specifications. We have defined a Java-to-CCS
transform operator to this aim, described in Section 3.1. A similar approach
is presented in [11]: however, our method seems to be more systematic, the
translation rules are modular and have been thought in the perspective of
being performed automatically. Following the same idea, transform operator
from other programming languages can be easily defined.
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The resulting CCS process is then analyzed by our CCS Reduction Tool that
automatically removes all the non-relevant actions with respect to the formula
to be checked. The main advantage is that our tool can be combined with,
and not replace, other techniques developed to attack the state explosion
problem, including partial order methods [21,36] which remove unnecessary
interleaving of transitions, abstraction techniques [13] which ignore some state
information, compositional reasoning [1,12,33] and methods based on heuristic
searches [20,34]. In fact, once we have the CCS specification corresponding to
the initial Java program, we can apply the above methods.

Fig. 3. The tool.

3.1 Transforming a Java program into a CCS process

The reader may refer to [27] for details about the essential Java constructs.
Here we explain the semantics of such constructs through their translation
into CCS processes.

The methodology is based on the following two assumptions:

• the number of objects in the program is statically defined; and

• each set of variable values is finite. This can be achieved through suitable
abstraction schemes like for example data abstraction [16,19] or predicate
abstraction [2,17]. Abstraction techniques have to be applied to make model
checking feasible, since most software programs have an infinite number of
states. In this paper we concentrate on the boolean data abstraction, which
has been proven to be still quite efficient in this context.
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As a consequence of the first assumption, (non-static) state variables and
methods of a class are replicated for each object and translated singularly
into CCS processes. The second constraint is to assure a finite number of
states for both variables and methods that use them.

All objects, variables, and methods have an index. Namely,

• V is the index set for variables; and

• O is the index set for objects and methods.

Variables include object state variables and local variables passed to, or used
in, a method. The methods and Java features for synchronization that we
have formalized, such as the object lock and wait set, have the same identifier
as the object to which they refer.

We have added the following operator to the CCS algebra to express the
execution order of two processes.

Definition 3.1 [The sequence operator ;] Let p and q be two CCS processes.

The sequence operator ; is defined as: p ; q
def
= p{q/nil}, with the effect of

replacing each occurrence of nil in p, and in the bodies of all the contained
constants, with the process q.

The operator T , defined in the remaining of this section, applies to the Java
code of a program to translate it into CCS specifications. For lack of space,
in this paper we only present a portion of the definition of T , in particular
what is needed to understand the application of our method on the example
described in Section 4. More details about the definition of T are in [22].

3.2 Definition of variables and methods processes

The definitions of the processes corresponding to each variable and method
are shown in Table 4.

Boolean variable definition. Each time, the boolean variable VARi may
be seen as the process corresponding to its current value. We have defined
two processes, VARffi and VARtti, accordingly. For example, the branch
isFalsei. VARffi represents the false state of the variable; this state will
change to true after the execution of the action setTruei and the process will
continue as VARtti.

Main definition. The method main() is translated as the process MAIN,
where T is applied to the instructions contained in I according to the rules of
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T (boolean V ARi) = V ARffi
def= isFalsei.V ARffi + setFalsei.V ARffi + setT ruei.V ARtti

V ARtti
def= isT ruei.V ARtti + setT ruei.V ARtti + setFalsei.V ARffi

T (main(){I}) = MAIN
def= T (I)

T (methodNamei(){I}) = METHODNAMEi
def= callMethodNamei.T (I);

returnMethodNamei.METHODNAMEi

T (runi(){I}) = RUNi
def= callRuni.T (I)

Table 4
Definitions of variables and methods.

Table 5.

Method definition. Every method corresponds to a process waiting to be
invoked through the action callMethodNamei. The action returnMethodNamei

causes the control being returned to the method caller. Then the process goes
back to the starting action so that it can be invoked again. A special case
is the process RUN i, corresponding to the method runi() of a thread object,
which can only be executed once.

3.3 Instructions

Table 5 shows the translation of the main Java instructions.

T (I1; I2) = T (I1); T (I2)

T (V ARi = true; ) = setT ruei.nil

T (while (V ARi == true) I) = WHILE

where

WHILE
def= isT ruei.T (I); WHILE + isFalsei.nil

T (if (V ARi == true) I1; I2) = IF

where

IF
def= isT ruei.T (I1) + isFalsei.T (I2)

T (methodNamei(); ) = callMethodNamei.returnMethodNamei.nil

T (runi(); ) = callRuni.nil

T (synchronized (this){I}) = locki.T (I); unlocki.nil

Table 5
Instructions.
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Sequence of two Java instructions. The execution order of two Java
instructions is expressed by the use of the operator ; (introduced in Defi-
nition 3.1) to sequentialize the translated processes. We assume that these
instructions are contained in the definition of some methodNamei().

The translation of the assignment operations and of the “while” and “if”
constructs reflects their meaning in the programming theory. In particular,
they are synchronized with some variable process.

Assignment operations. The assignment of the true value to the variable
VARi is performed by a process that executes the action setTruei and then
terminates. The assignment of the false value is defined similarly.

While construct. The WHILE process simulates the while control con-
struct. Namely, the current value of V ARi is checked through the actions
isTruei and isFalsei: depending on what action is performed, the process
corresponding to the block instruction I is activated or not.

If construct. The IF process simulates the if control construct interrogat-
ing the current value of V ARi: either the translation of the block instruction
I1 or that corresponding to I2 is executed, depending on the performed action
(isTruei or isFalsei, respectively).

Method call. The call to the method “methodNamei” through the object
i is performed by the action callMethodNamei. The control to the caller
process is returned through the action returnMethodNamei. Instead, for
the runi() method the control is immediately returned to allow for a parallel
execution of the processes.

Java synchronized block or method. Before translating I, the lock of
the object i must be acquired, through the action locki; the action unlocki

follows the translation of I to release the lock (see Table 6).

3.4 Concurrency constructs and methods

The translation of the Java constructs and methods for concurrency is shown
in Table 6. Namely, the process LOCK is to describe the monitor concept, the
processes WAIT and NOTIFY correspond to the wait() and notify() methods,
and the processes WAITSET represent the wait−set management associated
with any object. A careful analysis of the Java language specifications has
been made in order to represent these constructs.

Lock. This process simulates the lock and unlock mechanisms of the object
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LOCKi
def= locki.unlocki.LOCKi

WAITi
def= callWaiti.inserti.unlocki.resumei.locki.returnWaiti.WAITi

NOTIFYi
def= callNotifyi.( someoneInQueuei.resumei.removei.returnNotifyi.NOTIFYi +

noneInQueuei.returnNotifyi.NOTIFYi)

WAITSET (0)i
def= inserti.WAITSET (1)i +

noneInQueuei.WAITSET (0)i

Let j be such that 0 < j < n − 1. Then

WAITSET (j)i
def= removei.WAITSET (j − 1)i +

someoneInQueuei.WAITSET (j)i+

inserti.WAITSET (j + 1)i

WAITSET (n− 1)i
def= removei.WAITSET (n− 2)i +

someoneInQueuei.WAITSET (n− 1)i

Table 6
Definitions to handle synchronization.

i allowing concurrent threads to execute synchronized instructions after the
action locki.

Wait. The call to the method wait() always occurs in a synchronized block.
This causes the thread being inserted in the wait-set of the object through the
action inserti that will be caught by one of the WAITSET (j)i processes, de-
pending on the number j (0 < j < n) of the waiting threads. Then the object
lock is released through the action unlocki, so that the object i may be used
again. Then WAIT i waits for the action resumei from the process NOTIFY i

and executes the action locki before returning the control and accepting a new
invocation.

Notify. The call to the method notify() sets free one of the threads in
the wait-set of the object i, if any. The actions someoneInQueuei and
noneInQueuei, communicating with the someoneInQueuei and noneInQueuei

actions of the WAITSET (j)i process definitions, show the state of the wait-
set. If this is empty, nothing is done, whereas if the wait-set contains at least
one thread, the actions resumei (caught by the WAIT i process) and removei

will resume and remove from the wait-set one of the waiting threads.

Wait-set. We assume that the program consists of at most n threads. So the
wait-set associated with the shared object i may contain at most n−1 threads
at the time. The translation of this concept consists of n WAITSET processes.
Namely, WAITSET (0)i represents an empty wait-set, while WAITSET (n−1)i

represents a full wait-set. The insertion of a thread in the wait-set is required
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through the action inserti performed by the process WAIT i.

Final CCS process

The final CCS process describing a Java program is obtained through the
proposed methodology as a parallel of the MAIN process and all the RUN,
VAR, LOCK, WAIT, NOTIFY, WAITSET and METHODNAME processes,
restricted to all the actions used for communicating among such processes.
Readers can refer to [22] for a more exhaustive explanation of the final process
structure.

The proof of the correctness of the translation is ongoing and discussed in [22].

4 An example

We have applied our technique to check the correctness of a simple Java pro-
gram; the Java code is presented in Tables 9 and 10 of the Appendix A.
The program describes a tavern with a client (drinker) and two hosts (host1
and host2): both hosts may fill the client glass when empty, whereas the client
waits for the glass being completely full to drink from it. This fact is expressed
by the following two properties:

Property 1: filling the glass is not allowed if the glass is not empty.

Property 2: drinking from the glass is not allowed if the glass is not full.

In order to model check the program, the two properties above are expressed
by selective formulae, as follows:

ϕ1 : [′filling]{′empty} ff 4

ϕ2 : [′drinking]{′full} ff

First we translated the Java program into a CCS process, named prog, accord-
ing to the Java-to-CCS operator of Section 3 (see Table 11 of the Appendix B).
Then we attempted to reduce the specification: we applied the transformation
rules starting from the sets of actions ρi occurring in the formula ϕi, for each
i ∈ {1, 2}. Finally, we checked the mu-calculus formulae corresponding to ϕi

on the reduced specifications.

4 Note that the action ′filling corresponds to the print instruction
System.out.println(‘‘filling") in the method fill (similarly for ′full, ′drinking and
′empty). Moreover, the CWB-NC represents output actions as ′a instead of a.
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For the experiment we used the CWB-NC tool on a PC based on a 1,60 GHz
Pentium 4 processor with 256 Mbytes of memory and Microsoft Windows XP
operating system. The result was that the formula ϕ1 is false, instead the
formula ϕ2 is true. In fact, the code presents a mistake as the operation of
reading the empty status of the glass and filling it is not atomic and therefore
one host may actually fill a non-empty glass.

Table 7 shows the number of states and transitions of S(prog) and of S(Tprogρi
),

i ∈ {1, 2}, where Tprogρi
is the reduced CCS process obtained by applying the

transformation rules to prog with ρi. More precisely, ρ1 = {′filling,′ empty},
and ρ2 = {′drinking,′ full}. For lack of space, the reduced CCS specifications
are not shown in this paper. It is worth noting that the state space reduction
that we obtained is significant. This implies a corresponding reduction of the
verification time: Table 8 shows the time employed by the CWB-NC model
checker to check the formulae on the standard and on the reduced transition
systems respectively, together with the corresponding time reduction.

S(prog) S(Tprogρ1 ) S(Tprogρ2)

states transitions states transitions state space states transitions state space

reduction % reduction %

6975 18386 4370 11200 38,6% 4316 11068 39,3%

Table 7
Results for the proposed program.

standard transition system reduced transition system time reduction %

ϕ1 14,9s 9,0s 39,5%

ϕ2 14,6s 8,7s 40,4%

Table 8
Verification time of ϕ1 and ϕ1.

The results obtained with this simple example are encouraging. Obviously,
this is only a starting point: further investigation will allow the validation of
the results on relevant problems in software verification, and the comparison
with other tools. In general, the usefulness of our tool depends both on the
number of actions occurring in the formula and on the structure of the formula
to be checked.
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5 Conclusion and Related Work

Many works can be found in the recent literature aiming to verify real pro-
grams written in modern languages. As stated in [37], they can be roughly
divided into two categories: custom-made model checker and source-to-source
translation. An example of a custom-made model checker is described in [37],
where a verification and testing environment for Java, Java PathFinder (JPF),
has also been developed. The works in the second category (see, for example,
[16,18,24,29]), translate software system descriptions to the input languages
of verification tools. For example, in the Bandera tools [16,23] the Java source
code, after some manipulation, is translated into either Promela (the input
notation of Spin [28]) or SMV [31] model checker input notation. Bandera
uses temporal patterns, to be instantiated to temporal logics and to specify
properties, and uses program slicing and data abstraction (abstract interpre-
tation) to customize models. With our methodology, we propose to add a
further abstraction, which is driven by the formula being checked.

Interesting complete environments for checking non-Java programs are:

• the SLAM toolkit [3,4] which uses a predicate abstraction tool to transform
C programs into boolean programs that respect the given set of predicates
representing the required properties; then a suitable tool model checks such
boolean programs; and

• BLAST [25,26], a model checker for C programs which uses counterexample-
driven automatic abstraction refinement to construct an abstract model to
be model checked for safety properties.

Our approach belongs to the source-to-source translation category. It consists
of the translation of multithreaded Java programs into CCS specifications and
of the use of a reduction algorithm, based on the selective mu-calculus logic,
which allows us to face the state explosion problem and facilitates the writing
of the properties. In order to use the existing model checking environment
for concurrent specifications, namely CWB-NC, we use a prototype tool to
implement the reduction algorithm and another tool to translate a selective
formula into a mu-calculus one. This approach permits an easy detection of
errors in a program, and this fact is relevant as it occurs with low probability
on concurrent programs; moreover, the error detection is obtained at a lower
cost, also on complex systems, compared to testing the program, because of
the use of a reduced model.
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Appendix A

class ProcessDrinker extends Thread {

private Glass gl;

public ProcessDrinker(Glass s)

{

gl=s;

}

public void run()

{

while(true){

System.out.println(‘‘drinker");

try

{

gl.drink();

}catch(Exception ee)

{

}

}

}

}

class ProcessHost extends Thread {

private Glass gl;

private final String name;

public ProcessHost(Glass s, String n)

{

gl=s;

name=n;

}

public void run()

{

while(true){

System.out.println(name);

try

{

if(gl.checkEmpty())

gl.fill();

}catch(Exception e)

{

}

}

}

}

Table 9
The Java program (I).

class Glass {

private boolean is_full=false;

private boolean is_empty=true;

public synchronized void fill() throws Exception

{

is_empty=false;

System.out.println("filling");

is_full=true;

System.out.println("full");

notify();

}

public synchronized void drink()

{

while(is_empty)

{

try

{

wait();

}catch(InterruptedException e)

{

}

}

System.out.println("drinking");

is_full=false;

is_empty=true;

System.out.println("empty");

}

public synchronized boolean checkEmpty()

{

System.out.println("checked");

return is_empty;

}

}

public class SharedGlass {

public static void main(String [] args) throws Exception

{

Glass gl=new Glass();

ProcessDrinker drinker=new ProcessDrinker(gl);

drinker.start();

ProcessHost host1=new Process(gl, "host1");

host1.start();

ProcessHost host2=new Process(gl, "host2");

host2.start();

}

}

Table 10
The Java program (II).
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Appendix B

We present the CCS translation of the Java program in Table 11. Note that
the print instruction of the name attribute of the ProcessHost class has been
simplified by directly including visible actions (i.e. ’host1, ’host2) in the corre-
sponding thread processes. Moreover we have omitted all the V ARi processes.

proc DRINK1= callDrink1.’lock1.X11

proc X11 = isTrue1.’callWait1.returnWait1.X11+

isFalse1.’drinking.’setFalse2.’setTrue1.’empty.’unlock1.’returnDrink1.DRINK1

proc FILL1 = callFill1.’lock1.X12

proc X12 = ’setFalse1.’filling.’setTrue2.’full.’callNotify1.

returnNotify1.’unlock1.’returnFill1.FILL1

proc CHECKEMPTY1 = callCheckEmpty1.’lock1.X13

proc X13 = isTrue1.’setTrue3.Y13 +

isFalse1.’setFalse3.Y13

proc Y13 = ’checked.’unlock1.’returnCheckEmpty1.CHECKEMPTY1

proc RUN2 = callRun2.WHILETrue2 proc WHILETrue2 =

’drinker.’callDrink1.returnDrink1.WHILETrue2

proc RUN3 = callRun3.WHILETrue3

proc WHILETrue3 =’host1.’callCheckEmpty1.returnCheckEmpty1.K

proc K = isTrue3.’callFill1.returnFill1.WHILETrue3 +

isFalse3.WHILETrue3

proc RUN4 = callRun4.WHILETrue4

proc WHILETrue4 =’host2.’callCheckEmpty1.returnCheckEmpty1.K4

proc K4 = isTrue3.’callFill1.returnFill1.WHILETrue4 +

isFalse3.WHILETrue4

proc MAIN = ’callRun2.’callRun3.’callRun4.nil

proc FINAL =(MAIN|RUN2|RUN3|VARtt1|VARff2|VARff3|LOCK1|WAIT1|

NOTIFY1|WAITSET10|DRINK1|FILL1|RUN4|CHECKEMPTY1|CHECKEMPTY1)\

{isTrue1,isFalse1,setTrue1,setFalse1,isTrue2,isFalse2,setTrue2,setFalse2,

isTrue3,isFalse3,setTrue3,setFalse3,lock1,unlock1,callWait1,returnWait1,

callNotify1,returnNotify1,insert1,resume1,someoneInQueue1,noneInQueue1,

callRun2,callRun3,callRun4,callDrink1,returnDrink1,callFill1,returnFill1,

callCheckEmpty1,returnCheckEmpty1,remove1}

Table 11
The CCS specification.
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