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A. Barth 1,2, A. Alvera-Azcárate1,2, J.-M. Beckers1,2, R. H. Weisberg3, L. Vandenbulcke1, F. Lenartz1, and M. Rixen4

1GeoHydrodynamics and Environment Research (GHER), MARE, Allée du 6-Aôut 17, University of Lìege Sart-Tilman B5
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Abstract. A method is presented to create an ensemble of
perturbations that satisfies linear dynamical constraints. A
cost function is formulated defining the probability of each
perturbation. It is shown that the perturbations created with
this approach take the land-sea mask into account in a sim-
ilar way as variational analysis techniques. The impact of
the land-sea mask is illustrated with an idealized configura-
tion of a barrier island. Perturbations with a spatially vari-
able correlation length can be also created by this approach.
The method is applied to a realistic configuration of the West
Florida Shelf to create perturbations of the M2 tidal param-
eters for elevation and depth-averaged currents. The pertur-
bations are weakly constrained to satisfy the linear shallow-
water equations. Despite that the constraint is derived from
an idealized assumption, it is shown that this approach is
applicable to a non-linear and baroclinic model. The am-
plitude of spurious transient motions created by constrained
perturbations of initial and boundary conditions is signifi-
cantly lower compared to perturbing the variables indepen-
dently or to using only the momentum equation to compute
the velocity perturbations from the elevation.

1 Introduction

In numerous modelling applications, the uncertainty of the
model results needs to be estimated. An estimation of this
uncertainty is often obtained by realizing a stochastic ensem-
ble forecast: inputs to the model are perturbed within the
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bounds of their respective uncertainty and for each of those
perturbations the model is integrated forward. For ocean
models, the model uncertainty stems, among others, from the
forcing fields and initial conditions (e.g.Lermusiaux et al.,
2006). The spread of an ensemble forecast using perturbed
forcings fields and initial conditions gives the estimation of
the model uncertainty.

This uncertainty (often formally expressed as model er-
ror covariance) is also required in various data assimilation
techniques such as the Ensemble Kalman Filter (Evensen,
2003), the Error Subspace Statistical Estimation (Lermusi-
aux and Robinson, 1999) and the Singular Evolutive Interpo-
lated Kalman Filter (Pham, 2001). The success of the data
assimilation depends crucially on the realism of the model
error covariance which in turns depends on the realism of the
applied perturbations.

Ensemble simulations are also very resource-intensive.
There is the need, thus, to restrict exploration of the state
space only to model states which are physically reasonable
and which respect certain dynamical equilibria. Otherwise
resources might be wasted to compute ensemble members
using unlikely initial or boundary conditions.

Physically unbalanced initial and boundary conditions
produce transient motions during the initialization, often
in form of spurious barotropic waves. Several techniques
have been proposed to reduce those waves in the context
of data assimilation (e.g.Vallis, 1992; Dobricic et al., 2007;
Barth et al., 2007b). These methods, which basically damp
barotropic waves, are difficult to apply to models which in-
clude tides, since tidal waves are also barotropic waves.

The objective of this study is to present a method to create
smooth, Gaussian-distributed, monovariate or multivariate
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260 A. Barth et al.: Dynamically constrained ensemble perturbations

perturbations that have to satisfy a given linear balance. In
particular, a method to produce balanced perturbations for
tidal models is presented here. As the method relies on the
definition of a cost function, the land-sea mask and a possibly
variable correlation-length can be taken into account.

The motivation for applying this technique to tidal bound-
ary conditions is to assimilate a data set resolving tides.
Since part of the model error is associated with erroneous
tidal boundary conditions and initial conditions, those errors
have to be taken into account. In an ensemble approach, the
uncertainty of those fields is represented by an ensemble of
likely and physically balanced initial and boundary condi-
tions.

In Sect.2, the general method is introduced to generate
smooth perturbations satisfying certain constraints. Section3
shows how the structure of the perturbations depends on the
land-sea mask in an idealized configuration. A case with a
spatially variable correlation length is also presented. As an
example, the constraint from a shallow water model is in-
troduced and implemented in a realistic configuration of the
West Florida Shelf (WFS) in Sect.4. This method is com-
pared to other simpler techniques (Sect.5) and the results are
discussed in Sect.6. In Sect.7, the numerical cost of this
method is studied for different domain sizes. Section8 sum-
marizes our findings and provides the conclusions.

2 Methods

All model variables at all grid points that need to be per-
turbed are grouped into the perturbation vectorx which is
composed byn elements. We will seek a method that pro-
vides smooth stochastic perturbations that satisfy approxi-
matelym-constraints given by them×n matrixM :

Mx = 0 (1)

We consider only linear constraints here. Non-linear con-
straints have to be linearized around the unperturbed state.
This constraint can be any relationship between different ele-
ments of the vectorx known a priori, such as the geostrophic
equilibrium, zero horizontal divergence of surface winds, a
climatological TS diagram, stationary solution to the advec-
tion diffusion equation or the linear shallow water equations.
The constraint can also be the requirement that the perturba-
tions have to belong to a subspace defined by e.g. empirical
orthogonal functions (EOFs). In this case the columns ofM
would be all vectors orthogonal to the set of EOFs.

Only homogeneous constraints (i.e. the right-hand side of
Eq. (1) is zero) are considered here because otherwise the
perturbations would have a non-zero mean. The forcing
fields to be perturbed are generally assumed to be unbiased,
as it is also a requirement for most assimilation schemes.

To describe our a priori knowledge of what a realistic per-
turbation is, we introduce a cost functionJ , similar to the
cost function in variational analysis techniques:

2J (x) = (Mx)T WM(Mx) + (Dx)T WD(Dx) + xT WEx(2)

where WM , WD and WE are, for simplicity, diagonal
weighting matrices. The first term penalizes the deviations
from the linear constraint Eq. (1). It is not enforced strictly
(strong constraint), but it has to be satisfied approximately
(weak constraint). The diagonal elements ofW−1/2

M define
the magnitude of an acceptable deviation from the linear con-
straint. The matrixD is a diffusion operator that ensures the
smoothness of the perturbation (Brasseur, 1991; Weaver and
Courtier, 2001). The last term controls the amplitude (or to-
tal energy) of the perturbations. Later, this cost function will
be related to the likelihood of a given perturbation. It is nec-
essary that all constraints added in the cost function are com-
patible to obtain useful perturbations.

The cost function is a quadratic function inx and can thus
be written as:

2J (x) = xT (MT WMM + DT WDD + WE)x (3)

= xT B−1x (4)

where the matrixB−1 (the Hessian matrix ofJ (x)) is defined
as:

B−1
= MT WMM + DT WDD + WE (5)

The dynamically constrained covariance matrixB could
be used directly in assimilation schemes that are based on the
inverse of the background covariance matrix (such as varia-
tional assimilation) without the need to create an ensemble.
For ensemble-based assimilation schemes, the cost function
can be used to define the probability of a perturbationx (e.g.
Kalnay, 2002):

p(x) =
1

(2π)n/2‖B‖1/2
exp(−J (x)) (6)

Perturbations resulting in a large value of the cost function
J , meaning that the constraints are violated, have thus a low
probability. The perturbations satisfying the weak constraint
(1) are drawn from this pdf.

To generate an ensemble of perturbations that follows the
previous pdf, the matrixB−1 is decomposed in eigenvectors
(rows ofU) and eigenvalues (diagonal elements of3) :

B−1
= U3UT (7)

The larger an eigenvalue is, the stronger the correspond-
ing eigenvector violates the dynamical and smoothness con-
straint. Indeed, if the perturbation is the eigenvectorui as-
sociated with eigenvalueλi , the cost function takes the value
2J=uT

i

(
U3UT

)
ui=uT

i U3UT ui=λi
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An ensemble of vectorsz(k) where the subscriptk is the
ensemble member, is created following a normal distribution.

z ∼ N(0, In) (8)

An ensemble of perturbationsx(k) following Eq. (6) can
be obtained by:

x(k)
= U3−1/2z(k) (9)

In practice, only the smallest eigenvalues (and their corre-
sponding eigenvectors) need to be calculated. This enables
the use of efficient software packages to compute selected
eigenvalues and eigenvectors. In this work, we use the GNU
Octave interface to the ARPACK package (Lehoucq et al.,
1997). This approach for generating perturbations will be
used in the subsequent experiments.

As a variant of the previous equation, perturbations can
also be obtained by 2nd order re-sampling method used in
the SEIK (Singular Evolutive Interpolated Kalman) Filter
(Pham, 2001):

x(k)
= U3−1/2H(�)k for k = 1, . . . , N + 1 (10)

where N is the number of eigenvectors retained,H is a
N+1×N matrix whose column vectors form an orthonormal
basis perpendicular to the vector1N+1×1 and(�)k is thekth
column of aN×N random orthogonal matrix�. This en-
semble will have exactly a zero mean and a covariance equal
to B reduced to itsN largest eigenvalues.

Instead of using an eigenvector decomposition, perturba-
tions can also be created by a Cholesky decomposition of
B−1 into square root matrices (Fukumori, 2002):

B−1
= RRT (11)

The perturbations can then be obtained by:

x(k)
= R−1z(k) (12)

SinceR is a triangular matrix, the product of its inverse
and a vector can be efficiently calculated by back substitu-
tion.

3 Impact of the land-sea mask and correlation length

First we will show how the effect of land boundaries such as
islands and peninsulas are taken into account to compute the
perturbations. The effect induced by those barriers is difficult
to include in methods which derive perturbations based on a
given covariance matrix. For example, the method described
in Evensen(2003) is widely used to generate ensemble per-
turbations. The perturbations are generated in Fourier space.
Each Fourier mode is perturbed independently with an ex-
pected amplitude proportional to a Gaussian function of the
wave number, producing a smooth field in physical space.

This method is computationally very efficient since it can
be implemented using the Fast Fourier Transform. Indeed,
it can be shown that for any translation-invariant covariance
matrix, its eigenfunctions are the Fourier modes (Barth et al.,
2007a). In some circumstances, the approach might be ap-
propriate for atmospheric fields and also for oceanographic
fields far from the coastline. But in oceanographic applica-
tions, problems can arise near the coast. This problem will
be illustrated with a narrow elongated island.

The effect of land boundaries is included in the smooth-
ness constraint and is independent of any dynamic constraint.
To show this we can think of the diffusion operator (on which
the smoothness constraint is based) as a way to transfer in-
formation, such as tracer concentration, from one place to
an other. The method using constraints to generate pertur-
bations can then easily take into account a land-sea mask in
the same way as diffusive fluxes of tracers. In continuous
form, the operatorD applied to a perturbation fieldφ can be
written as:

Dφ = ∇ · F (13)

where the vector fieldF is given by:

F = ∇φ for interior points
F = 0 at land-sea boundaries

(14)

The derivatives in Eqs. (13) and (14) are approximated by
centered finite differences, yielding a sparse matrix represen-
tation of D. To facilitate the formulation of this sparse ma-
trix, the operator is separated into sub-steps (calculating the
vector fieldF , application of boundary conditions, calculat-
ing the divergence of the vector field). Each of the individual
steps can be easily expressed as a sparse matrix. The matrix
D is then simply the product of all matrices corresponding
to the sub-steps in the appropriate order. The same approach
will also be used to create a sparse matrix representing the
dynamical constraint.

To highlight the impact of this smoothness operator, we
will not take into account a linear constraint in Eq. (2). Also,
we chose the weighting matrices proportional to the identity
matrix.

2J (x) = L4(Dx)T (Dx) + xT x (15)

The vectorx represents the values of the fieldφ on a set
of grid points and the matrixD is the discretization of the
diffusion operatorD. The exponent ofL has been chosen
such thatL represents a length-scale. Indeed, this parame-
ter is the horizontal correlation length of the perturbations.
At this length scale both terms of the cost function have a
similar magnitude (Brasseur et al., 1996). In the examples
that will follow, the parameter has been adjusted such that
the perturbations based on Eq. (15) have the same correla-
tion length than the perturbations created using the Fourier
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262 A. Barth et al.: Dynamically constrained ensemble perturbations

Fig. 1. Ensemble covariance using Fourier modes(a) and constrained perturbations based on the land-sea mask(b).

transform without any land points. It may be worthwhile to
note here that in this case the horizontal structure of the co-
variance is a Gaussian for the method using the Fourier trans-
form; whereas the covariance of the perturbations based on
the cost function is related to a modified Bessel function of
order 1 in the continuous case, here discretized on a regular
grid (Brasseur et al., 1996).

An ensemble of 10 000 perturbations has been created with
a horizontal correlation length of 20 km for a square domain
with a narrow island. The ensemble covariance has been
computed for a grid point near the end of the barrier (the
black dot in Fig.1). As expected, the structure of the en-
semble covariance using the Fourier transform is isotropic.
On the contrary, the covariance using the cost function is
deformed by the presence of land points. Only grid points
which can be connected with a short path (relative to the cor-
relation length-scale) not crossing land points have a signif-
icant correlation. In general, this is the expected physical
behaviour.

This effect of land points is well known in the context
of variational analysis where the covariance functions are
constructed with differential operators (e.g.Brasseur, 1994).
Here we use this desirable property for the generation of per-
turbations which can be used in sequential Kalman filters us-
ing ensembles.

It should be noted here that in the context of Ensemble
Kalman filtering, covariance functions similar to panel a of
Fig. 1 are not directly used for assimilating observations.
Perturbations with these covariance functions would be ap-
plied to the initial condition for example, and the covariance
function will be inevitably transformed by the non-linear
model (e.g. advected by currents). However, a correlation
across the barrier will still remain; only the shape of the cor-
relation function is modified. Thus an observation made on
one side of the barrier will also impact the other side.

The method based on the cost function can be applied to
any model grid where the discrete diffusion operator can be
formulated. This is an advantage compared to the Fourier
method which can be only applied to rectangular grids and
spherical grids (using spherical harmonics). For more gen-
eral cases, the latter method requires an intermediate grid
since the symmetry requirement (translation invariance) does
not only apply to the domain but also to the model grid itself.

Another advantage of the presented method is that pertur-
bations with a spatially varying correlation length can be cre-
ated. Spatial structures of baroclinic flows in the ocean are
related to the internal radius of deformation. This length-
scale is often much smaller on the weakly stratified shelf than
in the deep ocean. A correlation length proportional to the in-
ternal radius of deformation is thus a reasonable choice. The
effect of a spatially varying correlation length can be easily
taken into account in the variational formulation Eq. (15).
This is not possible with the Fourier method since a spatially
varying correlation length is not translation-invariant. Fig-
ure2 shows a random perturbation obtained for a correlation
length varying linearly from 3 to 10 km in the zonal direction.
As expected, the size of the structure gradually increases as
the correlation length increases.

This aspect is also useful for a system of nested grid mod-
els and for models with unstructured grids. The length scale
of the perturbations has to be properly resolved on the model
grid. If only a unique length scale is used then it must be
several times larger than the coarsest resolution. With a spa-
tially varying correlation scale this limitation is lifted and
areas with locally refined resolution can have smaller-scale
perturbations. In a two-way nesting system, the model fields
on different grids can also be regrouped in a single perturba-
tion vector and the nesting feedback can be introduced as an
additional constraint to ensure a coherent transition between
model grids.
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4 Application to tidal boundary conditions

This method is now applied to create multivariate pertur-
bations of sea surface height and depth-averaged currents
which have to be a harmonic solution of the shallow water
equations. This example has a practical relevance since tides
are governed by those equations. For simplicity, the shal-
low water equations are expressed here on a Cartesian grid,
but they are implemented on a curvilinear grid as it will be
applied to a curvilinear model grid.

∂ζ

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0 (16)

∂u

∂t
− f v = −g

∂ζ

∂x
(17)

∂v

∂t
+ f u = −g

∂ζ

∂y
(18)

whereh is the depth,f is the Coriolis parameter andg is
the acceleration due to gravity. For simplicity we consider
only one tidal constituent. The tidal component M2 is chosen
because it is generally among the largest constituents. We
require that the time dependency of the perturbations has the
following form:

ζ(x, y, t) = eiωtζ ′(x, y) (19)

u(x, y, t) = eiωtu′(x, y) (20)

v(x, y, t) = eiωtv′(x, y) (21)

whereω is the angular frequency of the M2 tides. The per-
turbation vectorx is composed by the elevationζ ′ and the
depth-averaged currentsu′ andv′. It follows that,

iωζ ′
+

∂(hu′)

∂x
+

∂(hv′)

∂y
= 0 (22)

iωu′
− f v′

+ g
∂ζ ′

∂x
= 0 (23)

iωv′
+ f u′

+ g
∂ζ ′

∂y
= 0 (24)

The discrete operatorM is obtained by discretizing the
spatial derivatives Eq. (22–24) on an Arakawa C grid
(Arakawa and Lamb, 1981) using finite volumes. Only wet
points are included in the state vectorx. In this sense, bound-
ary effects are already included inM . The normal velocity at
the land-sea boundary is prescribed to be zero and is not part
of the state vectorx.

Open ocean boundary values are not constrained by the
shallow water equations. If no smoothness constraint would
be present, the resulting ensemble members would be discon-
tinuous at the boundary in the direction parallel to the bound-
ary. The explicit smoothness constraint (Laplacian with a

Fig. 2. Illustration of random field with a variable correlation length
for a square domain without land points.

zero gradient at the open boundary in a direction perpendic-
ular to the boundary) is added to the cost-function to avoid
those discontinuities at the boundary.

The method is tested using the WFS ROMS model (Barth
et al., 2008c) which is nested in the Atlantic HYCOM model
(Chassignet et al., 2007). The nesting procedure is explained
in Barth et al.(2008a). The model uses a curvilinear grid
with a resolution of about 3.5 km near the coast and 10 km
near the open boundary. The model is initialized on the 1st
January 2005 using the elevation, velocity, temperature and
salinity from HYCOM. The boundary conditions from HY-
COM mainly impose the path of the Gulf of Mexico Loop
Current generating mesoscale eddies and filaments inside
the model domain (Barth et al., 2008b). The tidal bound-
ary conditions produce tidal waves propagating inside the
model domain and increase their amplitude near the coast
as predicted by linear tidal wave theory for wide continental
shelves (Clarke, 1991) and by a numerical ocean model of
the WFS (He and Weisberg, 2002).

5 Experiments

Three methods, of increasing complexity, for the generation
of perturbations of the tidal motions are examined:

– The elevation and the two horizontal velocities are per-
turbed independently. Instead of perturbing the ampli-
tude and phase directly, it is preferable to work here
with the complex representation of these tidal param-
eters. The real and imaginary parts are perturbed inde-
pendently. The horizontal correlation length of the per-
turbations is 300 km which is the typical length-scale of
the tidal maps. The complex perturbations are added
to the TPXO6.2 (Egbert et al., 1994; Egbert and Ero-
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feeva, 2002) complex tidal parameters and converted
into amplitude and phase, as tides are usually charac-
terized. If the amplitudes would be directly perturbed
then one could not ensure that they remain positive.

– The elevation is perturbed as described in the previous
experiment, but now the corresponding velocity pertur-
bations are diagnosed using the momentum balance:

u = −
g

f 2 − ω2

(
f

∂ζ

∂y
+ iω

∂ζ

∂x

)
(25)

v =
g

f 2 − ω2

(
f

∂ζ

∂x
− iω

∂ζ

∂y

)
(26)

Those equations become the geostrophic equilibrium
for ω=0. The geostrophic equilibrium is often used to
model error covariances in data assimilation (e.g.Dee,
1991; Brankart et al., 2003) and also to compute per-
turbations of the velocity based on the perturbation of
the density field (Barth et al., 2007a). Equations (25)–
(26) are more complete than the geostrophic equilib-
rium since the former do not assume small accelera-
tions.

– In the third method, perturbations are weakly con-
strained by the Eqs. (22–24) following the approach de-
scribed in Sect.2. The weighting matrixW is defined
by the energyE of shallow water waves:

xT Wx = E =
1

2

∫
S

gζ 2
+ hu2

+ hv2dS (27)

where on the right-hand side, the discretized version de-
fines the weighting matrix (which ensures also proper
dimensional relationships). Up to a constant factorρ0,
E corresponds to the total energy of a system governed
by the shallow water equations.

The weighting matrices for the dynamical constraint
WM , the smoothness constraintWD and the total norm
WE are proportional toW. Since the perturbations are
scaled afterwards, one proportionality coefficient can be
arbitrarily fixed without loss of generality. Here the ma-
trices are defined by:

WM = ω−2W (28)

WD = L4W (29)

WE = αW (30)

whereL (dimension of a length scale) andα (adimen-
sional) are parameters to be chosen. The smaller these
values are, the stronger the dynamical constraint will be

enforced. However, we do not require that the constraint
will be exactly satisfied since it is derived using a series
of assumptions.

After several values of those parameters where tested,
α was set to 0.001 andL to 10 km. The preferen-
tial length-scale taking only the smoothness and total
energy constraint into account is thusα−1/4L=56 km
which is small compared to the length-scale of the tidal
structures. This indicates that the structure of the per-
turbations is mainly determined by the dynamical con-
straint and not by the two other constraints.

When this method for generating ensemble perturba-
tions is applied to data assimilation, one can use cross-
validation (Wahba and Wendelberger, 1980) to estimate
the parametersL and α more objectively in a simi-
lar way than parameters are optimized in e.g. DIVA
(Data-Interpolating Variational Analysis)Brankart and
Brasseur, 1996) and DINEOF (Data Interpolating Em-
pirical Orthogonal Functions; Beckers and Rixen,
2003; Alvera-Azćarate et al., 2007): a small subset of
observations are not used during the data assimilation
and reserved for the validation of the results. The en-
semble run and assimilation steps are repeated for dif-
ferent values of the parametersL andα. The best set
of parameters is the one that minimizes the root mean
squared error compared to the validation data set. This
approach is not used in this present work but might be
explored in further data assimilation studies.

The amplitude of the perturbations is chosen such that, in
all the experiments, the expected value of the energy norm
xT Wx is a given constant. Here we use 0.01 m3s−1 times
the total surface of the model domain. This produces pertur-
bations of the elevation of the order of cm which is compara-
ble to the error of tidal models of this region (He and Weis-
berg, 2002). All methods produce thus perturbations which
are equally energetic.

The M2 tidal parameters for the elevation and the depth-
averaged velocity are obtained from the TPXO6.2 global in-
verse tide model. Those tidal parameters are perturbed using
the three different methods. For each method, an ensemble
of 32 members has been created. The tidal surface elevation
and depth-averaged velocity are added to the initial condi-
tions and to the HYCOM boundary conditions. All ensemble
members are integrated for 10 days with the full, non-linear
ROMS model.

The first method produces isotropic covariances, but this is
not the case for the constrained perturbations since they have
to satisfy (approximately) the shallow water equations. The
horizontal covariance of the constrained perturbations for a
point near the open boundary is shown in Fig.3. This co-
variance represents how a hypothetical error (or an observa-
tion if this covariance is used for data assimilation) near the
boundary would affect the solution within the model domain.
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Table 1. The average standard deviation (in m) of the elevation residual. This quantity indicates the magnitude of the transient motions
created by different perturbations.

Experiment description average standard deviation

1 independent perturbations 0.00763
2 perturbations using the momentum balance 0.00753
3 dynamically constrained perturbations 0.00480

2bis same as 2 but with bottom drag 0.00707
3bis same as 3 but with bottom drag 0.00430

In the vicinity of this point the covariance decreases mono-
tonically with a preferred direction to the North-East inward
to the model domain. However the covariance increases in
Florida’s Big Bend and near the Mississippi Delta. Thus the
impact of an error in the boundary is not only local but it can
be seen remotely due to the propagation of tidal waves. To
include such aspects in error covariance models, dynamical
constraints have to be taken into account.

6 Results

To compare the three different examined methods, it is neces-
sary to quantify the amount of transient motions created due
to the perturbations. The surface elevation of an unperturbed
(central) run was subtracted from each ensemble member to
isolate the impact of the initial and boundary perturbations.
A tidal analysis was performed to subtract the tidal varia-
tions. This residual is then averaged over the 10-day time pe-
riod which is shown in Fig.4. To compute the total amount
of transient motions those maps are averaged in space and the
results are given in Table1. If this residual would be zero,
then the perturbations would have only created tidal waves at
the M2 frequency (unless the amplitude of the perturbations
is so large that it creates harmonics).

The largest transient motions are created by perturbing el-
evation and velocity independently (panel a on Fig.4). The
structure of the standard deviation of the elevation residual is
quite similar to the amplitude of the M2 tide in the WFS. In
cases 1 and 2, the highest values are observed in Florida’s Big
Bend and in the southern part of the domain. This suggest
that the amplitude of the transient motions increases near the
coast in the same way as the barotropic tidal waves increase
its amplitude when the depth decreases and when the wave is
reflected from the coastline. The fact that the transient mo-
tions are amplified near the coast is particularly problematic
since this is often the region of interest for regional models.

To quantify the overall magnitude of the transient motions,
the variance of the residual is averaged over the model do-
main. The square root of the averaged variance (or average
standard deviation) of all three experiments is shown in Ta-
ble 1. The experiment with independent perturbations has
indeed the largest average variance of transient motions.

Fig. 3. Horizontal covariance of the constrained perturbations be-
tween the point near the open boundary marked by a black dot and
all other grid points.

Using the momentum equation to compute the velocity
perturbation based on the elevation perturbation does not sig-
nificantly improve the dynamical balance of the perturbed
model simulation since the average standard deviation is
only slightly reduced. This result is surprising since the
geostrophic equilibrium, which is related to Eqs. (25–26), is
used successfully in data assimilation. The difference here is
that the (pure) geostrophic equilibrium does satisfy the hor-
izontal continuity equation (on an f-plane) and does not re-
quire vertical motions. But this is not the case for Eqs. (25–
26) which can thus entrain a movement of the free surface
generating spurious gravity waves.

The smallest transient motions are obtained by using the
constrained perturbations. The variance of the residual is
reduced by 60% compared to the previous two approaches.
While the standard deviation of the residual is still the largest
near the coast compared to the open ocean, it is now sig-
nificantly reduced. This shows that although the perturba-
tions are derived using several assumptions (in particular, no
bottom drag, purely barotropic and linear dynamics), they
are applicable to an implementation of a baroclinic and non-
linear model with realistic friction.
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266 A. Barth et al.: Dynamically constrained ensemble perturbations

Fig. 4. Standard deviation of the elevation residual.(a) using independent perturbations,(b) using the momentum equation and(c) using
constrained perturbations.

6.1 Impact of bottom drag

In the previous section, only linear terms were examined for
methods 2 and 3. The bottom drag was thus ignored. How-
ever, it is well known that it plays an important role for mod-
elling tides in shelf seas. Including the bottom friction, the
governing equations are:

∂ζ

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0 (31)

∂

∂t
u − f v = −g

∂ζ

∂x
−

τx

h
(32)

∂

∂t
v + f u = −g

∂ζ

∂y
−

τy

h
(33)

The WFS ROMS uses a quadratic parametrization for the
bottom dragτ :

τ = r|u|u (34)

where the drag coefficientr is 10−3. This bottom drag is
linearized around the velocity vector(ū, v̄):

τx =

(
r

2ū2
+ v̄2

√
ū2 + v̄2

)
u (35)

τy =

(
r

ū2
+ 2v̄2

√
ū2 + v̄2

)
v (36)

The velocitiesū andv̄ are set to the half of the maximum
tidal velocity in thex andy directions respectively as this
corresponds to the average of the tidal velocity squared. The
dynamical constraint with bottom drag becomes:

iωζ ′
+

∂(hu′)

∂x
+

∂(hv′)

∂y
= 0 (37)

iωu′
− f v′

+ g
∂ζ ′

∂x
+ cuu

′
= 0 (38)

iωv′
+ f u′

+ g
∂ζ ′

∂y
+ cvv

′
= 0 (39)

wherecu andcv are given by:

cu =

(
r

2ū2
+ v̄2

√
ū2 + v̄2

)
/h (40)
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Fig. 5. Standard deviation of the elevation residual(a) using the momentum equation and(b) using constrained perturbations. Bottom drag
is taken into account.

cv =

(
r

ū2
+ 2v̄2

√
ū2 + v̄2

)
/h (41)

Methods 2 and 3 are repeated by including a linearized
drag term. With the drag term, the Eqs. (25) and (26) be-
come:

u = −A

(
f

∂ζ

∂y
+ (iω + cv)

∂ζ

∂x

)
(42)

v = A

(
f

∂ζ

∂x
− (iω + cu)

∂ζ

∂y

)
(43)

whereA is given by,

A =
g

f 2 − ω2 + cucv + iω(cu + cv)
. (44)

From this denominator, it is evident that the drag reduces
in average the size of the velocity perturbations (for a given
perturbation of the elevation) and alters also the phase.

Figure5 shows the standard deviation of the residual using
perturbations taking the bottom drag into account. In panel
a, the perturbations we created similar to experiment 2 but
using the Eqs. (42) and (43). The results in panel b are ob-
tained by perturbations constrained by the spatial discretiza-
tion Eq. (37–39) similar to experiment 3.

The spatial structure of the residual is comparable to the
residual in the previous experiments with an increase of the
amplitude of transient motions near the coast. However, the
amplitude is indeed reduced in both cases, which confirms
our expectation that the more complete our dynamical con-
straint is, the more balanced our perturbations are. The am-
plitude is actually reduced by approximately the amount rel-
ative to the corresponding experiment without bottom drag.

The smallest transient motions are generated by using the
perturbations constrained by the shallow water equations in-
cluding the bottom drag.

6.2 Motion induced by the constrained perturbations

The main purpose of the proposed procedure is the genera-
tion of balanced perturbations. In the previous section the
magnitude of the transition motions were used to quantify
how close the model state is to an equilibrium state. To fur-
ther study the tidal perturbations we can compare the ampli-
tude and phase of the perturbations with the corresponding
parameters diagnosed from a perturbed run. Since the model
is derived from the non-linear baroclinic equations, we will
examine how relevant the simplified shallow water equations
are compared to a realistic model. Also, the constraints still
use continuous time while the model is discretized in time.

Panel a of Fig.6 shows the elevation of a realization of the
constrained perturbations. The colors represent the ampli-
tude and the isolines are the phase. This perturbation shares
indeed common characteristics known from tidal propaga-
tion. The tidal amplitude is amplified in some regions on
the shelf. It also contains an amphidromic point in the south
eastern part of the model domain.

This perturbation (and the corresponding velocity pertur-
bation) is applied to initial conditions and boundary condi-
tions of the WFS ROMS model. The model is then integrated
for 10 days using realistic forcings. The amplitude and phase
of the difference between the elevation of the perturbed run
and the unperturbed run is computed and shown in panel b of
Fig. 6.

The location and value of the amplitude maxima in the per-
turbed model run are comparable to the applied perturbation.
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Fig. 6. Left panel: a realization of a constrained perturbation. Only the elevation amplitude and phase are shown. Right panel: tidal analysis
of the difference between the elevation of the perturbed and the unperturbed simulation.

The model results contain also the amphidromic point as it
can be seen from the phase. However, some differences in
phase can be seen especially in Florida’s Big Bend, where
the phase difference is about 40◦. The agreement between
both fields is reasonable given the number of assumptions
that were necessary for the shallow water equations that were
not made in the WFS ROMS.

In the context of an ensemble forecast, if one ensemble
member is particularly close to the observations (closer for
example than the central, unperturbed simulation), we can
therefore assume that the perturbations produce indeed ini-
tial and boundary conditions which are more realistic than
the unperturbed initial and boundary conditions. Formally,
this can be done by including the perturbation in the data
assimilation state vector. The analysis will then provide an
improved estimation of those boundary conditions.

7 Numerical cost

To assess the numerical cost of this scheme and to test its fea-
sibility with a high resolution ocean model, the method was
applied to a square domain of 200 km length with different
resolutions. In a first series of experiments only 50 eigenvec-
tors are retained during the eigenvector decomposition. All
other parameters where the same than in the perturbation for
the WFS case.

The code is tested on a single core of an Intel Xeon E5420
CPU. The code is run in Octave 3.0.5 compiled among oth-
ers with SuiteSparse 3.4.0 (Davis, 2004a,b), GotoBLAS 1.26
and ARPACK 96 (Lehoucq et al., 1997). Those libraries are
used in the eigenvector decomposition. The time in sec-
onds of different steps in the algorithm are shown in Ta-
ble 2 for different grid sizes. A domain size of 512×512
was tested but the method required more than the available

16 GB of RAM. As expected, the creation of the matrixB−1,
and the ensemble creation increases essentially linearly with
the number of grid points while the eigenvector decompo-
sition increases faster than linearly with the number of grid
points. The slope of a linear regression in log-log space is
1.3. This progression is still quite similar to a linear increase
because the matrixB−1 is sparse and because a fixed number
of eigenvectors are retained.

In a second series of tests, the domain size is fixed
(128×128 grid points) and the number of eigenvectors are in-
creased from 50 to 200 (Table3). The numerical cost of the
eigenvector decomposition shows a linear progression rela-
tive to the number of eigenvectors. The numerical cost of the
ensemble creation increases only slowly and is marginal in
the overall cost.

By increasing the resolution of a domain, one can ar-
gue that the number of eigenvectors and ensemble mem-
bers should also increase proportional to the number of grid
points. In this case, the progression rate of both series have
to be combined and the numerical cost scales approximately
by the number of grid points elevated to 2.3.

The program code has been written such that it can run un-
modified also on MATLAB. The benchmark was repeated on
the same machine with MATLAB R2008a (64-bit version).
The numerical cost in function of the number of grid points
and the number of eigenvectors retained varied in a similar
way than with Octave. Overall, Octave was 13% faster than
MATLAB in completing the two series of tests. In summary,
the CPU time of this method is acceptable since it is very
small compared to the CPU time needed for the ensemble
run. More limiting than the CPU time, can be the required
amount of RAM memory for large model configurations.
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Table 2. Time in seconds as a function of the number of grid points
of the different steps involved in the creation of the perturbations.

Size of domain Creation of Eigenvector Ensemble
matrixB−1 decomposition

32×32 0.28 1.31 0.09
64×64 0.38 8.77 0.39

128×128 1.36 51.23 1.69
256×256 5.67 296.28 7.07
300×300 7.96 451.66 9.79
400×400 14.77 983.77 18.36

8 Conclusions

A new method to produce ensemble perturbations is pre-
sented. It allows to take linear constraints into account. The
formalism similar to weak constraints in variational analysis
can be used in an ensemble scheme for generating ensem-
ble perturbations. The constraints can be chosen such that
the perturbations are dynamically balanced. This is useful
for ensemble forecasts and in particular for data assimilation
where the ensemble spread is supposed to reflect the uncer-
tainty in the model forecast and should not include the vari-
ability of transient motions generated by an unbalanced state.

The method has been tested to create elevation and veloc-
ity perturbations of tidal motions. The shallow water equa-
tions constitute a constraint that relate elevation and velocity.
In a first test, those variables are perturbed independently.
In a second simulation of intermediate complexity, only the
momentum equation is enforced. This procedure allows to
derive the velocity perturbation from an elevation perturba-
tion. The third tests uses the linear shallow water equations
(momentum equations and continuity equations) to create the
perturbations. For each of those simulations, the amount of
transient motions created by the tidal analysis is computed
by applying a tidal analysis. In all cases the amplitude of
the transient motions were highest near the coast. The tran-
sient motions created using the linear shallow water equa-
tions were significantly smaller than those generated with the
two other methods showing that the constrained ensemble
was dynamically more balanced. A further reduction of the
transient motions could be obtained by including the effect
of bottom drag into the dynamic constraint. The importance
of drag on tidal dynamics is well known, but in this context
it highlights the fact that important non-linear terms cannot
be simply neglected but must be linearized around an appro-
priate mean-state.

The challenge of this approach will be to formalize an ap-
propriate dynamical constraint to quantify if a perturbation
is realistic or not. It will require a good knowledge of the
dynamical behavior of the studied system and of its error
sources. Some constraints (involving for example density)
are non-linear. But for small errors, a useful local lineariza-
tion can be generally obtained.

Table 3. Time in seconds as a function of number of eigenvector
retained for a domain of 128×128 grid points.

Number of Eigenvector Ensemble
eigenvectors decomposition

50 51.23 1.69
100 112.87 2.47
150 151.90 3.42
200 227.19 4.60

Even if no linear constraint or balance can be formulated,
the presented procedure can still be useful to create perturba-
tions that are aware of the land-sea boundary. Spurious cor-
relation across land points are thus avoided. Also, a spatially
varying correlation length can be used with this method. For
example, one can specify the correlation length as a multiple
of the radius of deformation. Those two aspects are not pos-
sible in the Fourier-based method to generate perturbations.
Despite the numerical cost is higher than for the Fourier-
based method, its cost is still acceptable for most model se-
tups.

Altought only two-dimensional perturbations have been
shown, the ensemble generation code is written in a way
that it can generate n-dimensional perturbations given a user-
specified dynamical constraint. The source code which runs
on MATLAB and GNU Octave is freely available athttp:
//modb.oce.ulg.ac.be/mediawiki/index.php/WCE.

In future works, the method will be used for assimilating
surface current observations. By including the boundary per-
turbations into the model state vector, the assimilation can
provide also an improved estimation of the boundary values.

Acknowledgements.This work was supported by the “Global
Ocean Prediction with the Hybrid Coordinate Ocean Model (HY-
COM)” program and the “HYCOM Coastal Ocean Hindcasts and
Predictions: Impact of Nesting in HYCOM GODAE Assimilative
Hindcasts” program of the US Office of Naval Research (Grant
numbers: N00014-04-1-0676 and N00014-99-1-1051 respectively)
and the ECOOP project (European COastal-shelf sea OPerational
observing and forecasting system) of the European Union. The
National Fund for Scientific Research, Belgium is acknowledged
for funding the post-doctoral positions of Alexander Barth and
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R. H.: Filtering inertia-gravity waves from the initial conditions
of the linear shallow water equations, Ocean Modelling, 19, 204–
218, doi:10.1016/j.ocemod.2007.06.007, 2007b.
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