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Abstract. The purpose of this paper is to highlight certain features of a dynamic optimisation
problem in an economic growth model with environmental negative externalities that gives rise
to a two-dimensional dynamical system. In particular, it is demonstrated that the dynamics of the
model, which is based on a production function with perfect substitutability (perfect substitution
technologies), admits a locally attracting equilibrium with a basin of attraction that may be
considerably large, as it can extend up to the boundary of the system phase plane. Moreover,
this model exhibits global indeterminacy because either equilibrium of the system can be selected
according to agent expectation. Formulas for the calculation of the bifurcation coefficients of the
system are derived, and a result on the existence of limit cycles is obtained. A numerical example
is given to illustrate the results.

Keywords: dynamic optimisation problem, economic growth model, environmental economics,
Hopf bifurcation, Poincaré compactification.

1 Introduction

Equilibrium selection in dynamic optimisation models with externalities may depend on
the expectations of economic agents rather than the history of the economy, as pointed
out in [22] and [28]. Starting from the same initial values of the state variables (his-
tory), economies with identical technologies and preferences may follow rather different
equilibrium trajectories according to the economic agents’ choices of the initial values
of the jumping variables (expectations). As is well known, expectations are important
when the dynamical system describing the evolution of the economy admits a locally
attracting equilibrium point (which may correspond to a balanced growth path). In that
case, if the initial values of the state variables are sufficiently close to the equilibrium
values, the transition dynamics depends on the initial choice of the jumping variables,
and thus there exists a continuum of equilibrium trajectories that the economy could
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follow to approach the equilibrium point. This type of indeterminacy, which is known as
“local indeterminacy”, has been extensively studied. The analysis of the linearisation of
a dynamical system around an equilibrium point provides all the information required to
detect local indeterminacy if the equilibrium point is hyperbolic.

However, some studies stress the relevance of global analysis to obtain satisfactory
information about the equilibrium selection process. In fact, global analysis allows high-
lighting more complex contexts in which equilibrium selection is not unequivocally de-
termined by the initial values of the state variables. For example, given the initial values
of the state variables, the economy can follow equilibrium trajectories converging to dif-
ferent ω-limit sets, that is, the long-run behaviour of the state variables is rather different
along these trajectories [2–4, 6, 12, 14, 20, 29].

The indeterminacy of equilibrium selection is called “global” if it is observed outside
the “small neighbourhood” of an equilibrium point to which local analysis techniques are
applied.

The present study is based on the model introduced by Antoci et al. [2], who analyse
a three-dimensional system (the framework is that introduced in [33]) whose trajecto-
ries are suboptimal Nash solutions of a dynamic control problem. Then, in the three-
dimensional phase space, the two-dimensional stable manifold of a saddle-point stable
stationary state may separate the basin of attraction of another Pareto-dominated sta-
tionary state (a poverty trap) from a region whose trajectories tend to a boundary point
where the economy collapses (i.e. physical capital and labour tend to zero, whereas the
environmental resource tends to its carrying capacity). The possible existence of limit
cycles, generated by Hopf bifurcations, is demonstrated through numerical simulations.

In [2], the authors assumed that the production technology is represented by the Cobb–
Douglas function Y (t) = K(t)αL(t)βE(t)γ with α+β+γ < 1 and α, β, γ > 0, whereas
in the present study, a linear production function (perfect substitution technologies) is
proposed.

This production function with perfect substitutability allows the investigation of sys-
tem complexity.

In particular:

(a) It is possible to determinate both the equilibria and the Hopf bifurcation in closed
form; see Sections 4.1 and 4.4, respectively.

(b) The “optimal” control variables L(t) (labour supply) and C(t) (consumption)
are constant over time, giving rise to a two-dimensional dynamical system with
a “stronger” form of global indeterminacy. Moreover, it is possible to determine
the range of the continuum of initial values Li0 such that the trajectories form
(K0, E0, L

i
0) approach a stable equilibrium; see Section 4.3.

(c) No poverty trap is present.
(d) The dynamics of the model admits a locally attracting equilibrium point that has

an unbounded basin of attraction; see Section 5.

The article is organised as follows. In Section 2, we outline the underlining theory
of the model. In Section 3, we describe the dynamics. Section 4 is concerned with the
analysis of the model. In Section 5, we apply the Poincaré compactification.

Nonlinear Anal. Model. Control, 25(1):84–107

https://doi.org/10.15388/namc.2020.25.15733


86 P. Russu

2 Model specification

We analyse an economy constituted by a continuum of identical economic agents, and the
size of the agent population is normalised to unity. At each instant of time t ∈ [0,∞),
a representative agent produces an output Y (t) by the following function with perfect
substitutability [12, 14, 16]:

Y (t) = αK(t) + βL(t) + γE(t), (1)

where K(t) is the stock of physical capital accumulated by the agent, L(t) is the agent’s
labour input, and E(t) is the stock of an open-access renewable natural resource. (In
modelling production activity based on open-access natural resources, for example, fish-
ery, forestry and tourism, the stock E(t) of the environmental resource is often an input
to the production function [5, 8, 25].) We assume that the agent’s instantaneous utility
function depends on the leisure 1 − L(t) and the consumption C(t) of the output Y (t);
more precisely, we consider the following additively nonseparable function (a function of
this type is used by [7, 21, 31]):

U
(
C(t), L(t)

)
=

(C(t)(1− L(t))ε)1−η − 1

1− η
,

where C > 0 and 0 6 L 6 1 are an individual’s consumption and hours worked,
respectively, and the positive parameters ε and η denote the weights on utility towards
leisure and the inverse of the intertemporal elasticity of substitution in consumption,
respectively. The instantaneous utility function U(C,L) is increasing in consumption and
decreasing in labour supply at a decreasing rate, that is, UC > 0, UL < 0, UCC < 0 and
ULL < 0. Moreover, we assume that the utility function is concave in C and 1 − L, that
is, η > ε/(1 + ε).

The total output Y (t) may be allocated to either aggregate consumption or physical
capital accumulation. Consumption contributes directly to the current welfare, whereas
investment, which increases the current physical capital stock, ensures greater future
consumption and welfare. For the sake of simplicity, it is assumed that there is no physical
capital depreciation. Hence, the evolution of K(t) may be expressed by the following
differential equation:

K̇(t) = Y
(
K(t), L(t), E(t)

)
− C(t),

where K̇(t) is the time derivative of K(t). To model the dynamics of E, we assume that
such a stock is composed of homogeneous units and that it changes over time owing to
two different flows with opposite and offsetting effects: First, in the absence of any human
economically based intervention, the natural resource evolves according to a biotic law
of motion that suggests the well-known logistic equation. (The logistic function has been
extensively used as a growth function for renewable resources; see, for example, [11,18].)
Second, the natural capital stock is subject to an economically motivated extraction pro-
cess, or harvesting activity, because this is required for the production of the final good in
the economy.
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The economy-wide aggregate production Y (t) negatively affects the natural resource
stock; however, the value of Y (t) is considered exogenously determined by the represen-
tative agent.

Combining the two flows that affect the evolution of the natural capital stock, we
obtain the following law of motion:

Ė(t) = E(t)
(
E − E(t)

)
− δY (t), (2)

where the parameter E > 0 represents the carrying capacity of the natural resource,
and the parameter δ > 0 measures the negative impact of Y (t) on E. (We note that E
is the value that E would reach as t → +∞ in the absence of negative impact owing
to economic activity.) Under the specification (2) of the environmental dynamics, the
production process in the economy can be interpreted as an extractive activity. Its impact
on the natural resource is given by the rate of harvest, which is proportional to Y (t).
This assumption is common in models of economic dynamics depending on open-access
resources; see among others, [8, 9, 15, 30]. Moreover, it has been introduced in economic
growth models where a natural resource-intensive sector is considered; see [5, 26].

We assume that the representative agent chooses the functions C(t) and L(t) to solve
the following problem:

max
C(t),L(t)

∞∫
0

(C(t)(1− L(t))ε)1−η − 1

1− η
e−θt dt (3)

subject to
K̇(t) = αK(t) + βL(t) + γE(t)− C(t),

Ė(t) = E(t)
(
E − E(t)

)
− δY (t)

with K(0) and E(0) given, K(t), E(t), C(t) > 0 and 0 6 L(t) 6 1 for every t ∈
[0,+∞). The multiplication of U(C(t), L(t)) in (3) involves the rate of time preference
θ > 0. The rate of time preference reflects the fact that individuals evaluate today’s utility
higher than the same utility gain in some future period or the one of their children.

We assume that the accumulation capital K(t) is reversible, that is, we allow disin-
vestment K̇(t) < 0 at some instants of time. Furthermore, we assume that, in solving
problem (3), the representative agent considers Y (t) to be exogenously determined be-
cause economic agents are a continuum, and hence their individual impact on Y (t) is
null. However, as agents are identical, ex post Y (t) = Y (t) holds. This implies that the
trajectories resulting from the model are not socially optimal but Nash equilibria because
no agent has an incentive to modify his/her choices if the others do not modify theirs.

3 Dynamics

The current value Hamiltonian function associated with problem (3) is [33]

H =
(C(t)(1− L(t))ε)1−η − 1

1− η
+Σ(t)

(
αK(t) + βL(t) + γE(t)− C(t)

)
.
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The dynamics of the economy is described by the system

K̇(t) =
∂H

∂Σ(t)
= αK(t) + βL(t) + γE(t)− C(t), (4)

Σ̇(t) = θΣ(t)− ∂H

∂K(t)
= (θ − α)Σ(t) (5)

with the constraint
Ė(t) = E(t)

(
E − E(t)

)
− δY (t) (6)

and the transversality condition

lim
t→+∞

e−θtΣ(t)K(t) = 0. (7)

We note that the transversality condition has the following interpretation: the total value
of wealth (shadow price × quantity) does not increase at a rate greater than the rate of
return to equilibrium.

Remark 1. We note that the adopted utility function impliesC(t) > 0 and 0 6 L(t) < 1.
Indeed, to ensure any value of the parameter η > ε/(1 + ε), C(t) = 0 and L(t) = 1 are
dropped.

Thus, we should consider the Lagrangian

L = H + µ(t)L(t), (8)

where µ(t) is the usual piecewise continuous Lagrange multiplier function in R.
Therefore, C(t) and L(t) satisfy the following conditions:

LC = HC = 0, LL = HL + µ(t) = 0, (9)

where

HC = (C(t)(1− L(t))ε)−η
(
1− L(t)

)ε −Σ(t), (10)

HL = −ε
(
C(t)

(
1− L(t)

)ε)−η
C(t)

(
1− L(t)

)ε−1
+ βΣ(t), (11)

µ(t) > 0, µ(t)L(t) = 0. (12)

We should distinguish between a boundary and an interior arc. We will concentrate on
the latter case (0 < L(t) < 1, that is, µ(t) = 0) because the former (L(t) = 0, that is,
µ(t) > 0) is analysed in Appendix A.

Combining HC = 0 and HL = 0, we obtain

C(t) =
β

ε

(
1− L(t)

)
. (13)

By equation (5) we have
Σ̇(t)

Σ(t)
= θ − α, (14)

whose solution is
Σ(t) = Σ0e(θ−α)t. (15)
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Thus, we have the following cases:

(i) θ − α > 0, and thus Σ(t) increases indefinitely;
(ii) θ − α = 0, and thus Σ(t) = Σ0;

(iii) θ − α < 0, and thus Σ(t)→ 0;

and the transversality condition (7), which can be written as

lim
t→∞

Σ0e−αtK(t) = 0. (16)

Substituting (13) in (10), we obtain

A
(
1− L(t)

)φ −Σ(t) = 0, (17)

where A := (β/ε)−η and φ := ε(1 − η) − η. We note that the condition η > ε/(1 + ε)
implies that φ < 0. By taking the time derivatives on both sides of equation (17), we
obtain

A|φ|
(
1− L(t)

)−|φ|−1
L̇(t)− Σ̇(t) = 0. (18)

By combining this with equations (14) and (17), the law of motion for the agent’s labourL
is as follows:

L̇(t) =
(θ − α)

|φ|
(
1− L(t)

)
, (19)

whose solution (if we let ω := (θ − α)/|φ|) is

L(t) = 1 + (L0 − 1)e−ωt. (20)

Then, there are three cases:

1. ω > 0 (θ − α > 0), which implies that L(t)→ 1;
2. ω = 0 (θ − α = 0), which implies that L(t) = L0;
3. ω < 0 (θ − α < 0), which implies L(t)→ −∞.

Thus, considering the law of motion of Σ(t), we conclude that the condition θ = α is
necessary for the existence of an equilibrium point. This implies that the time preference
is equal to the market interest rate. (In [10, 13, 27], the authors obtained an equilibrium
point if the time preference is equal to the market interest rate even in different contexts.)
In this case, the choice of the initial condition 0 < L0 < 1 implies L(t) = L0 for all t.

Replacing L(t) with L0 in (13), we obtain

C(t) = C0 =
β

ε
(1− L0). (21)

Then the dynamical system to be analysed becomes (henceforth, the time argument will
be dropped)

K̇ = αK + γE − β

ε

(
1− L0(1 + ε)

)
,

Ė = E(E − δγ − E)− δαK − δβL0.

(22)

Thus, the transversality condition (16) implies that the system is completely determined
over time.
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Moreover, after the initial conditions of the economy K0, E0, L0 have been chosen,
the consumption C = C0 is determined by equation (21).

To understand the condition θ = α, we rewrite the dynamics of co-state (5) as

θΣ = Σ̇ − ∂H

∂K
,

which can be interpreted as follows: The second term on the right is the change in the
value (utility) of the agent resulting in an infinitesimal change in its capital stock, whereas
the first term (gain or loss) is the change in the capital resulting from any change in its
shadow price, that is, the price of its competitive equilibrium. The right-hand side is the
net output of an infinitesimal unit of capital, valued at its shadow price, given that the rate
of the time preference θ of the agent is equal to the interest rate of the equilibrium of the
competitive market capital.

4 Model analysis

In this section, we will analyse the equilibrium points, stability and Hopf bifurcations
of the dynamical system (22). Furthermore, the model’s global indeterminacy will be
discussed.

4.1 Equilibria

The equilibrium points are obtained by determining the intersections between the curves
with equations

F(E,K) = αK + γE − β

ε

(
1− L0(1 + ε)

)
= 0,

G(E,K) = E(E − δγ − E)− δαK − δβL0 = 0.
(23)

We have the following proposition.

Proposition 1. The dynamical system (22) admits at most two equilibrium points: A =
(E?A,K

?
A) and B = (E?B ,K

?
B), where

E?i =
E

2
∓ 1

2

√
E2 − 4

δβ

ε
(1− L0), (24)

K?
i = −γ

α
Ei +

β

αε

(
1− L0(1 + ε)

)
(25)

with i = A,B.

Proof. The curve G = 0 is a parabola and F = 0 is a straight line. Consequently, these
curves have at most two intersections. It is evident from F = 0 that a necessary condition
for the existence of any equilibrium point is 1 − L0(1 + ε) > 0, that is, L0 < L0 :=
1/(1 + ε). Solving F(E,K) = 0 for K and substituting in G(E,K) = 0,we have the
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following quadratic equation:

E2 − EE +
β

ε
δ(1− L0) = 0, (26)

whose solutions are (24), which together with K?
i represent the coordinates of the equi-

librium points.

To state the next proposition, we define the following threshold values:

E = E0T (L0) := 2

√
βδ

ε
(1− L0), (27)

E = E1(L0) :=
β

εγ
(1− L0(1 + ε)) +

δγ(1− L0)

1− L0(1 + ε)
, (28)

L̃0 =
1

1 + ε
−
εγ(γδ +

√
δ(δγ2 + 4β(1 + ε)))

2β(1 + ε)2
. (29)

Proposition 2. The equilibrium points of the dynamical system (22) in the (L0, E)-plane
are

(i) A and B if and only if (iff ) 0 < L0 < L̃0 and E0T (L0) 6 E 6 E1(L0) (light
grey region in Fig. 1(a));

(ii) A iff L0 ∈ (0, L0) and E > E1(L0) (dark grey region in Fig. 1(a)).

Figure 1. Classification of equilibrium points of (22). Panel (a) shows a numerical simulation of Proposition 2
in the parameter space (L0, E). Panels (b)–(f) show the graphs of the curves F = 0 (red curve) and G = 0
(black curve), obtained by fixing the parameter L0 and varying E. (Online version in colour.)
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Moreover, if 0 < L0 < L̃0, E < E0T (L0), L̃0 < L0 and E < E1(L0), there are no
equilibrium points (white region in Fig. 1(a)).

Proof. The classification in this proposition, based on the values of the parameter E and
the control L0, and represented in the plane (L0, E) (see Fig. 1(a)), can be easily verified
considering that the threshold values defined in (27)–(29) are characterised by following
properties (which can be easily proved):

(i) Given L0, the function E0T (L0) (see Figs. 1(a) and 1(c)) indicates the value of
the parameter E such that the curves F = 0 and G = 0 are tangent.

(ii) Given L0, the function E1(L0) indicates the value of the parameter E such that
K?
B = 0 (or G(E?B , 0) = F(E?B , 0)) (see Fig. 1(e)). This function is convex and

presents a vertical asymptote with equation L0 = 1/(1 + ε); furthermore, it is
tangent to the curve E0T (L0) at L0 = L̃0; see Fig. 1(a).

Figures 1(b)–1(f) show that givenL0 = L?0, asE increases (fromP1 toP5 in Fig. 1(a)),
the curve F = 0 remains stationary (it does not depend on E; see the first equation
in (23)), whereas the curve G = 0 moves upwards, giving rise to: no intersection, a tangent
point, two intersections and one intersection between the curves F = 0 and G = 0.

4.2 Stability of equilbria

Concerning the stability nature of the equilibrium points, we consider the Jacobian matrix
of system (22). More precisely, it is evaluated at any equilibrium point (K?, E?) as

J =

(
α γ
−δα a

)
, (30)

where a := E − γδ − 2E?.
It is well known that the study of the eigenvalues of J is crucial to understand the

nature of the equilibrium points. In this respect, the characteristic polynomial of the
Jacobian matrix is

P(λ) = λ2 − T λ+D,

where T = α + a and D = α(E − 2E?) represent the trace and the determinant of J ,
respectively.

It is evident that the signs of both roots of P(λ) depend on the coefficients T and D.
For instance, under the assumption that T > 0 andD > 0, both roots are positive, and the
equilibrium point (K?, E?) represents a repellor, whereas if D < 0, then the roots have
opposite signs and the equilibrium point is a saddle point.

Under the conditions of the previous proposition, the stability of the equilibrium
points A and B can be determined through the signs of T and D using the following
proposition.
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Figure 2. (a) Dynamical behaviour regions for system (22). (b)–(e) Characteristic phase diagrams exemplifying
these regions. The pairs of symbols (−,−), (+,−) and (+,+) represent attractive, saddle, and repellor points,
respectively. The parameter values are: α = 0.02, β = 0.15, δ = 0.75, ε = 0.2 and γ = 0.5. (Online version
in colour.)

Proposition 3. For any coordinates (E,L0), we consider the curve with equation

Γ (E,L0) := α− δγ +

√
E2 − 4

δβ

ε
(1− L0) = 0, (31)

where 0 < L0 < L0 (see Fig. 2). Then

(i) Below this curve, the equilibrium point A is an attractor point;
(ii) Above this curve, the equilibrium point A is a repellor point.

Moreover, the equilibrium point B is always a saddle point.

Proof. As the equilibrium pointA is a point of tangency between the curves F and G (see
Fig. 2(c)), and ET = E/2, we have E?A < ET , whereas for the equilibrium point B, we
have E?B > ET . Thus, the determinant D evaluated at A and B is strictly positive and
negative, respectively.

Then, the sign of the trace will determine the signs of the real part of the eigenvalues
associated with the Jacobian matrix. That is,

Equilibrium point A.

1. E?A < (E − γδ)/2 implies that a > 0. Then T > 0 and D > 0, and hence A is
a repellor.

2. E?A > (E − γδ)/2 implies that a < 0. Then D > 0, and hence

Nonlinear Anal. Model. Control, 25(1):84–107
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2.1 if α+ a < 0, then A is an attractor;
2.2 if α+ a > 0, then A is a repellor.

Noting that the trace T evaluated at E?A represents on the (E,L0)-plane the curve
with equation (31), we have proved the first part of the proposition.

Equilibrium point B. As D < 0 holds, B is a saddle point.
This completes the proof of the proposition.

Figures 2(b)–2(e) show on the (E,K)-plane some numerical simulations of trajecto-
ries starting from different initial values of the state variablesK0 = K(0) andE0 = E(0).

We consider the point Q1 with coordinates (E1, L1
0), lying in the dark yellow region.

Then A and B are a repellor and an attractive point, respectively. Numerical examples
of trajectories are shown in Fig. 2(b); one of the trajectories (black curve) is the stable
manifold of B.

We now consider the pointQ2 = (E2, L2
0) with L02 > L1

0 andE2 < E1 in the region
yellow. Then A and B are attractive and repulsive points, respectively. Fig. 2(c) shows
numerical examples of trajectories that are the stable and unstable manifolds of the saddle
point B.

Furthermore, choosing the point Q3 = (E3, L3
0) with L3

0 > L2
0, only the equilibrium

point A can be reached (Fig. 2(d)). The basin of attraction of A is limited by the 1-dimen-
sional stable manifold of the saddle point B.

Finally, a further increase in L0 (Q4 = (E4, L4
0) in Fig. 2(a)) causes (ceteris paribus)

the saddle point B to disappear, whereas A becomes a repellor. Accordingly, no equilib-
rium points can be reached, and all trajectories tend toK = 0 and/or E = 0 in finite time.

Further analysis of Fig. 2(a) suggests two interesting properties of the model: global
indeterminacy and possible existence of limit cycles.

In the next subsection, we will analyse these properties.

4.3 Global indeterminacy

If a value of the parameter E is set, then there exists a continuum of values of the
parameter L0 in the yellow region, causing the trajectories to converge to the attrac-
tive equilibrium A (indeed, if L0 lies on the red curve, the trajectory converges to the
saddle point B). As A depends on the parameter L0, the coordinates of this attractive
equilibrium point will vary, and thus the model exhibits global indeterminacy. Therefore,
the continuum of values of L0 (for a suitable value of the parameter E) that determines
global indeterminacy is included between the curves with equations E − E0T (L0) = 0
and Γ (E,L0) = 0 defined in (27) and (31), respectively.

In Fig. 3, all the trajectories lying on the L0 = L0,i planes start from the same initial
values K0, E0 belonging to the blue line.

In particular, Fig. 3(a) shows a numerical simulation of global indeterminacy (i.e.
there exists a unique value of L0 such that the red trajectory approaches the saddle
point B), whereas Fig. 3(b) shows a numerical simulation of local indeterminacy (i.e.
there exists no value of L0 such that the trajectory approaches B).
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(a) Global indeterminacy (b) Local indeterminacy

Figure 3. Numerical simulation of global/local indeterminacy. All the trajectories lying on the L0 = L0,i

planes start from the same initial values K0, E0 belonging to the blue line. Panel (a) ε = 0.2, E = 1.2;
panel (b) ε = 0.35, E = 9.95. The other parameters are the same as in Fig. 2. (Online version in colour.)

Remark 2. We note that this global/local indeterminacy is “stronger” than that of the
model in [2]. Indeed in [2], if the economy starts from initial values K0 and E0 suffi-
ciently close to the stable equilibrium point P ∗1 , then there exists a continuum of initial
values L1

0 such that the trajectory from (E0,K0, L
1
0) converges to the same values P ∗1

(i.e. the coordinates of the attractive equilibrium point do not change).

4.4 Hopf bifurcation

In Fig. 2(a), it is seen that as the attractive point A crosses the curve Γ (L0, E) (blue
curve), its stability nature changes, giving rise to a possibly generic Hopf bifurcation;
thus, limit cycles may be obtained.

Regarding this, we state the following proposition.

Proposition 4. Under our assumptions, a Hopf bifurcation occurs and is supercritical
(i.e. an attracting limit cycle is obtained around A when this becomes a repellor).

Proof. See Appendix B.

Figure 4 shows numerical simulations of limit cycles around A (which is a repellor)
with varying E or L0.

In Fig. 4(a), for a given value of L0, we take E as a bifurcation parameter. Then
passing from point Q2 to point Q1, we cross the curve Γ , generating a Hopf bifurcation
at E1

H = 0.1231546. Figure 4(b) shows limit cycles obtained by increasing the carrying
capacity from E1

H to E3
H .

Figure 4(d) shows limit cycles obtained by increasing the control L0 form L1
0H to

L3
0H , giving rise to a Hopf bifurcation at L1

0H = 0.409253 when we cross the curve Γ as
we pass from point Q3 to point Q4.

Moreover, Fig. 4 shows the temporal evolutions of the resource stock E(t) (Figs. 4(a)
and 4(d)) and the temporal evolutions of the capital stock K(t) (Figs. 4(c) and 4(f)).
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Figure 4. Locally attracting limit cycles “around” A with varying E (panel (a)) and L0 (panel (d)). The
cyclical strategy in the time domain is shown around the central figures. The parameter values are the same as
in Fig. 1. (Online version in colour.)

Figure 5. Curve of equilibrium point values of K and E with varying δ. LP denotes limit points and H is
a Hopf point. Dotted line: repellor; solid line: attractive point; dashed-dotted line: saddle point. Parameter
values: α = 0.02, β = 0.15, γ = 0.5, ε = 0.2, E = 1.18, L0 = 0.32. (Online version in colour.)

It is interesting to note that the limit cycles L3
0H cross the line K = 0; see Fig. 4(e).

This does not happen if we pass from Q2 to Q1 because the one-dimensional stable
manifold of the equilibrium point B “contains” the limit cycles.

Figure 5 shows the effect of the parameter δ, which measures the environmental
impact of the production process, on the equilibrium points K and E. The coordinates
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ofA are indicated by a solid line (dotted line) if it is an attractive point (repellor), whereas
the coordinate ofB (which is always a saddle point) are indicated by a dashed-dotted line.

We note that a Hopf bifurcation (indicated by H) occurs when δ is sufficiently large
(this is in accordance with [2]).

5 Poincaré compactification

In this section, we analyse the basin of attraction of the equilibrium point A.

Proposition 5. We assume that there exist two equilibrium points: an attractor A and
a saddle point B. Then the basin of attraction of A is unbounded; see Fig. 2(c).

Proof. We will perform an analysis of the flow of the system (22) at infinity.
Specifically, we will study the Poincaré compactification of the system (22) in the

local charts Ui and Vi, i = 1, 2. (For the sake of completeness, this is described in detail
in Appendix D.)

We write the polynomial differential system (22) as[
ẋ
ẏ

]
=

[
P (x, y)
Q(x, y)

]
= J

[
x
y

]
+

[
0

G(x, y)

]
,

where J is the Jacobian matrix (30) and G(x, y) = −y2 is the nonlinear part of (22).

In the local charts U1 and V1. By Appendix D, the expression of the Poincaré
compactification p(X) of (22) in the local chart U1 is

u̇ = v2
(
−u
(
α

v
+ γ

u

δ

)
+ a

u

v
− δα

v
−
(
u

v

)2)
,

v̇ = −v3
(
α

1

v
+ γ

u

v

)
,

which can be rewritten as

u̇ =− αuv − γu2v + auv − δαv − u2, (32)

v̇ =− αv2 − γuv2.

ThenO1 = (0, 0) is an infinity point. As both the trace and the determinant of the Jacobian
matrix of system (32) at the pointO1 are zero, but the Jacobian is non zero, the pointO1 is
called nilpotent. The study of its local phase portrait requires Andreev’s nilpotent theorem;
see [1].

By rescaling time as t = −δατ , it is easy to see that (32) becomes

u̇ = v +X(u, v) = v +
(
pu2 + qu2v + qsuv

)
,

v̇ = Y (u, v) = rv2 + sv2u,

where p = 1/(δα), q = a/(δα), s = γ/(δα) and r = α/(δα).
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Figure 6. Poincaré disk with stable and unstable separatrices of system (B.1): ♦: nonelementary point, �:
saddle point, •: stable point, ◦: unstable point. (Online version in colour.)

After straightforward but tedious computations, one obtains

f(u) = ra2u4 +O
(
u5
)
,

φ(u) = 2au+O
(
u2
)
.

Hence, as α = 4 is even, β = 1 and α > 2β+1, the nature of the stability of the nilpotent
point O1 is determined by a.1) of the nilpotent theorem; see Appendix E.

The flow in the chart V1 is the same as that in the local chart U1 by reversing time
because the compactified vector field p(X) in V1 coincides with the vector field p(X)
in U2 multiplied by −1.

In the local charts U2 and V2. The differential system on the chart U2 is

u̇ =v(αuv + γv − auv + δαu2v + u),

v̇ =− v(av − δαuv − 1),
(33)

where O2 = (0, 0) is an infinity point. As both the trace and the determinant of the
Jacobian of the system (33) are strictly positive, O2 is a repellor.

The flow in the chart V2 is the same as that in the local chart U2 by reversing time
because the compactified vector field p(X) in V2 coincides with the vector field p(X) in
U2 multiplied by −1. Hence, the infinity point in the chart V2 is an attractor.

Figure 6 shows a numerical simulation of the above proposition, highlighting the
stable and unstable separatrices as well as the unbounded basin of attraction of the equi-
librium point A. The parameters of this simulation are as in Fig. 2(c).
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substantially improved.
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Appendix A: Boundary arc L(t) = 0

If L(t) = 0, the necessary conditions (9)–(11) become

C(t)−η −Σ(t) = 0, (A.1)

−εC(t)−η+1 + βΣ(t) + µ(t) = 0 (A.2)

in addition to the complementary slackness condition (12) and the solution of the differ-
ential equation of the co-state dynamics (5)

Σ(t) = Σ0e−mt, (A.3)

where m := α− θ and Σ0 is the initial condition.
To derive an explicit formula for the Lagrange multiplier µ(t) along the boundary arc,

we can use (A.2) combined with (A.1), yielding

µ(t) =
(
εC(t)− β

)
Σ(t).

By the nonnegativity condition in (12) we have

C(t) >
β

ε
.

By equations (A.1) and (A.3), the time evolution of consumption C is

C(t) = C0emt/η (A.4)

with the initial condition C0 = (1/Σ0)1/η . Combining this with the transversality
condition (7) and the corresponding state equations

K̇(t) = αK(t) + γE(t)− C(t), (A.5)

Ė(t) = E(t)
(
E − δγ − E(t)

)
− δαK(t), (A.6)

we obtain the dynamical system to be analysed.
It is easy to see that the sign of the parameter m plays an important role in the study

of the dynamics of this system. Thus, by Remark 1 we should consider the cases m > 0
and m = 0.

Case m > 0. In this case, the control variable C(t) grows at the strictly positive
constant rate g = m/η, and the question is whether the system admits an optimal balanced
growth path (BGP), which is defined as follows.

Definition A1. A BGP is a path along which the (constant) growth rates of the state vari-
ables K(t) and E(t) are gK = K̇(t)/K(t) > 0 and gE = Ė(t)/E(t) = 0, respectively,
and the ratio C(t)/K(t) is constant.
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According to the above definition, a BGP does not exist. Indeed, the differential
equation (A.6) becomes Ė(t)/E(t) = E − δγ − E(t) − δα(K(t)/E(t)), and therefore
Ė(t)/E(t) = 0 cannot be satisfied along a BGP, where E(t) remains constant while
K(t) grows at a constant strictly positive rate.

That is, there are no optimal trajectories along which K(t) and C(t) grow at the same
constant positive rate g = m/η while E(t) remains constant and nonzero.

We now search for the optimal trajectories along which K(t) and/or E(t) tend to zero
in finite time.

Let K(t) be increasing in an interval I = (t, t̄). We assume that there exists t1 ∈ I
such that E(t1) = 0. Then for E(t) = 0, t > t1, the dynamics of K(t) follows the
differential K̇(t) = αK(t)−C(t), t > t1, which has the following closed-form solution:

K(t) =
ηC0

ηα−m
emt/η +

(αη −m)K0 − ηC0e
m
η t1

αη −m
eα(t−t1) ∀t > t1, (A.7)

where K0 is the value of K(t) at time t = t1.
It is easy to verify that the transversality condition limt→∞Σ0e−αtK(t) = 0 can be

satisfied only if η > m/α and K0 = ηC0emt1/η/(αη −m) hold.
Thus, under the above conditions, the time evolution of both variablesK(t) and C(t),

which grow at a constant rate g = m/η, are trajectories optimal in the sense of Nash if
and only if E(t) = 0 after a certain t1.

Figure 7 shows the only trajectory (black colour) that satisfies the above condition.

Remark A1. We note that if K(t) is decreasing in I and E(t) is zero, the dynamics of
K(t) is as in (A.7), but in this case the time evolution of K(t) tends to zero in finite time.
Accordingly, the transversality restriction is not necessary.

Figure 7 shows such an optimal trajectory (magenta colour), which starts in the grey
region.

Figure 7. Numerical example of trajectories in the case of boundary arc L(t) = 0. Parameter values: α = 1.2,
β = 0.15, γ = 0.35, δ = 0.75, ε = 0.2, η = 1.2, θ = 1, E = 1.2, C0 = 0.4. (Online version in colour.)
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Let now t2 be an instant of time such that K(t2) = 0. Then keeping this value for all
t > t2, the dynamics of E(t) follows Ė(t) = E(t)(E−δγ−E(t)) for all t > t2, causing
the state variable E(t) to converge to E − δγ. It is clear that there are no transversality
restrictions.

Figure 7 shows some optimal trajectories (blue colour) starting from the basin of
attraction defined by the green region.

Finally, Fig. 7 shows the separatrix curves (black and red colour) that divide the phase
diagram in three regions.

Case m = 0. This case implies C(t) = C0 > β/ε; see (A.4). Thus, the dynamics
becomes

K̇(t) = αK(t) + γE(t)− C0,

Ė(t) = E(t)
(
E − δγ − E(t)

)
− δαK(t).

The analysis of the above system is as in Section 4.

Appendix B: Proof of Proposition 4

We are interested in analysing the dynamics at the equilibrium point A using L0 as
bifurcation parameter. The Jacobian matrix evaluated at A is

J =

(
α γ
−δα J22(L0)

)
,

where J22(L0) := −δγ +
√
E2 − 4δβ(1− L0)/ε.

Its eigenvalues are the roots of the characteristic equation

λ2 − T (L0)λ+D(L0),

where T (L0) = α+ J12(L0) and D(L0) = −α
√
E2 − 4δβ(1− L0)/ε. Thus,

λ1,2 =
1

2

(
T (L0)∓

√
T (L0)2 − 4D(L0)

)
.

The Hopf bifurcation condition implies

T (L0H) = 0, D(L0H) = ω2
H > 0.

For small |L0H |, we can introduce

µ(L0) =
1

2
T (L0), ω(L0) =

√
T (L0)2 − 4D(L0),

and therefore obtain the following representation for the eigenvalues:

λ1(L0) = µ(L0) + iω(L0), µ(L0H) = 0, ω(L0H) = ωH > 0,
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and λ2(L0) = λ1(L0). By straightforward calculations we obtain

LOH = 1 +
ε

4βδ

(
(δγ − α)2 − E2

)
.

Moreover,
ω2
L0H

=
√
α(δγ − α) > 0

Therefore, at L0 = L0H the equilibrium A has eigenvalues µ1,2(L0H) ± iω(L0H) and
a Hopf bifurcation occurs.

By Proposition 3, the equilibrium is stable for L0 < L0H and unstable for L0 > L0H .
We should now verify whether the genericity conditions of Theorem C1 (see Appendix C)
are satisfied. The transversality condition (ii) is easy to verify:

µ′(L0H) =
δβ

ε(δγ − α)
> 0.

To compute the first Lyapunov coefficient, we fix the parameter L0 at its critical value
L0H . For this value, the equilibrium point A has coordinates

EH =
1

2

(
E − (δγ − α)

)
, KH = −γ

α
,

EH +
β

αε

(
1− L0H(1 + ε)

)
.

We translate the origin of the coordinates to this equilibrium by the change of variables
K = KH + x1 and E = EH + x2. This transforms system (22) into

ẋ1 = αx1 + γx2, ẋ2 = −δαx1 − αx2 − x22. (B.1)

This system can be represented as [23]

ẋ = Jx+
1

2
B(x, x) +

1

6
C(x, x, x),

where J = J(L0H), and the multilinear functions B and C take on the planar vectors
x = (x1, x2)T, y = (y1, y2)T, z = (z1, z2)T the values

B(x, y) =

(
0

−2x2y2

)
and C(x, y, z) = 0. We recall the matrix

J(L0H) =

(
α γ
−δα −α

)
.

It is easy to verify that the complex vectors

q ∼
(

1
−α+iω
γ

)
, p ∼

(
1
1 + i α2ω

i γ2ω

)

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Mathematical analysis of an economic growth model 103

are proper normalised eigenvectors (i.e. 〈p, q〉 = 1) of J and JT, respectively. We now
calculate

g20 =
〈
p,B(q, q)

〉
= − i

γω
(iω − α)2,

g11 =
〈
p,B(q, q)

〉
= − i

γω

(
ω2 + α2

)
, g21 = 0

and compute the first Lyapunov coefficient by

l1(L0H) =
1

2ω2
Re(ig20g11 + ωg21) = −α

2δ

ω3γ
< 0.

Thus, the nondegeneracy condition (i) of Theorem C1 is satisfied as well. Therefore,
a unique and stable limit cycle is obtained from the equilibrium by the Hopf bifurcation
for L0 > L0H ; see Fig. 5.

Appendix C: Hopf bifurcation theorem

Theorem C1. We assume that a two-dimensional system

ẋ = f(x, α), x ∈ R2, α ∈ R, (C.1)

with smooth f , has for all sufficiently small |α| equilibrium at x = 0 with eigenvalues

λ1,2 = µ(α)± iω(α),

where µ(αH) = 0 and ω(αH) > 0. Moreover, the equilibrium is stable for α < αH and
unstable for α > α0.

Let the following conditions be satisfied:

(i) l1(αH) 6= 0, where l1 is the first Lyapunov coefficient;
(ii) µ′(αH) 6= 0.

Then, a Hopf bifurcation occurs at the origin of the planar system (C.1) for the bifurcation
value α = αH . In particular, if l1 < 0, then a unique stable limit cycle bifurcates from
the origin of (C.1) as α increases from αH ; if l1 > 0, then a unique unstable limit cycle
bifurcates from the origin as α decreases from αH .

Appendix D: Poincaré compactification

The Poincaré compactification relies on the stereographic projection of a sphere onto
a plane. It is used to study the behaviour of trajectories near infinity by means of the so
called Poincaré sphere, introduced by Poincaré [32]. This has the advantage that singular
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points at infinity are spread out along the equator of the sphere. The Poincaré compactifi-
cation allows drawing the trajectories in a finite region and controls the orbits that tend to
or come from infinity; see [17, 19, 24].

Let X = P (∂/∂)x + Q(∂/∂y) be a polynomial vector field, where the functions P
and Q are polynomials of arbitrary degree in the variables x and y, respectively.

We recall that the degree of X is d if d is the maximum of the degrees of P and Q.
The Poincaré compactification is performed as follows. First, we regard R2 as a plane

in R3 defined by (y1, y2, y3) = (x, y, 1), and then we consider the sphere S2 = y ∈ R3:
y21 + y22 + y33 = 1, which we call here the Poincaré sphere; this sphere is tangent to
R2 at the point (0, 0, 1). We may divide this sphere into H+ = {y ∈ S2: y3 > 0}
(the northern hemisphere), H− = {y ∈ S2: y3 < 0} (the southern hemisphere) and
S1 = {y ∈ S2: y3 = 0} (the equator).

We consider the projection of the vector field X from R2 onto S2 given by f+ :
R2 → S2 and f− : R2 → S2, where f+(x) = (x/∆, y/∆, 1/∆) (respectively, f−(x) =

(−x/∆,−y/∆,−1/∆)), with ∆ =
√
x2 + y2 + 1, is the intersection of the straight

line passing through the point y and the north (respectively south) pole of S2. We thus
obtain an induced vector fields on each hemisphere. The induced vector field on H+ is
X̃(y) = Df+(x)X(x), where y = f+(x), and that on H− is X̃(y) = Df−(x)X(x),
where y = f−(x), with DX representing the linear part of X .

The vector field on S2 is called the Poincaré compactification of the vector field on
R2, and it is denoted by p(X).

As is usual with curved surfaces, we use charts or planes for calculation purposes.
For S2, we use the six local planes given by Uk = {y ∈ S2: yk > 0}, Vk = {y ∈ S2:
yk < 0} for k = 1, 2, 3. The corresponding local maps φk : Uk → R2 and ψk : Vk → R2

are defined as (ym/yk, yn/yk form < n 6= k andm,n 6= k. We denote by z = (u,w) the
value of φk(y) or ψk(y) for any k, such that (u, v) will take on different values depending
on the plane under consideration. For points of S1 in a chart, we have v = 0.

The expression for p(X) in the local chart U1 is given by

u̇ = vd
[
−uP (

1

v
,
u

v
) +Q

(
1

v
,
u

v

)]
, v̇ = −wd+1P

(
1

v
,
u

v

)
.

On the chart U2, the expression is

u̇ = vd
[
P

(
1

v
,
u

v

)
− uQ

(
1

v
,
u

v

)]
, v̇ = −wd+1Q

(
1

v
,
u

v

)
,

and on U3, it is

u̇ = P (u, v), v̇ = Q(u, v).

For the other three planes Vi, i = 1, 2, 3, the expression is the same as for U ′i multiplied
by (−1)d−1 for i = 1, 2, 3.
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Appendix E: Nilpotent theorem

Theorem E1. Let (0, 0) be an isolated singular point of the vector field X given by

u̇ = v +X(u, v), v̇ = Y (u, v),

where X and Y are analytic in a neighbourhood of the point (0, 0) and X(0, 0) =
Y (0, 0) = 0. Let v = F (u) be the solution of the equation v + X(u, v) = 0 in
a neighbourhood of (0, 0). Moreover, we define

f(u) := Y
(
u, F (u)

)
= a1u

α +O
(
uα
)
, a1 6= 0, α > 2;

φ(u) :=

(
∂X

∂u
+
∂Y

∂v

)(
u, F (u)

)
= b1u

β +O
(
uβ
)
, b1 6= 0, β > 1.

Then the following hold:

(a) If α is even, then

(a1) if α > 2β + 1, then (0, 0) is a saddle-node;
(a2) if either α < 2β + 1 or φ = 0, then (0, 0) is a critical point whose

neighbourhood is the union two hyperbolic sectors;

(b) if α is odd and a > 0, then (0, 0) is a saddle;
(c) if α is odd and a < 0, then

(c1) if either α > 2β + 1 and β is even, or α = 2β + 1, β is even and b2 + 4a×
(β + 1) > 0, then (0, 0) is a node;

(c2) if either α > 2β+1 and β is odd, or α = 2β+1, β is odd and 4a(β+1) > 0,
then (0, 0) is the union of one hyperbolic sector and one elliptic sector;

(c3) if either α = 2β+ 1 and b2 + 4a(β+ 1) 6 0, or α < 2β+ 1 or φ = 0, then
(0, 0) is a focus or a centre.
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