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a b s t r a c t 

Background and objective: Pulsed-wave Doppler (PWD) echocardiography is the primary tool for antenatal 

cardiological diagnosis. Based on it, different measurements and validated reference parameters can be 

extracted. The automatic detection of complete and measurable cardiac cycles would represent a useful 

tool for the quality assessment of the PWD trace and the automated analysis of long traces. 

Methods: This work proposes and compares three different algorithms for this purpose, based on the 

preliminary extraction of the PWD velocity spectrum envelopes: template matching, supervised classifi- 

cation over a reduced set of relevant waveshape features, and supervised classification over the whole 

waveshape potentially representing a cardiac cycle. A custom dataset comprising 43 fetal cardiac PWD 

traces (174,319 signal segments) acquired on an apical five-chamber window was developed and used for 

the assessment of the different algorithms. 

Results: The adoption of a supervised classifier trained with the samples representing the upper and lower 

envelopes of the PWD, with additional features extracted from the image, achieved significantly better 

results ( p < 0.0 0 01) than the other algorithms, with an average accuracy of 98% ± 1% when using an 

SVM classifier and a leave-one-subject-out cross-validation. Further, the robustness of the results with 

respect to the classifier model was proved. 

Conclusions: The results reveal excellent detection performance, suggesting that the proposed approach 

can be adopted for the automatic analysis of long PWD traces or embedded in ultrasound machines as a 

first step for the extraction of measurements and reference clinical parameters. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The assessment of fetal cardiac function in early pregnancy

epresents an important clinical challenge. Congenital heart dis-

ases (CHDs) are the most common type of birth defect [1] , with

 prevalence of approximately nine per 10 0 0 live births [2] . Ex-

luding infections, CHD accounts for the largest number of deaths

uring the first year of life [3] . Despite its intrinsic operator-

ependency [4] , fetal echocardiography is the elective tool for the

arly diagnosis of CHD during the second trimester in high-risk

regnancies, but several studies advocate its use also in low-risk

regnancies [5–7] . In this case, fetal echocardiography can be used

o detect up to 40% of the CHDs [1] . 
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In fetal echocardiography, pulsed-wave Doppler (PWD) can aid

he diagnosis of CHD, functional problems and the assessment of

ardiac rhythm [8,9] . Compared with other modalities, blood flow

hrough the heart and great vessels, along with the movement of

eart tissues, can be more objectively studied using Doppler ultra-

onography. To this aim, several parameters, computed from quan-

itative measurements of the PWD spectrum over complete cardiac

ycles have been proposed and validated [10] . In order to enable

heir automatic computation, complete and clinically meaningful

ardiac cycles must be first identified. This process is usually per-

ormed by the operator via visual inspection. However, the auto-

atic identification could be introduced in the echocardiographs

s a first step of a measurement chain. Remarkably, this process

s less important in adult ultrasound examinations, since the mea-

urement is easier, because of the position and size of the heart,

nd more stable, thus requiring less manual skills to the cardiolo-

ist. 
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Moreover, several works [11,12] studied the PWD signal by mul-

timodal recordings including the fetal electrocardiogram (ECG). In

this case, PWD can represent a reference signal for non-invasive fe-

tal ECG analysis in early pregnancy, by providing clues on the car-

diac rhythm and heartbeat phases. In this context, characterized by

long traces to be analyzed and compared, the automatic detection

of the complete and measurable cardiac cycles would represent an

invaluable tool for the researchers. 

A preliminary investigation on the automatical identification of

uncorrupted, complete, and measurable cardiac cycles in antenatal

PWD signals was presented in [13,14] . This work significantly elab-

orates on the previous findings by proposing and comparing three

different algorithms: the previous approach [13,14] and two other

methods, characterized by a reduced number of features and over-

all computational cost. The three methods are based on a prelimi-

nary extraction of the PWD velocity spectrum envelopes, followed

by different detection approaches: (i) template matching with rele-

vant waveshapes associated with atrial systole, (ii) supervised clas-

sification over a reduced set of relevant waveshape features (fidu-

cial points), and (iii) supervised classification on the whole wave-

shape potentially representing a cardiac cycle, with additional fea-

tures extracted from the PWD spectrum image. The robustness of

methods (ii) and (iii) was verified using two different classifiers:

an artificial neural network (ANN) and a support vector machine

(SVM). 

Even though several methods have been presented thus far for

the extraction of the PWD envelope, to the best of our knowl-

edge, none of them aim at the automatic recognition of complete

and measurable cardiac cycles. Conversely, they require the man-

ual selection of the cardiac cycles for additional information. For

instance, most require an ECG because they are ECG-gated. How-

ever, for antenatal studies, no fetal ECG utility has been established

yet [9] , revealing an informational gap. 

The performance of the proposed methods was assessed on a

custom dataset comprising real signals acquired from 25 pregnant

women between the 21st and 27th weeks of gestation at the Divi-

sion of Pediatric Cardiology of the San Michele Hospital in Cagliari,

Italy. 

2. Background 

For the routine Doppler examination of patients with suspected

valvular heart disease, it is usually best to begin by using an api-

cal view (see Fig. 1 a) [15] . In particular, an apical five-chamber

view allows for recognizing the four cardiac chambers (in Fig. 1 a

VDX, ADX, VSN, ASN) and first part of the aorta (in Fig. 1 a AO). By

choosing this view, it is possible to analyze the diastolic and sys-

tolic functions, producing morphologically well-defined envelopes

in the PWD signal, as reported in Fig. 1 b and Fig. 1 c. While the

systolic phase produces a single peak in the flow velocity wave-

form ( V ), caused by blood flow through the aortic valve, the di-

astolic phase results in a typical biphasic waveform [16] , with an

early peak ( E ) determined by the passive filling of the left ventri-

cle through the mitral valve due to the differential pressure be-

tween the two chambers, and a second peak ( A ) during the active

atrial contraction. Overall, the EA -wave represents the mitral in-

flow, whereas the V -wave represents the aortic outflow, and the

two waves present opposite polarity. 

Typical quantitative cardiac performance indexes, extracted

from the PWD signal, are the heart rate [17] , the E/A ratio [18] ,

the mechanical AV conduction time interval [19] and the myocar-

dial performance index [20] . Beyond helping in diagnosing specific

diseases, time indexes are also useful indicators of fetal wellbeing

[21] . In healthy fetuses, each atrial event is followed by a ventricu-

lar event, which occurs within a well-defined time-interval in nor-

mal 1:1 atrioventricular ( AV ) conduction [22] . 
.1. State of the art on automatic Doppler velocity envelope 

xtraction 

To the best of our knowledge, there are no published works

ddressing the automatic detection of complete and measurable

ardiac cycles from PWD, neither for adults nor for fetuses. Con-

ersely, several works deal with the automatic tracing of the

oppler velocity envelope, which is a preliminary step required by

ur algorithms. As such, in this section a short review of the ap-

roaches representing the state of the art in the field is presented.

The first studies addressing the automatic tracing of Doppler

nvelopes were based on the edge detection techniques [23–31] . In

23] , the method comprised the following steps:(i) image filtering

sing a Gaussian-shaped low-pass filter with σ = 1 . 5 to remove

he high-frequency noises, (ii) detection of the horizontal axis, (iii)

dge detection using a non-linear Laplace edge detector [32] , (iv)

uppression of spurious edges, and (v) extraction of the overall en-

elope function by using the biggest-gap algorithm [24] . 

In [24] , the main steps used in [23] were adopted, but with

ore focus on the contrast enhancement. A k-means clustering

lgorithm was used to cluster the image intensities into three

roups: the weak and strong parts of the signal and the pixels

orming the background. From the centroids of the three groups,

he authors derived two thresholds beyond the contrast enhance-

ent to stretch the contrast and reduce the noise in the back-

round. Moreover, [24] used a combination of the Sobel opera-

or [33] and non-linear Laplace edge detector [32] . The envelope

as obtained using a linking processing step, aimed at producing

 continuous velocity envelope. Then, it was parameterized using

odel fitting with a sum of cosines: four for the systolic tricuspid

alve regurgitation flow and five for the diastolic mitral valve in-

ow. Both [23] and [24] compared the obtained envelope with a

anually traced envelope by a Bland-Altman analysis. 

Another work [29] exploited 2D Doppler echocardiography for

he noninvasive automated assessment of the aortic regurgitation

everity. It was based on the following steps: (i) image filtering us-

ng a low-pass filter with a Gaussian kernel 5 × 5 and σ = 1 . 5 , (ii)

ltered image converted to grayscale, (iii) morphological operation

f the image with disk approximations, (iv) subtraction of the im-

ges obtained during the first step from those obtained during the

econd and intensity adjustment, and (v) edge detection on this fi-

al image performed by Canny algorithm ( σ = 0 . 5 ) to identify the

eak velocity. As in the previous works, the results were compared

ith manual tracing of the envelopes. 

The work [30] analyzed 30-s-long adult Doppler traces ac-

uired using an apical five-chamber window positioned over the

eft ventricular outflow tract by exploiting the same workflow of

he aforementioned works. In the region of interest of the PWD

ideo frame, converted to grayscale, the connected areas present-

ng fewer than 500 pixels were removed. Then, the maximum

elocity profile was extracted from the resulting image by the

iggest-gap method [24] . High frequency noise was removed from

he initial velocity profile using a first-order low-pass Butterworth

lter, the cut-off frequency of which was estimated from the car-

iac cycle length. Any frequency ten times greater than the funda-

ental frequency of the heart motion was filtered out. Finally, a

hird-order Gaussian model was adopted to fit to the velocity pro-

le. 

The study in [31] focused on the flow velocity estimation in the

arotid artery and compared four different methods to binarize the

mage following the main steps described for the other studies. The

esults were evaluated through visual inspection. 

Further, learning-based and probabilistic-framework algorithms

or the automatic detection and segmentation of the Doppler traces

ere reported. In [34] , an algorithm for automatically tracing the

nvelope of mitral valve inflow Doppler spectra was presented. The
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Fig. 1. Pulsed-wave Doppler echocardiography. 
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m  
lgorithm was built on the techniques used in the probabilistic hi-

rarchical and discriminant framework [35] . In this case, a single

riangular object represented an isolated E - or A -wave, whereas a

ouble triangle represented a pair of overlapping E and A waves.

 single triangle model comprised three points: a left root, a right

oot and a peak. A double triangle model had five points: a left

oot, a right root, a left peak, a right peak, and an intersection

oint. Three detectors were trained: left root detector, right root

etector, and peak detector. Additionally, two global box detec-

ors were trained: a single triangle detector and a double trian-

le detector. Each candidate was associated with a posterior de-

ection probability. For each shape candidate, either specified or

nferred, the shape profile model was invoked to score it with a

osterior probability. Based on these two probabilities, the algo-

ithm selected the best candidates from the single and double tri-

ngle candidate pools. To quantify the performance of the algo-

ithm, four measurements were computed: E -wave peak velocity

EPV), E -wave deceleration time, A -wave peak velocity, and A -wave

uration. These values were compared with the measurements in-

ividually computed using annotations made by two experts. 

Some related works focused on model-based image segmenta-

ion algorithms. In fact, knowing the expected shape can improve

elocity envelope tracing. In [36] , a novel model-based feedback

nd adaptive-weighting tracing algorithm using the Kalman filter

as proposed. The algorithm incorporated a non-parametric sta-

istical comparison of image intensities to estimate edges in noisy
 s  
WD signals, as well as a statistical shape model learnt in an of-

ine process using manually-traced envelopes. The results were

ompared with the manual tracing. 

Overall, the main limitation of the algorithms presented to re-

iew the state of the art is that they were not conceived for the

utomatic identification of clinically valuable heartbeats with ade-

uate quality for the measurement of parameters associated with

he fetal heart function. Furthermore, most of these algorithms

re ECG-gated, which represents a critical problem for the fetal

xamination in early pregnancy, when the possibility to obtain a

rustable fetal ECG trace is still a goal of the research in the field.

emarkably, this was not an issue for the discussed works, since

ost of them were conceived to work on adult’s signals rather

han on fetal ones. Nevertheless, the importance of these algo-

ithms lies in the capability to extract a good Doppler velocity en-

elope that, according to the methods studied in this work, rep-

esents the starting point for the automatic identification of the

omplete and measurable cardiac cycles. In the revised version, ac-

ording to the Reviewers suggestion, these aspects are discussed at

he end of the related section. 

. Materials and methods 

In this section, the three techniques developed for the auto-

atic identification of the complete fetal cardiac cycle in PWD

ignals are presented. The three methods share the same pro-
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Fig. 2. The different toolchains studied in this work. 
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cedure for the extraction of the envelope from the PWD video

(see Fig. 2 ). First, the common aspects will be described; then,

the different methods will be presented in detail. All methods

and video/data processing were performed using MATLAB v2017b

(MathWorks Inc., Natick, MA, USA). 

3.1. Data acquisition protocol 

A custom dataset comprising 43 signals was adopted in order

to develop and validate the three methods. The study was ap-

proved by the Independent Ethical Committee of the Cagliari Uni-

versity Hospital (AOU Cagliari) and performed following the prin-

ciples outlined in the Helsinki Declaration of 1975, as revised in

20 0 0. All the volunteers provided their signed informed consent

to the recording protocol. According to the approved protocol, PWD

signals were collected from 25 low-risk voluntary pregnant women

between the 21st and 27th weeks of gestation, only with cardio-

logically healthy fetuses. Two factors influenced the choice of the

time frame for acquiring these signals. First, below 20 weeks of

gestation, the heart of the fetus is still too small to guarantee any

cardiac signal acquisition. Second, the used dataset consists of both

PWD and non-invasive fetal ECG recordings. It is well known that,

for the latter measurement, the signal quality is affected by the

layers of different biological media existing between the fetus and

the electrodes, which attenuate the fECG signal in its propagation

towards the maternal abdomen. The lowest conductivity layer of

the volume conductor is the vernix caseosa , a protective film that

completely covers the fetus between the 28th and 32nd weeks of

gestation, making it difficult to record the fECG non-invasively. Fi-

nally, the weeks of gestation between the 21st and 27th are those

typically adopted for the first and most important antenatal cardi-

ological screening by echocardiography, then the weeks in which

the proposed approach could be more effectively used, also be-

cause of the more intense fetal motility. 

The recording was performed on the abdomen with the sub-

ject in a comfortable semi-sitting position. The duration of the

recordings was variable, from 6.4 s to 119.8 s, depending on the

occurrence of fetal movements. The PWD, based on an apical five-

chamber view, was performed using an iE33 ultrasound machine

(Philips, Amsterdam, The Netherlands). The sweep speed and frame

rate were set to 75 mm/s and 60 Hz, respectively. All of the

other machine settings (e.g. gain, axis scaling, baseline, etc.) were

subject-specific and maintained throughout the recording. The iE33

video had a native resolution of 1680 × 1050 pixels, and the frame

rate on the video output ports was 30 Hz. All the frames were cap-

tured from the DVI output using an USB3HDCAP Video Capture De-

vice (StarTech, ON, Canada) capable of recording 1080p HD videos

at a frame rate up to 60 frames per second and applying H.264

encoding. 
.2. Video-to-image conversion 

The acquired video was initially converted into a single wide

mage. The PWD signal on the screen was updated from left to

ight. Once the updating reached the rightmost end of the dedi-

ated area, the signals wrap back from the leftmost end, overwrit-

ng the previous trace. Initially, the video was decomposed into

ingle frames, and each frame was cropped to isolate the region

f interest that contained only the PWD signal. Such a region was

he same for all the subjects with the adopted instrumental set-

ing. Despite the reduction of the image size, image cropping does

ot reduce the resolution (in terms of pixels per inch) and then

oes not negatively affect the subsequent processing steps. 

Using a threshold-based approach made it possible to derive an

ndex representing the position of the updating front of the PWD

elocity spectrum in every single frame. This index increases un-

il its value suddenly decreases when the updating front wraps to

he left of the image. When this condition occurred, the previous

rame was saved. This frame was appended to the previously saved

mage. These steps were repeated until the end of the signal. At the

nd of the video processing, the result was an image containing all

he PWD without interruption. Since the position of the fetus in

he womb and consequently the position of the probe on the ma-

ernal abdomen were different for each subject, the mitral blood

nflow could be directed towards the probe or moving away from

t. Therefore, the EA - V can exhibit a positive or negative balance

hen there is a positive EA - wave or the opposite polarity occurs,

espectively. All the signals with a negative balance were inverted

o have a homogeneous dataset with positive balance only. 

.3. Envelope extraction 

On the single wide image representing the whole PWD signal

f interest, the velocity envelopes were extracted in the form of

wo 1D signals: one for the upper (positive) part of the signal and

he other for the lower (negative) part. The envelope extraction in-

olved the following three steps to finally identify the boundary

hat separates the PWD spectrum from the background. 

1. Image binarization 

Initially, the single wide PWD image was converted to

greyscale. The definition of the binarization threshold on this

image was limited by the different device settings (i.e., dif-

ferent gain setting, leading to different intensities among the

datasets) and by the presence of background noise. Based

on 2D Otsu’s method, we adopted a global threshold from

a gray-level-median histogram [37] . After a comparison with

the original Otsu’s method and a fixed manual threshold,

this threshold was selected as the most efficient and robust

regarding noise and information preservation [13] . 

2. Area opening 

The binarized image was processed using a morphological

operator (area opening) to reduce the presence of small spu-

rious areas spread over the image, caused, for instance, by

a high gain setting. Such noise significantly limits envelope

extraction. Rather than using a higher threshold for bina-

rization, this solution is more conservative regarding the in-

formation content of the image. We empirically chose to

remove all four connected components with a small area

(70 pixels). In addition to the noise, this step removed the

dotted line characterizing the vertical grid in the video. 

3. Edge detection 

At this point, a binary and nearly noise-free image of the

PWD spectrum was available. The image was converted into

the two 1D envelopes representing its upper and lower pro-
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Table 1 

Characteristics of the methods assessed for the identification of the complete and measurable fetal heartbeats from 5-chamber apical view PWD 

traces. 

Method 1 Method 2 Method 3 

Technique Template matching Supervised classification Supervised classification 

Classifier None SVM, ANN SVM, ANN 

Parameters 5 templates 15 features 264 features 

Features None Amplitude at E wave onset; 

E peak latency & amplitude; 

E-A wave cross-point latency & amplitude; 

A peak latency & amplitude; 

A wave end point latency & amplitude; 

V wave onset latency & amplitude; 

V peak latency & amplitude; 

V wave end point latency & amplitude 

128 samples from the lower PWD envelope; 

128 samples from the upper PWD envelope; 

4 mean brightness levels of the pixels under 

the first and second half of the two envelopes; 

4 area-under-the-curve values related to the 

first and second half of the two envelopes 
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file, respectively: 

G u (x ) = arg max 
y 

{ I(x, y ) = 1 } − y b (1)

G l (x ) = arg min 

y 
{ I(x, y ) = 1 } − y b (2)

where y b is the baseline position, that is the horizontal axis

line that separates the image into two parts containing the

negative and the positive waves, whose polarities depend

on the direction of the blood flow, respectively if it is mov-

ing away or going towards the transducer. Fig. 1 d shows the

PWD signal with the associated G u and G l curves. Finally, the

two envelopes were normalized, between 0 and 1 and be-

tween - 1 and 0, respectively, for the automatic detection of

the complete fetal cardiac cycle only. 

Based on the time information and image resolution, the en-

velopes presented 284 samples per second, which can be as-

sumed to be the sampling rate for these signals. 

.4. Automatic detection methods 

Based on the original single wide PWD image, the envelopes

ere affected by different artifacts. For instance, with a moderate

ncrease in gain, the velocity tracing thickened and the spectrum

roadened [38] . Additionally, a mirror image artifact could appear.

urthermore, with the chosen apical five-chamber view, mitral and

ortic valve closure were typically present as spikes in the PWD

nvelopes. Regardless of the method, the presence of these residual

rtifacts hampers automatic detection. The occurrence of such ar-

ifacts must be considered as a disturbance in the adopted dataset,

ut no specific technique was implemented in order to reduce

heir effect on the signals. Moreover, due to the approved record-

ng protocol, only the best settings were used in the recordings,

ince the signals were acquired during real clinical examinations.

or this reason, a point assessment of the robustness of the meth-

ds with respect to the occurrence and entity of these artifacts

ould not be performed in the scope of this work. 

In the following sections, the details of the three methods de-

eloped and tested in this work are presented. Table 1 summarizes

he main differences between them. 

.4.1. Method 1: template matching 

The morphology of the PWD presents a typical EA - V pattern

f the chosen apical five-chamber view of healthy fetuses. In par-

icular, the atrial activity is characterized by two peak velocities,

 and A , which form an “M” shape. The shape of the V wave,

hat is present after the EA -wave, is reasonably the same across

ubjects, changing only for its amplitude. However, EA -wave can

lightly change, as can be seen from Fig. 3 a. By identifying differ-

nt templates for the atrial activity, well represented in the avail-

ble signals, it is possible, in principle, to identify the complete fe-

al heart beats by a template matching approach. Fig. 3 b shows the
elected set of atrial activity templates (upper envelope) used for

his method, that respectively corresponds to the real PWD atrial

arts in Fig. 3 a. Such templates were chosen by looking at the PWD

ignals available in the adopted dataset, according to the pediatric

ardiologist’s indications, in order to represent the largest part of

A -patterns. 

The E and A waves of the transmitral spectral Doppler envelope

ould be completely detached, with an E -wave that is occasion-

lly barely identifiable as a separate peak. By considering the en-

elopes sampling rate and the mean cardiac cycle duration, which

s approximately 128 samples, and considering that the available

ataset includes only healthy fetuses with a 1:1 AV conduction, on

verage, the length of the templates for the fetal atrial activity is

bout 64 samples. 

A sample-by-sample sliding window to compute the normalized

ross-correlation between the five templates and the whole upper

WD envelope was adopted. A complete and measurable fetal car-

iac cycle was detected using this method when at least one cross-

orrelation signal in that point was above a threshold (equal to 0.6)

hosen to maximize the performance on the available dataset. This

imple method did not require any classification stage downstream

s opposed to the other methods. 

.4.2. Method 2: classification based on fiducial points 

A more sophisticated delineation-based approach was devel-

ped to characterize the envelopes over a time frame lasting as

ong as a full cardiac cycle. To this end, a supervised classification

pproach was adopted by extracting meaningful features from each

ignal frame. Eight fiducial points characterizing the two envelopes

five for the upper envelope and three for the lower envelope, see

ig. 3 c) were identified: 

1. Onset of the E wave (Eo) 

2. E peak (E) 

3. The intersection point between the E and the A waves (EA) 

4. A peak (A) 

5. End point of the A wave (Ae) 

6. Onset of the V wave (Vo) 

7. V peak (V) 

8. End point of the V wave (Ve). 

In order to smooth the velocity profile, a three-tap median filter

as applied to the initial velocity profile. Then, the average fetal

ardiac cycle duration was estimated for that signal by detecting

he V wave in the lower envelope and computing the V - V intervals.

nfortunately, valve closure clicks can affect the estimation of the

 - V interval, which is used to set some thresholds needed for the

ducial points detection. Fiducial points were detected in the order

eported in the aforementioned list. 

Because the onset of the E wave lays on the x axis, it was de-

ected by selecting the first non-zero sample after a sequence of

eros. Since, in the presence of noise, the onset is no longer on the
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Fig. 3. Automatic detection methods. 
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x axis, if such method fails, the E wave onset was detected by im-

posing the constraint that the distance between two consecutive

onsets should be not larger than the duration of two average car-

diac cycles, and detecting the local minimum within a window of

reasonable length, according to physiological constraints. Further-

more, because of the presence of the valve clicks, the detection of

some E -wave onset points could be erroneously marked at the on-

set of the valve click rather than at its end. To correct these cases,

the valve click was detected by using the first derivative of the up-

per envelope and the E -wave onset identified at the end of the

valve click. 

The A peak was detected as the local maximum in the interval

between the E onset and half of the average cardiac cycle dura-

tion. Then, the E peak was detected as the local maximum in the

interval between the E wave onset and the A peak. 

The conjunction between the E and A waves was detected as

a minimum (see the first, second, fourth and fifth templates in

Fig. 3 b) or a flat portion (see the third template in Fig. 3 b) of the

curve. The last point of the upper envelope was the end of the A

wave, recognized by the sharp decrease in the envelope, taking the

minimum reached in the declining slope. 

Regarding the lower envelope, the first point to be searched

was the onset of the V wave owing to the known position of the

end of the previous A wave. Then, the end of the V wave was found

in the interval lasting as long the average cardiac cycle duration

and starting from the onset of the V wave. Again, the first deriva-
i  
ive of the velocity curve was used to correct the position of that

oint in case of the presence of valve click artifacts. 

Between the onset and end of the V wave, the local minimum

as recognized as the V peak. These eight fiducial points can be

escribed using 16 coordinates (time and amplitude). All the time

oordinates can be referred to the E wave onset of that cardiac

ycle, such that their values are not dependent on their occur-

ence over time in that cycle. This implies that the E onset time

s no longer useful for the remainder of the algorithm; as such,

even time features can be extracted from the eight fiducial points,

.e., the latency from the E wave onset. The other eight amplitude

eatures can be extracted, as the amplitudes of the eight fiducial

oints, for a total of 15 features. Then, a supervised classifier was

rained to identify the complete and measurable cardiac cycles in

he PWD signal from these features. Since this last step is com-

on to the third method as well, it will be described only once in

ection 3.5 . 

.4.3. Method 3: classification based on the envelope, area and pixels 

Residual ultrasound artifacts, including mirror images, may hide

he cardiac cycle information, limiting the fiducial point detection

nd reducing the effectiveness of template matching. The third

ethod was created to overcome these limitations exploiting as

lassifier features the complete envelopes of the PWD signal. This

pproach, first investigated in [13] and [14] , provides the largest set

f available information to the classifier without any preliminary

dentification of the waveshapes of interest or any delineation of
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he PWD trace, the errors of which could impact the quality of the

nal solution. Simultaneously, the dimensionality of the problem

as significantly reduced using the envelopes rather than the im-

ge. The upper and lower envelopes were considered over a time

rame representative of the duration of a fetal cardiac cycle in the

tudied gestational weeks, as previously performed for the tem-

late matching approach. Then, an analysis window size of 128

amples was adopted, leading to 256 features for the classifier (128

or each of the upper and lower envelopes). 

Moreover, four additional features associated with the area un-

er the curve were introduced. Based on an AV conduction of 1:1

n healthy fetuses so that the ventricular activity was always ex-

ected after the atrial activity, the areas between the x axis and

pper and lower profile envelopes were computed on the first and

econd half of the analysis window. 

Furthermore, four additional features based on the pixel anal-

sis were added to improve the classifier performance (shown in

he work [13] ). The brightness information is very useful for the

ecognition of the meaningful part of the image. In fact, ultrasound

rtifacts could be less bright than the portion of the signal of in-

erest; moreover, the cardiac cycle parts are characterized by the

ame brightness across different heart beats in the same trace.

herefore, the mean brightness of the pixel enclosed in the four

reas were computed. Overall, 264 features were chosen: 128 sam-

les of G u , 128 samples of G l , four area features and four brightness

eatures. 

.5. Pattern recognition 

Two different classifiers were adopted to assess the robustness

f the second and third methods described in the previous sec-

ions for the automatic identification of complete and measurable

etal cardiac cycles in the PWD signal: ANN [39] and SVM [40] .

herefore, the classification problem has a binary output: 0 for

n incomplete, malformed or unrecognized cardiac cycle and 1 for

 complete and measurable one. The use of an ANN was previ-

usly investigated in [13] for the third method, whereas the SVM

as introduced in this work because of its capability to solve non-

inearly separable classification problems by the adoption of non-

inear kernels. 

Depending on the method (exploiting the fiducial points or

hole envelope), the ANN was characterized by a different num-

er of input neurons. However, in both cases, ten hidden neurons

nd two output nodes were always used, and the scaled conjugate

radient backpropagation algorithm was exploited for training. The

umber of neurons in the hidden layer was empirically chosen to

btain an acceptable performance on the available dataset without

ncurring an overfitting problem. 

A second classifier was also tested, i.e., an SVM with a Gaus-

ian radial basis function kernel, ν = 0.5, and box constraint set to
Fig. 4. Labelling 
. Classification was performed using the MATLAB Neural Network

oolbox and MATLAB Statistics and Machine Learning Toolbox. 

.6. Dataset labelling 

For a quantitative assessment of the algorithm performance,

74,319 signal windows were labelled by using a custom graphi-

al user interface developed using MATLAB. The interface allowed

he cardiologist for scrolling over the trace to label multiple cardiac

ycles. In order to represent the window under examination to the

linician, the interface showed the PWD image with two rectan-

ular canvas, one enclosing the atrial activity (red box, 64 sample

ong) and one the ventricular activity (blue box, 64 sample long).

he resulting window size was 128 samples, as it was explained

n Section 3.4.3 . If the two boxes overall contained a well-recorded

ardiac cycle in terms of both atrial and ventricular activities, thus

seful for clinical inspection and parameters computing, the cardi-

logist could label the selected window as “complete and measur-

ble”, otherwise she could keep scrolling over the trace. 

Fig. 4 shows some examples of cardiac cycles labelled as “com-

lete and measurable”, Fig. 4 a, and a segment of PWD signal where

o one was labelled in that way, Fig. 4 b. As can be seen from

ig. 4 a, complete cycles are neither noise-free nor perfect from a

orphological perspective, conversely being affected by artifacts

ut still meaningful for diagnostic purposes. 

Moreover, for each window labelled as complete and measur-

ble, the tool also applied the same label to those preceding and

ollowing it, up to 15 samples. Similarly, incomplete or unreadable

eats were taken on the remainder of the traces. Overall, 87,736

ignal windows represented complete and measurable cycles, and

6,583 windows represented incomplete or malformed fetal car-

iac cycles. Such an approach led to a balanced dataset. 

.7. Comparative analysis method 

To assess the performance of the different methods, the accu-

acy (Acc) was computed as follows: 

cc = (T P + T N ) / (P + N ) × 100 (3)

here TP is the number of true positive detections, TN is the num-

er of true negative detections, P is the number of positive sam-

les, and N is the number of negative samples. For the template

atching technique, the results were compared directly with the

nnotated cardiac cycles leading to a single accuracy value. 

Instead, the validation of the classifiers was performed using

 leave-one-subject-out scheme, which in this case is equivalent

o a 25-fold scheme without random sampling. This allowed the

chievement of a fairer test as no PWD signal from a given subject

as used for training the classifier when that subject was used for

esting; however, the same would not have occurred in the case
procedure. 
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Fig. 5. (a) Confusion matrix for the first method. (b) Classification accuracy for the second and third methods, respectively on the left and right boxplots, with the two 

different classifiers model. 
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of random sampling for training and testing. Remarkably, since the

dataset included 43 traces taken from 25 subjects, there could be

more than one trace per subject. Based on this validation approach,

25 different error predictions for the 25 folds were obtained, and

the results are presented using box-and-whiskers plots reporting

the median, the 25th and 75th percentiles (box), the smaller and

higher values not representing outliers (whiskers), and the outliers

(crosses). 

Furthermore, statistical analysis was performed to investigate

the significant differences between the following: (i) the two clas-

sifiers (ANN and SVM) among the second and third techniques and

(ii) the second and third methods. First, the normality of the dis-

tributions was inspected by using the Lilliefors test. Since the out-

come of the test allowed to safely reject the normality hypothesis,

we adopted the Wilcoxon signed rank test, a non-parametric sta-

tistical test, to study the significance of the results, considering a

significance level p < 0.05. 

4. Results 

The accuracy for the first method (template matching) is lim-

ited to 48.5%. The confusion matrix, which represents this result

( Fig. 5 a), shows a really high number of the FP with the chosen

threshold. By increasing the threshold, the number of FP decreases,

but the number of FN grows. The selected threshold was chosen to

be a good compromise. 

From a comparison of the second and third methods, the su-

periority of the latter compared with the former is evident ( p

< 0.0 0 01 regardless the classifier model). Fig. 5 b allows appreci-

ating the robustness of the proposed solutions with respect to the

chosen classifier model, excluding a large bias in the results due

to this choice. The SVM and ANN performed similarly. However,

from the statistical analysis it is possible to exclude the significant

superiority of a classifier compared with the other for the second

method, where the achieved p -value was 0.97, whereas the p -value

was 0.001 for the third method, which revealed a significantly bet-

ter performance of the SVM with respect to the ANN. Feature re-

duction by principal component analysis (PCA) applied before the

classifier did not led to any significant difference compared to the

adoption of the whole feature set for both the approaches. 

5. Discussion 

Regarding the first method, the poor performance could be at-

tributed to the selection of templates based on the fetal heart rate.

To exclude the possible occurrence of this effect, different heart
ates within the dataset were checked to prevent the presence of

utliers that could affect the performance of the algorithm. Since

o outliers were detected, the results of the first method were not

nfluenced by the chosen length of the templates. Another expla-

ation for this unsatisfactory result could be the set of templates

dentified to represent the atrial activity patterns. However, the

emplates were extracted as those resembling the largest part of

he atrial activities in the beats annotated as complete and mea-

urable by the cardiologist. Further analyses, possibly including the

entricular activities, did not improve the algorithm performance

data not shown). Another parameter that could have influenced

he results is the template matching threshold, but it was selected

o be a good trade-off in the classification performance. In the

nd, the noisy nature of the signals, imperfect envelopes, and pres-

nce of the valve clicks could have contributed to this poor perfor-

ance. 

The reduced feature set for the second method, possibly along

ith an imprecise identification of the fiducial points in the pres-

nce of noise, was probably responsible for its relatively poor

erformance. This problem could be overcome by a more sophis-

icated algorithm for the detection of the fiducial points charac-

erizing EA and V waves. However, either the optimization of the

elineation algorithm or its validation through manual annotation

requiring a huge annotation work by the cardiologists) was be-

ond the scope of this research. Conversely, the third method,

ot requiring complex feature extraction stages, was able to ac-

urately distinguish complete and measurable fetal cardiac cycles

rom incomplete or not meaningful cycles, reaching a mean accu-

acy of 98% with a standard deviation of 1% using the SVM clas-

ifier (97.63% ± 2.09% for ANN). Remarkably, the number of fea-

ures is significantly lower than the number of pixels in the images

orresponding to the extracted windows, so the complexity of the

lassifier model is reduced. However, the number of features is in

ny case largely higher for the third method than for the second

ne, so the better results could be ascribed to the wider knowl-

dge available by the third technique, even after possible reduc-

ion in the number of adopted features by PCA. Nevertheless, the

erformed comparison was needed in order to evaluate if a classi-

er exploiting a reduced feature set providing the most relevant

nformation about the PWD envelope could be effectively used,

ince in this case the computational complexity would be substan-

ially reduced. Even though, in the light of a possible integration

f the proposed methods in an ultrasound device, this aspect is of

aramount importance, the results suggest to avoid considering a

educed set of features in order to preserve the maximum possible

ccuracy. 
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By looking at the presented results, some important remarks

hould be discussed. The achieved results could have been biased

y the labelling performed by a single cardiologist. Having a sec-

nd expert would avoid any bias but, considering the amount of

ime for the labelling procedure and the required expertise, it was

mpossible to obtain further labelling from other clinicians. Never-

heless, considering that no measurements were performed by the

ardiologists, but only visual inspection of the heart cycles, the bias

ntroduced is negligible from a clinical perspective. 

It is also important to underline that the work focused the at-

ention on antenatal PWD, but the same method could also work

n the adult cardiac PWD, where the pattern is almost the same,

part from the inversion of the E/A ratio. From this perspective,

t is worth to note that the adoption of the proposed method on

dults would be definitely easier. In fact, on fetuses, the considered

ample volume for a five-chamber apical window is tiny and the

etus is often moving in the womb, whereas the sample volume

n adults is bigger and its position is more stable. Remarkably, no

ompensation for fetal movements can be introduced since their

ccurrence simply leads to loosing the correct sample volume. 

Finally, an important aspect to be considered is that, by dealing

ith the mitral flow, which is biphasic and characterized by high

nter-patient variability in the shape of the PWD, this problem is

ore challenging than the detection of the monophasic waves [30] ,

o the accuracy results are significantly high and important. 

The main limitation of this study is that the available dataset

ncluded only healthy fetuses, which is motivated by the specific

ata acquisition protocol approved by the Ethical Committee of

he Cagliari University Hospital. A comprehensive study including

 large population with CHD and functional problems, showing

ain changes in the apical five-chamber window PWD pattern, is

eyond the scope of the present work. However, it is conceivable

hat a hierarchical classification scheme can identify the different

atterns from incomplete or noisy portions of the recordings. The

ost significant complexity of this study extension would be the

ncidence of such diseases in antenatal screening, limiting the ac-

uisition of a significant number of cases for classifier training.

evertheless, we planned to investigate such an extension in the

uture. 

. Conclusion 

This work presented and compared different approaches for the

utomatic detection of complete and measurable cardiac cycles in

WD traces, acquired based on an apical five-chamber window. 

The results reveal how the adoption of a supervised classifier

rained with the samples representing the upper and lower en-

elopes of the PWD, with eight additional features based on the

rea under the curve of the envelopes and the brightness of the

ixels enclosed in such areas, helps in achieving excellent detec-

ion results. The results are significantly better ( p < 0.0 0 01) than

hose of similar approaches based on reduced feature sets that

xploit only some fiducial points on the signal, and dramatically

etter than the simplest template matching technique. Due to the

mportance of the PWD envelope shape in the definition of the fea-

ures used by the classifier-based approaches, a future step of the

esearch will be aimed at the evaluation of the impact of this pro-

essing on the final outcome of the automatic detection. 

Once a well-formed fetal heartbeat is identified by the pro-

osed algorithm, its measurement can be performed manually or

utomatically. As such, the algorithm can be useful for the analysis

f long PWD traces or as an aid for the ultrasound operator with

imited skills on fetal echocardiography for the identification of fe-

al heartbeats that can be analyzed for the extraction of clinical

arameters useful for the quantification of the cardiac function. 
We assume that the proposed algorithm could be integrated as

 software plugin in ultrasound machines. Because of the charac-

eristics of the processing, the algorithm can work on-line. How-

ver, substantial changes would affect the extraction of the PWD

nvelope in this case since the raw signal is available in an-

ther form inside the machine. The automatic recognition algo-

ithm could be implemented on the same hardware architecture

n charge to perform the usual ultrasound processing or could also

un on a dedicated small hardware module. 

Future steps of this research are also pursuing the automatic ex-

raction of the clinical measurements from the well-formed heart-

eats in the PWD trace. To this aim, we are currently developing

 dataset of fetal cardiac PWD traces manually annotated by pedi-

tric cardiologists with experience in the antenatal assessment of

he cardiac function. 
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